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The ability to maximize reward and avoid punishment is essential for animal survival.

Reinforcement learning (RL) refers to the algorithms used by biological or artificial systems

to learn how to maximize reward or avoid negative outcomes based on past

experiences. While RL is also important in machine learning, the types of mechanistic

constraints encountered by biological machinery might be different than those for artificial

systems. Two major problems encountered by RL are how to relate a stimulus with

a reinforcing signal that is delayed in time (temporal credit assignment), and how to

stop learning once the target behaviors are attained (stopping rule). To address the

first problem synaptic eligibility traces were introduced, bridging the temporal gap

between a stimulus and its reward. Although, these were mere theoretical constructs,

recent experiments have provided evidence of their existence. These experiments

also reveal that the presence of specific neuromodulators converts the traces into

changes in synaptic efficacy. A mechanistic implementation of the stopping rule usually

assumes the inhibition of the reward nucleus; however, recent experimental results

have shown that learning terminates at the appropriate network state even in setups

where the reward nucleus cannot be inhibited. In an effort to describe a learning rule

that solves the temporal credit assignment problem and implements a biologically

plausible stopping rule, we proposed a model based on two separate synaptic

eligibility traces, one for long-term potentiation (LTP) and one for long-term depression

(LTD), each obeying different dynamics and having different effective magnitudes. The

model has been shown to successfully generate stable learning in recurrent networks.

Although, the model assumes the presence of a single neuromodulator, evidence

indicates that there are different neuromodulators for expressing the different traces.

What could be the role of different neuromodulators for expressing the LTP and LTD

traces? Here we expand on our previous model to include several neuromodulators,
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and illustrate through various examples how different these contribute to learning

reward-timing within a wide set of training paradigms and propose further roles

that multiple neuromodulators can play in encoding additional information of the

rewarding signal.

Keywords: reinforcement-learning, synaptic plasticity, eligibility-trace, LTP, LTD, reward, neuromodulator, timing

1. INTRODUCTION

In order to maximize reward, animals must be able to relate
predictive stimuli to future reward and estimate the expected
timing and magnitude of the reward. Although, animals can
behaviorally accomplish all of these aims, the physiological basis
for this behavior is not yet evident. In any case, any general
mechanism for learning associations between stimulus and
reinforcement have to overcome two challenges. First, learning
usually occurs when reward is delayed with respect to stimulus
offset. This poses the problem of how the association between a
stimulus and a delayed reward is established; this is often called
the temporal credit assignment problem. The second challenge is
that once the correct association is established, learning should
stop, which calls for the implementation of a stopping rule.
Many theoretical learning rules have been proposed to solve
such problems (Sutton and Barto, 1998). One of the more
biologically plausible ideas is that the temporal credit assignment
is solved via eligibility traces. These are physiological processes
that get activated by the stimulus and, in its absence, decay
slowly, thus bridging the temporal gap between the stimulus
and a delayed reward. Eligibility traces are converted to actual
changes in network function if a reward arrives while they are
still active. Once the network learns to predict the properties
of the expected reward, the goal of learning has been attained
and further changes to the network should stop. Therefore, when
the predicted reward matches the actual reward (i.e., no reward
prediction error), plasticity should be inhibited. Mechanistically,
this can be implemented if the networks internal prediction of
reward inhibits the reward nucleus so that no further reward
signal is provided.

At the physiological level, cells have been shown to change
their response to stimuli as a result of reinforcement learning
paradigms (Beitel et al., 2003; Yin et al., 2014). Recent
experimental evidence also shows that brain cells can indeed
learn to associate stimuli with delayed reward, and that the
temporal dynamics of such cells can predict expected reward-
times (Shuler and Bear, 2006; Chubykin et al., 2013). The cellular
and network mechanisms that allow the representation and
learning of these associations and their related reward times
are not yet clear. Models of recurrent networks with RL based
plasticity rules can learn to emulate the dynamics of these
cortical neurons (Gavornik et al., 2009; Gavornik and Shouval,
2010). The RL rule used in these network models includes
both synaptic eligibility traces and the inhibition of the reward
signal/nucleus. In such networks, inhibition of a reward that
is delayed with respect to the stimulus is possible because the
network learns to be active up until the expected reward time.
Therefore, such simulated networks can learn when to expect a

reward, and are able to inhibit the reward in order to stabilize
learning.

Experiments in visual cortex slices as well as in vivo have
identified the neuromodulator that allows these circuits to learn
to predict reward timing, and unlike in many other systems, this
neuromodulator is not dopamine but acetylcholine (Chubykin
et al., 2013). Further, learning stable physiological representations
can be mimicked by directly delivering the neuromodulator,
either pharmacologically in slice (Chubykin et al., 2013) or
with optogenetic stimulation in vivo (Liu et al., 2015). In
these experiments, inhibition of reward is not possible since
the putative negative feedback loop was eliminated from the
experimental model, yet stable learning is achieved. Therefore,
these experiments cast doubt on the biological validity of a
stopping rule based on reward inhibition, at least in some brain
systems. We therefore set out to design a biophysically plausible
learning rule in which explicit inhibition of reward is not needed.

To account for these findings, we recently described a
model of competitive reinforcement learning (CRL) in which
the stopping rule is implemented by competition between two
different eligibility traces: one for long-term potentiation (LTP)
and the other for long-term depression (LTD) (He et al., 2015).
These traces have different dynamics that depend on pre and
postsynaptic cortical activation and are converted to changes
in synaptic efficacy in the presence of neuromodulators. We
have demonstrated theoretically that such a CRL can be used
in recurrent networks to learn the expected time of reward
and attain stability via a stopping rule that derives from the
temporal competition between the two eligibility traces without
the need to invoke the inhibition of the reward signal. Although,
until recently the concept of synaptic eligibility traces had no
experimental support, evidence for their existence has now been
provided (Cassenaer and Laurent, 2012; Yagishita et al., 2014; He
et al., 2015).

The CRL model requires a single neuromodulator to
convert both the LTP and LTD traces into synaptic efficacies.
Experimentally it has been found that there are at least two
different neuromodulators that are used to translate eligibility
traces into synaptic plasticity, and that different ones are used
for LTP and LTD (He et al., 2015). For instance, in layer 2–3 of
neocortex, norepinephrine is necessary for expressing LTP traces
and serotonin for converting LTD traces. In prefrontal slices,
norepinephrine and dopamine can convert LTP traces while
serotonin converts LTD traces. The question posed in this paper
is thus: what are the advantages of a system in which multiple
neuromodulators are used selectively for different purposes? We
will show two new examples, derived from an extended version
of our original CRL model, in which the existence of different
neuromodulators can play a significant role. In one example we
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show that the implementation of a novel ramp-reward learning
paradigm (Namboodiri et al., 2015) in a recurrent network is
aided by two different neuromodulators. In another example
we show that a feed-forward network employing two different
neuromodulators is able to learn about the reward magnitude. In
general these results demonstrate that multiple neuromodulators
can make the system more flexible and stable.

2. RESULTS

2.1. A Model of Stable Reinforcement
Learning Based on Competition between
Eligibility Traces
The CRL is based on the assumption that at every synapse,
two synaptic eligibility traces, one for LTP and one for LTD,
can simultaneously be activated through the temporal firing
patterns of the pre- and post-synaptic cells in a Hebbian manner.
Moreover, the activity of these traces can saturate at different
levels and in the absence of any cellular activity their activation
level decays with different time constants. These assumptions
of the temporal dynamics of these traces can be formulated
mathematically as a pair of coupled differential equations of the
form:

τp
dT

p
ij

dt
= −T

p
ij +Hp(Si, Sj)

(

T
p
max − T

p
ij

)

T
p
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where the labels p and d refer to LTP and LTD synaptic eligibility
traces, respectively. Thus, for a ∈ {p, d}, Ta

ij represents the

activation of the synaptic eligibility trace at a synapse labeled
by the index ij, (i.e., between the j-th presynaptic and i-th
postsynaptic cells), τa is the characteristic decay time constant,
and Ta

max sets the saturation level for the activation of the trace.
Ha stands for the Hebbian rule, which itself depends on the firing
rates or spike patterns of the pre- and post-synaptic cells Sj(t)
and Si(t), respectively. In general there can be different Hebbian
rules for every synapse and thus we can have Ha(Si, Sj) = Ha

ij.

In many applications we will use a rate-dependent Hebbian rule
of the form Ha

ij = SiSj, where the Sk, the average firing rates, are

computed using Equation (25). The above equations can be cast
in a more familiar form

dTa

dt
= −

1
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(Ta − T̃a) (3)

where the indices i, j have been dropped, τ̃ a is the effective time
constant and T̃a is the effective saturation activity of the trace
given by
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The general solution of Equation (3) for a time-dependent
Hebbian term, Ha = Ha(t), is
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where Ta(0) is the activity of the trace at time t = 0.
In order to gain some insight into the dynamics of the traces

we consider the special case of a constant Hebbian term, i.e.,
Ha = const. Assuming that Ha is non-zero during a period
of time (rising phase) and then turns off (falling phase), the
dynamics of the traces is as follows. When Ha is non-zero, the
trace dynamics will converge exponentially to the non-zero level.

Thus, during the rising phase (Ha > 0), the dynamics of the
eligibility trace take the form

Ta
R(t) = T̃a

(

1− exp

(

−
t

τ̃ a

))

(8)

where R labels this solution for the rising phase.
During the falling phase (Ha = 0), the trace will decay to

zero with a time constant τ a following an exponential decay
(Figure 1A)

T a
F (t) = T a

R (tstim) e
−(t−tstim)/τ

a
(9)

where F labels this solution for the falling phase and Ta
R(tstim) is

the activity of the trace at the end of the rising phase (t = tstim).
The time course of the trace activity for this example is illustrated
in Figure 1A.

Note that these equations are based on the simplifying
assumption that Ha is constant throughout the different phases.
However, in general the Hebbian term Ha will vary in time
and the dynamics of the traces will deviate from the simple
description given earlier. Since in truth Ha will fluctuate over
time and from trial to trial, the equations describing the activity
of the traces characterize the average behavior.

An example of the temporal dynamics of the activity of the
trace for a smoothly time-varying Hebbian term is given in
Figure 1B. In this example, the activity of the trace increases
rapidly in a non-exponential way during the rising phase. As
the magnitude of the Hebbian term starts decreasing, the initial
decay of the trace is slow but as the magnitude of the Hebbian
term decreases to zero (gray shaded area), the activity follows an
exponential decay, illustrated by the green-dotted line, with its
characteristic decay constant τ a. Further examples from actual
simulation are given in Figure 2C.

Throughout this paper we use the simplified expression Ha
ij =

ηaHij, to indicate that the Hebbian terms for LTP and LTD are
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FIGURE 1 | Examples of trace activity for different time-dependent Hebbian functions. (A) Temporal profile of synaptic eligibility traces for a square Hebbian

stimulus, illustrated by the dashed red line, with onset at time t = 0 and offset at time t = tstim. Traces rise with a time constant τ̃a (Equation 5) to an upper steady

state T̃a (Equation 4) and decay to zero with a slower time constant τa. (B) A smooth, time-varying Hebbian function (dashed red line) representing the contributions

of pre- and post-synaptic cell activity and the resulting synaptic eligibility trace obtained from Equation (7) (blue). After the Hebbian term has decayed to zero, the

dynamic of the trace follows an exponential decay (green).

identical up to a multiplicative constant. Under this assumption
Equations (4, 5) are transformed to:

T̃a
ij = Ta

max

ηaHij

(Ta
max + ηaHij)

(10)

with time constant

τ̃ aij = τ a/(1+ ηaHij/T
a
max) (11)

Given these synaptic eligibility traces, we will further assume
that synaptic efficacies are only modified in the presence of
time dependent reward signals, which are most likely to be
neuromodulators. This assumption can be simply expressed by
the equation:

dLij

dt
= η

[

Rp(t)T
p
ij − Rd(t)Td

ij

]

(12)

where Lij is the synaptic efficacy between neurons i and j,

and Rp, Rd are the time dependent reward signals that convert
the eligibility traces for LTP and LTD, respectively, to synaptic
efficacy and η is the learning rate. For many properties of the
learning rules a single neuromodulator is sufficient, in which case
Rp = Rd. The temporal profile of the neuromodulator release is
assumed to be shorter than the duration of the trial, Ttrial.

The solution of this equation has the form:

Lij(Ttrial) = η

∫ Ttrial

0

[

Rp(t)T
p
ij − Rd(t)Td

ij

]

dt + Lij(0) (13)

where Lij(0) is the synaptic efficacy at the beginning of the trial.
Steady-state is obtained when the synaptic efficacy no longer
changes, i.e., Lij(Ttrial) = Lij(0).

We will consider several simple cases for the temporal
profile of neuromodulators. The simplest model, which was

used previously (Huertas et al., 2015), assumes that Rp(t) =

Rd(t) = R δ(t − treward) where treward is the time that the
reward signal arrives in the cortical area. When examining the
effects of different neuromodulators, we will use a model of the
form Rp(t) = R

p
0 δ(t − treward) and Rd(t) = Rd0 δ(t − treward)

where Rd0 6= R
p
0. Another possibility considered here is that the

neuromodulator level is constant within an time interval between
t1 and t2. Obviously these are very simple equations, but they
can be replaced with more biophysically realistic ones without
a qualitative change in the behavior of these rules. In general the
two neuromodulators might have different release profiles and
might not only depend of reward, but possibly also on expected
reward or on action.

As described previously by He et al. (2015) and as will be
described in the following sections, we find that in order to obtain
stable reinforcement learning, the saturation level of the LTD
associated trace must be larger than the saturation of the LTP
trace (Td

max > T
p
max). Further, to obtain learning with a delayed

reward in a recurrent network, the decay of the LTP trace must be
slower than that of the LTD trace (τp > τd). We also show below
that to obtain stable learning in a feedforward network, the rise
time of the LTP trace must be faster than the rise time of the LTD
trace (τ̃ p < τ̃ d).

2.2. CRL in a Recurrent Spiking Neural
Network: Prediction of Reward Timing
We characterize the consequences of CRL in a network of
integrate-and-fire neurons, as described in the Methods section,
using the parameters in Table 1. We have previously shown (He
et al., 2015) that with this rule it is possible to train the network to
report reward times, in slowly decaying sustained neurons in V1
(Shuler and Bear, 2006). In Figure 2 we show a summary of these
results. It shows that the network is able to learn spike timing for
a broad range of reward times in a noise free network composed
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FIGURE 2 | The CRL in a recurrent neural network. (A) With a two-trace rule, an integrate-and-fire network with excitatory recurrent connections can learn to

generate different interval times. (B) In a two-population network with fixed inhibitory connections, plastic excitatory connections, and external noise, a large range of

interval times can be learned as well. (C) Illustration of the learning process in a recurrent network. Initially (Trial 1, left) the network activity (top panel) quickly decays

and so do the LTP (green) and LTD (red) associated eligibility traces (bottom panel). At the time of reward (vertical dashed line) the LTP trace dominates and recurrent

connections are strengthened resulting in longer lasting network activity. After 5 trials (middle panel) the network activity lasts for longer, and traces reach saturation

(dashed lines). At the time of reward LTP traces still dominate, resulting in an extension of the network time constant. After 10 trials (right), network activity extends

almost to the time of reward, and the traces are equal at the time of reward. Therefore, there is no change in the strength of lateral connection and the synaptic

plasticity reaches a steady state.

of only excitatory neurons (Figure 2A), as shown previously (He
et al., 2015). We also show similar results in a network composed
of both inhibitory and excitatory neurons and with realistic levels
of variability (Figure 2B).

The process of training a recurrent network with the two-
trace model is shown Figure 2C. Initially (Figure 2C, top left)
the network activity decays quickly to baseline after the end
of the stimulus, and at the time of reward the LTP related
trace (Figure 2 bottom left) is larger than the LTD trace, due
to the longer time constant of the LTP trace. This results in a
potentiation of the synaptic efficacies, leading to longer lasting
network activity (Figure 2C top, center). During learning, at the
time of reward, the LTP trace is still larger than the LTD trace
(Figure 2C bottom, center), leading to further enhancement of
synaptic efficacies. Finally when the network activity approaches
the time of reward (Figure 2C top, right) the LTP and LTD traces

become equal (Figure 2C bottom, right), the synaptic efficacies
no longer change, and the state of the network is stabilized.

Due to the strong connection between neurons, and in
particular in the noiseless case, the neurons responses can
become synchronized. However, in the noisy case responses
becomes more asynchronous, especially after the stimulus offset
as the time approaches the expected reward time. The simulations
shown in Figures 2A,B illustrate the ability of the network to
represent different times. Longer decay times are implemented
by stronger recurrent weights. However, for large enough weights
the firing rates in the system no longer decay and it becomes bi-
stable as it was shown in Gavornik and Shouval (2010). Although,
for a deterministic system with infinitesimal precision it is
possible to implement any decay time, for stochastic systems the
proximity to the bi-stable regime imposes a practical upper limit
to the reward time the system can represent (about 2.0–3.0 s).
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TABLE 1 | Description and values of model parameters used in simulations.

Parameter Value Units Description

N 100 – Number of neurons in populations

dt 0.1 ms Time step for integration

EL −60 mV Leak current reversal potential

gL 10 × 10−3 µS Leak current conductance

C 20 × gL nF Membrane Capacitance

EE , EI −5, −70 mV Reversal potential excitatory and inhibitory currents

ρ 1/7 – Fractional change of synaptic activation

νθ −55.0 mV Spiking threshold

νreset −61.0 mV Reset voltage

tref 2.0 ms Absolute refractory period

τEEs , τEIs , τ IEs 80, 10, 10 ms Time constant for synaptic activation for excitatory to excitatory/inhibitory (EE, EI, IE) connections

τLGNs , τBGs 10, 10 ms Time constant for synaptic activation for LGN and random background (BG) inputs

fBG 10 Hz Background firing rate

τp, τd 5000, 1500 ms Decay time constant LTP (P) and LTD (D) synaptic eligibility traces

T
p
max , T

d
max 1, 0.92 – Synaptic eligibility traces saturation level

η 0.5 × 10−6 ms−1 Learning rate

WIE , WEI 19 × 10−3, 10 × 10−3 µS Synaptic connection strength from excitatory to inhibitory (IE) and inhibitory to excitatory (EI)

WLGN, WBG 100 × 10−3, 30 × 10−3 µS Synaptic connection strength form LGN and background

τr 50 ms Time window for integration of firing rate

The balancing of the LTP and LTD traces at the learned time
is accomplished in part due to the difference in the characteristic
time constants of the corresponding traces. The assumption that
the LTP trace decays slower than the LTD trace i.e., τ p > τ d

has experimental support (He et al., 2015). A second condition
required is that the saturation of the LTD trace is higher than that
of the LTP trace. This can be understood using the simple model
illustrated in Figure 1A and the related equations. For instance,
during the falling phase, the time dependence of the traces can be
written as

Tp = T̃p e−(t−tstim)/τ
p

(14)

Td = T̃d e−(t−tstim)/τ
d

(15)

where T̃a (a ∈ {p, d}) is the saturation of the corresponding trace
at t = tstim (see Equation 4). If both traces balance at t = tr then
these two equations combine to give the relationship

ln

(

T̃d

T̃p

)

= (tr − tstim)

(

1

τ p
−

1

τ d

)

. (16)

From here it follows that since τ p > τ d it must be true that
T̃d > T̃p, moreover as illustrated in Figure 2C, traces effectively
saturate near their maximally allowed values Ta

max, and thus it

follows that Td
max > T

p
max is necessary for convergence.

2.3. Learning Reward Timing with a Ramp
Protocol: Two Neuromodulators Facilitate
Stability and Flexibility
Recently, a different protocol has been used for training rodents, a
protocol that allows the researcher to estimate when the animals

expect to receive a reward. In this protocol, a visual stimulus is
delivered, the animals decide when to act (lick) after the visual
cue, and the longer they wait the more reward (water) they get,
up to a maximal reward time tmax after which they receive no
reward (Figure 3A, red line) (Namboodiri et al., 2015). Animals
trained with this protocol learn to delay their licking such that it is
close to tmax, and their chosen lick times are nearly optimal given
the distribution of response times (Namboodiri et al., 2015). This
protocol also results in changes to firing properties, similar to
changes observed in previous protocols. Many of the cells in
V1 exhibit a sustained increase in firing that terminates close
to the time of action, and time of reward (Namboodiri et al.,
2015).

We set out to examine if our two-trace learning rule is able
to train a network with this training paradigm as well. To do
this we used a similar network as in our previous simulations,
and to this network we added a decision process that will trigger
action. We used a very simple decision process such that once
the average activity of excitatory cells in the network dips below
a threshold (<15Hz), action is initiated. We also assumed that
reward is delayed by 200 ms, this delay is due to the time to
initiate and execute the lick and also to the delay between the lick
and the time that the reward signal arrives in the cortex (Hangya
et al., 2015). While a delay is biologically realistic, some delay
is also necessary for the simulations to succeed, and this delay
must be larger than the crossing time between the LTP and LTD
eligibility traces (see for example the crossing between the traces
in Figure 2C, bottom).

With these assumptions, the network learns to increase
synaptic efficacies and consequently increase the decay times
of the neuronal responses. However, we find that this learning
rule as it stands is insufficient to account for all the data. For
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FIGURE 3 | Ramp reward paradigm and neuromodulator release profile. (A) Single neuromodulator case. The reward magnitude as a function of response time

is shown by the red line in the upper panel. The longer the subject waits, the bigger the reward, until a time tmax after which no reward is received. It is assumed that

the magnitude of the single neuromodulator follows this profile as well. The black curve in the upper panel shows schematically the distribution of response times after

learning is complete. In the lower panel a situation in which the maximum reward time (tmax) is decreased (blue) while the action time responses have not yet changed

in response to the new reward paradigm. Because the actions occur in the unrewarded region, the network cannot learn this new condition. (B) Two neuromodulator

case. The reward paradigm is the same as in (A), but the two neuromodulators respond differently. The two neuromodulator profiles are depicted by different colors as

defined in the legend (cyan for LTP and magenta for LTD related traces). For the long reward time (upper panel), both neormodulators have the same profile if there is a

reward. However, if there is an action but no reward, only the LTD related neuromodulator is released. This becomes more apparent when the reward time is shifted to

a shorter duration (lower panel). Here, most responses are not initially rewarded and only the LTD related neuromodulator is released, triggered by the action.

instance, if the network is trained to one time interval such that
the network initiates the action near the target time and then
the reward time is changed to a shorter one, as illustrated by the
upper and lower panels of Figure 3A, then the network will not
be able to learn the new shorter reward time. This is because the
action would be initiated at a time longer than the maximum
reward time (lower panel in Figure 3A) and thus no reward
would be given, and with the current learning rule the absence
of reward results no change in synaptic efficacies. To address
this we now consider, as exhibited experimentally (He et al.,
2015), that there are two neuromodulators, one for expressing
the LTP trace and the other for the LTD trace. We assume then
that both of these neuromodulators are released when reward is
delivered, however a much smaller release of the LTD associated
neuromodulator is also assumed to be released upon action, even
in the absence of reward.

Mathematically this means that if there is reward, we still use
Equation (13) with Rp(t) = Rd(t) = R(t)δ(t − treward) at the
time of reward. Where R(t) that defines the magnitude of reward
has the form R(t) = Rmax(t/tmax) for 0 < t < tmax and zero
otherwise. However, if there is no reward, but action is initiated
Rp(t) = 0 but Rd(t) = κRmax δ(t − taction). The parameter
κ << 1 scales the magnitude of neuromodulator in the absence
of reward to be much smaller than that during reward, and this
neuromodulator is delivered at the time the network initiates an
action (taction). Figure 3B illustrates the neuromodulator release
profile. During the reward interval, both neuromodulators are
delivered (cyan for LTP and magenta for LTD) but only Rd

during the action (the scale used here is intended for clarity and

differs in the actual simulations). Although, the assumption that
a moderate amount of LTD related neuromodulator is released in
the absence of reward was chosen for mathematical convenience,
it is consistent with experimental observations. The role of an
LTD related neuromodulator could be played by serotonergic
neurons in the dorsal raphe nucleus (DRN) which innervate the
visual cortex (Koh et al., 1991). These neurons have been shown
to respond differentially to the delivery or omission of reward
(Li et al., 2013, 2016). Moreover, as shown in Li et al. (2016)
DRN neurons ramp-up during the waiting time of delivery of
reward, regardless of whether the reward is delivered, however
they respond in a phasic way when the reward is delivered, but
slowly decay to baseline activity.

In Figure 4B we show the dynamics in a typical trial
of the excitatory cells in this network after it is trained
with the ramp-reward protocol with tmax = 1500ms (red)
(see Figure 4A). These dynamics can be altered when tmax

is subsequently set to 1000ms (Figure 4B, blue). Note that
this reversal does not occur in a model in which only a
single neuromodulator is used. The network dynamics change
from trial to trial due to noise in the systems, consistent
with experimental observations (Namboodiri et al., 2015). In
Figure 4Cwe show summary statistics of the times that networks
trained to 1500 ms (1) and 1000 ms (2) and cross the threshold
from above. The medians obtained are 1308 ms for a network
trained to 1500 and 875 ms for a network trained to 1000ms.
Note that we did not add the action delay to these numbers. These
two distributions are statistically significantly different using an
unpaired t-test, with P < 10−10.
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FIGURE 4 | Training with a ramp reward paradigm. (A) In the ramp reward paradigm, the animal gets a reward that depends on the timing of its action. The

magnitude of reward increases linearly with the timing of action, until a maximal time tmax after which no reward is obtained (red line). Rodents trained with this

paradigm (Namboodiri et al., 2015) act close to the time tmax is a way that is nearly optimal given the temporal distribution of action times. A schematic depiction of

the temporal distribution of action is shown by the blue curve. As observed experimentally, the peak of the response times is located slightly below Tmax. (B)

Excitatory cells in a network trained with a ramp that terminates at Tmax = 1500 ms exhibit sustained activity that terminates close to 1500ms. A typical response is

shown in red. When the paradigm is altered such that tmax = 1000 ms the neural response adapts and terminates close to 1000 ms (typical response in blue). (C)

The neural response varies from trial to trial. A box-plot (median and quartiles) summarizes the statistics of threshold crossing for networks trained to 1500 ms (1) and

1000 ms (2). (D) The distribution of response times depends on the value of the parameter κ that determines the amount of R2 when no reward is delivered.

The problem with the single neuromodulator model goes
beyond its inability to transition back from long to short action
times. In the absence of LTD expression, the response of a
network trained from short to long action times will drift up.
Eventually the network response time will move beyond tmax. We
can see this by simulating a network with a tmax = 1000ms,
setting κ = 0.0 and running the simulations for many more
iterations. In such a case (see Figure 4D, right) the network
median threshold crossing drifts up until it reaches ∼ 1090 ms.
The action will be delayed with respect to the neural response,
which means that the action will be observed at longer that 1200
ms, and beyond tmax. The slow drift to longer response times only
ends when action times on every trial exceed tmax.

Experimentally the distribution of action times peaks close
to the optimal time to obtain maximal reward, given the
width of the distribution of action times (Namboodiri et al.,
2015). One could ask if a network trained with CRF and two
distinct neuromodulator accomplishes this as well. We find that
properties of the action time distribution, in our model, depend
on the parameters of the model, most specifically on the value of
κ . In Figure 4D we show how the properties of the distribution
depend on the value of κ . As κ decreases, the location of the

peak of the distribution increases. Therefore, our model does
not obtain optimal performance for all parameters, but could
approach optimality for a specific value of κ .

2.4. Two Different Neuromodulator Signals
are Required to Predict Reward Magnitude
in a Feed-Forward Network
The recurrent network described above can code for the expected
time of reward, but we have not shown that it can code for the
magnitude of reward. To investigate this, we set up a one layer
network that is exposed to various 2D input patterns (of size
N x N) (Figure 5A). Only one of these inputs is rewarded. The
reward can be delivered either continuously or discretely through
the time during which the pattern is presented. We examine two
simple cases, one in which the reward is delivered at one point in
time, and another in which it has a constant value throughout the
presentation of the stimulus.

At first we examine the consequences of training with a
discrete reward signal for expressing the LTP and LTD traces
of the form: Rp(t) = Rd(t) = R δ(t − treward). In this example
the pattern is presented and remains on even after the time of
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FIGURE 5 | Learning to respond to a rewarded pattern. (A) A set of input patterns that are presented to the input layer, only one (red arrow) is rewarded. Other

patterns are not rewarded. In this example, the number of patterns is P = 8, and the pattern dimension is 31 × 31. Here a discrete reward is delivered 250ms after

stimulus onset. (B) Before training, the weight vector is chosen to be random (left) and the response to all patterns is similar and weak (center). The two eligibility

traces are increased due to the stimulus, and at the time of reward (green dashed line) the LTP trace (blue solid line) is stronger than the LTD trace (blue dashed line),

resulting in potentiation of stimulated synapses. (C) After training, the weight vector has the same structure as the rewarded pattern (left), the response to the

rewarded pattern (center) is strong, and the response to other patterns is much weaker. At the time of reward (vertical green dashed line), the LTP and LTD traces are

equal in magnitude, such that no further changes in synaptic efficacies occur on average.

the reward, which occurs at treward = 250 ms (see green line in
Figures 5B,C). We find that this results in a potentiation of the
weights that are stimulated by the rewarded pattern, while other
weights are unchanged (Figure 5). Consequently the neuron
becomes selective to the rewarded pattern. The strengthening
of those synapses terminates once the LTP trace (Tp) and the
LTD trace (Td) are equal at the time of reward. Initially the
weights vector is random (Figure 5B, left), the postsynaptic cell
is only moderately activated (Figure 5B, center), and the LTP
related trace Tp (solid line) is larger than the LTD trace Td

(dashed line) (Figure 5B, right), and both are much lower than
saturation. These temporal profiles of the traces are determined
by the model’s parameters. For the Tp to increase faster than
Td we set ηp > ηd. This faster increase of Tp is essential for
the initial growth of weights stimulated by the rewarded pattern.
Learning causes the weight vector to resemble the rewarded
pattern (Figure 5C, left), and the postsynaptic activation due
to that pattern is significantly increased (Figure 5C, center).
Note that when learning stabilizes the two eligibility traces at
the time of reward have the same value (Figure 5C, right)
and this results in no further changes (on average) to synaptic
efficacies.

It can be useful for the response magnitude to learn to
represent the expected rewardmagnitude. One could assume that

the magnitude of the neuromodulators depends on the reward
magnitude. If both Rp and Rd depend on reward magnitude
in the same way, the fixed point will be independent on the
reward magnitude because the steady state depends on the ratio
between Rp and Rd. However, if they depend differently on
reward magnitude then possibly reward magnitude could be
represented in the response magnitude of the cells. We examine
a simple case in which Rp depends on reward magnitude but the
value of Rd is constant; it depends on the existence of reward, but
not on the magnitude of reward.

To examine the impact of changing the value of Rp/Rd, we
ran several simulations in which we modified this ratio. The
simulations were run until the system reached a fixed point,
and no further significant changes in the receptive fields were
observed. As the value of Rp/Rd increased, so did the firing rate of
the post-synaptic neuron in response to the rewarded pattern (see
examples in Figure 6A), while the firing rates of non-rewarded
patterns did not change significantly. On average the fixed point
will occur when Rp(treward)T

p
ij(treward) = Rd(treward)T

d
ij(treward).

Since the reward occurs during the rising phase of the traces, the
fixed point (see Equation 8) is reached when:

Rp T̃
p
ij

(

1− e
−treward/τ̃

p
ij

)

= Rd T̃d
ij

(

1− e
−treward/τ̃

d
ij

)

. (17)
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Note that according to Equations (10, 11) T̃p, T̃d as well as τ̃ p and
τ̃ d depend onH. Therefore, solving Equation (17) is equivalent as
solving forH at the fixed point. The Hebbian term, in its simplest
form, is proportional to the activity of the output neuron,
therefore knowing the value of H gives an indirect measure of
the network’s response. Consequently, by solving numerically for
H at different levels of Rp/Rd one can find how the magnitude
of the Hebbian term (and thus the network response) at fixed
point depends on the reward. A fixed point for this equation
can be found if Rp T̃

p
ij < Rd T̃d

ij while at the same time τ̃ p <

τ̃ d. Although, T̃p < T
p
max and T̃d < Td

max (see Equation 10),
they typically saturate close to these maximal values, due to the
large value of the Hebbian term with respect to the saturation
levels, i.e., H ≫ Ta

max. This implies new approximately necessary

conditions for a fixed point Rp T
p
max < Rd Td

max. Note that the
value of τ̃ p and τ̃ d depends on τ p and τ d respectively, but also on
ηp and ηd. By choosing appropriate values of ηp and ηd we can
satisfy the condition τ̃ p < τ̃ d.

Although, Equation (17) cannot be solved in closed form, we
can rewrite it in a simpler way by using the condition H ≫ Ta

max

to give

r

k
=

1− e−φpH

1− e−φdH
(18)

where r = Rp/Rd, k = Td
max/T

p
max and φa = treward/(τ

aTa
max).

From this expression we can see that as r approaches k from
below, then H → ∞, indicating that an increase in reward can
be represented by the network as an increase in the network’s
response expressed in the Hebbian term. Solutions for r > k do
not exist and this is indicated in Figure 6 by a sudden drop of the
function to zero.

In Figure 6Bwe compare results of simulations to the solution
of Equation (17), for Td

max/T
p
max = 1.5. We find a good

agreement between the simulation results, averaged over many

synapses, to the solution obtained by directly solving Equation
(17) (solid line). We also find a large variability in each single
trial between the value of H at different synapses (the error
bars represent standard deviation over synapses), as well as
between the value ofH across trials within the same synapse. The
variability primarily stems from the highly stochastic nature of
presynaptic firing in each presynaptic neuron of each trial.

In Figure 6C we show the dependence of H on Rp/Rd for
different values of Td

max/T
p
max. These results confirm the stability

condition (Rd Td
max > Rp T

p
max) derived above.

In Figure 6Awe showed via simulations how the postsynaptic
firing rate depends on the Rp/Rd ratio, but our analysis in
Equation (17) and in Figures 6B,C is for the Hebbian term H.
Note that the fixed point for H is the same, independent of how
H is actually calculated in simulations, as long as H is a form
that is able to train the network and reach the fixed point. The
details of the Hebbian term H do matter however for the post-
synaptic rate. Given a specific functional form of H and a given
presynaptic firing rate for the rewarded pattern, one could invert
H to find the post-synaptic rate. For example, if H is simply H =

c · rpre · rpost, where rpre and rpost are the pre- and post-synaptic
firing rates, respectively and c a proportionality constant. Given
that we define the fixed point as: H = Hfp the postsynaptic rate
will take the form: rpost = Hfp/(c ·rpre). Clearly for more complex
Hebbian terms, for instance terms that depend on spike times,
this inversion will be more complicated. However, the fixed point
forH 6= 0, will only be reached if the functional form ofH chosen
can reach this fixed point.

The results until now assumed a reward delivered at one point
in time (a δ function reward). This makes analysis simpler but
is clearly unrealistic. Another simple option is that reward is
delivered uniformly throughout and extended period between
times t1 and t2 such that t2 − t1 = 1t. These times represent
the time interval during which reward is delivered, as illustrated
in Figure 7A by the green bar at the bottom. Note that, as in the

FIGURE 6 | Response to rewarded pattern can also learn to represent the magnitude of reward. (A) Two examples for the postsynaptic neurons firing rate, in

response to the rewarded pattern after training and one for the unrewarded case. In one example (black) Rp/Rd = 1.2 and in the other (red) Rp/Rd = 1.4. The

unrewarded pattern (blue) has a much lower firing rate. This result illustrates that a network trained with two different ratios of LTP vs. LTD associated reward (Rp/Rd )

learns to represent the specific ratios. When Rp/Rd increases, so does the magnitude of the response to the rewarded pattern. Here Tdmax/T
p
max = 1.5. (B) The value

of H at steady state increases monotonically as a function of Rd/Rp until a critical value is reached. Beyond this critical value the stable state is H = 0. The solid red

line represents the analytical solution and the gray symbols represent the mean and standard deviation of simulations. The variability is over different synapses and

time steps. All synapses associated with the rewarded pattern are taken into account. (C) H vs. Rp/Rd (as in B) but for different values of Tdmax/T
p
max.
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FIGURE 7 | Training with a step function reward. (A) A pattern can be rewarded throughout the time it is presented (green shaded area), and not just at one time

point as above. In such a case at steady state the integral of the LTP eligibility trace times its associated reward magnitude (solid line) is equal to the LTD eligibility trace

times its associated reward (dashed line). (B) H at steady state vs. Rp/Rd when Tdmax/T
p
max = 1.5. The solid red line represents the analytical solution and the gray

bars represent the mean and standard deviation of simulations. The variability is over different synapses and time steps.

previous example, the reward is delivered while the pattern is still
on. In that case the fixed point of Equation (13) takes the form:

Rp
∫ t2

t1

T
p
ijdt = Rd

∫ t2

t1

Td
ijdt (19)

What this means is that the fixed point is attained when the
integral of the LTP trace times its reward magnitude is equal to
the integral of the LTD trace times the LTD reward magnitude
(see Figure 7B). From these assumptions, one derives a fixed
point equation of the form:

RpT̃
p
ij

(

t2 − t1 + e
−t2/τ̃

p
ij − e

−t1/τ̃
p
ij

)

=

RdT̃d
ij

(

t2 − t1 + e
−t2/τ̃

d
ij − e

−t1/τ̃
d
ij

)

. (20)

This equation, like in the δ function reward case, is implicitly
a function of H and can be solved for H. We do not have
a closed form solution for this equation, but it can easily be
solved numerically. Note that to obtain this expression we made
the approximation that H is constant throughout the integral.
This approximation is worse here than for the δ function case
and therefore one should expect less agreement between the
simulations and the solution of Equation (20). In Figure 7B we
compare the solutions of this equation to simulation results.
There is a surprisingly good agreement between simulations and
analysis despite the rough approximations. Not surprisingly, the
agreement is worse than for the δ function reward shown above.
Importantly, and irrespective of the precise details, we find that it
is possible to learn the magnitude of reward with two different
neural modulators and this is possible for different temporal
profiles of the reward signal.

3. DISCUSSION

We previously presented a theory (CRL) for stable reinforcement
learning based on temporal competition between synaptic
eligibility traces (He et al., 2015). According to this theory,

learning occurs only in the presence of a neuromodulator
that converts the activity level of these traces into changes
in synaptic efficacy. Within our original framework, a single
neuromodulator can result in either potentiation (LTP) or
depression (LTD), depending on the magnitude of the different
eligibility traces. When this model is embedded as the learning
rule in a recurrent network, this theory is able to account for
the formation of sustained cortical dynamics that can be used to
predict reward timing. The key mechanism underlying this is the
simultaneous expression and competition between potentiation
and depression fostered by the presence of the rewarding
signal (neuromodulator), which results in a net potentiation
that eventually is fully balanced by the depression component.
Stability of learning in our theory requires the coexistence of
LTP and LTD related traces in single synapses. This assumption
does not yet have explicit experimental support, since in the
experiments reported in He et al. (2015) pure pre-post or post-
pre induction protocols have been used. We expect that in vivo
firing patters will be similar to those in our simulations, and will
result in a mix of pre-post and post-pre coincidences, resulting in
the coexistence of LTP and LTD related traces in single synapses.

While the theory as described requires a single
neuromodulator, the existence of several neuromodulators
has been observed experimentally (He et al., 2015). The question
we address here is what purpose could multiple neuromodulators
serve? First, we showed that a recurrent network, training via
CRL with only one neuromodulator fails to account for results
of a novel ramp-reward training paradigm (Namboodiri et al.,
2015). The single neuromodulator CRL fails in learning to
predict a short reward time after it previously learned a longer
interval and it drifts when learning any reward time such that
the network learns to predict reward times that fall after the
end of the reward window. We expand the CRL model by
adding separate neuromodulators for LTP and LTD traces,
and by postulating that an LTD specific neuromodulator can
be active upon action in the absence of reward. This revised
CRL model is able to learn the appropriate reward times and
to learn short reward times after a previous long reward was

Frontiers in Synaptic Neuroscience | www.frontiersin.org 11 December 2016 | Volume 8 | Article 37

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Huertas et al. Multiple Neuromodulators in Reinforcement Learning

learned. There is significant scientific evidence regarding the
temporal responses of dopamine neurons (Schultz et al., 1997)
although recent results are further expanding our knowledge
(Howe and Dombeck, 2016). Not as much is known about
the temporal dynamics of other neuromodulators in response
to reward, although recent evidence has emerged that ACh
releasing neurons in the basal forebrain have a rapid response
to negative and positive rewards (Hangya et al., 2015). We
hypothesize that some neuromodulators that are necessary for
reward dependent LTD could be released upon action and in the
absence of reward; such a prediction should be experimentally
tested.

In a second example we set out to examine if CRL can
learn other parameters of a predictable reward, for example the
magnitude of reward. For simplicity and in order to make a more
general statement we tested this in a feedforward network that
could conceptually predict the magnitude of reward, but not its
expected timing. We first showed that a single neuromodulator
CRL is able to train such a network to respond selectively to
the rewarded input pattern, and that such learning is stable.
However, it is unable to represent the magnitude of reward,
because the fixed point is independent of this parameter.
In contrast, a modified CRL with two neuromodulators that
respond differentially to the reward can learn to represent
reward magnitude. We also characterized the parameter ranges
that enable such learning. We have previously shown how a
network of of spiking excitatory and inhibitory neurons, trained
with our previous learning rule, develops all the different cell
types observed in the visual cortex experiments (Huertas et al.,
2015). This network can also develop one class of cells, cells
with a peaked response at the time of reward, that can also
predict reward magnitude. The learning rule used in that model
depended on the inhibition of the reward signal. Further work
should examine if the expanded CRL proposed here, when
embedded in a similar recurrent network, can also result in the
different types of cells, as observed experimentally (Shuler and
Bear, 2006; Chubykin et al., 2013; Namboodiri et al., 2015).

4. METHODS

We will describe here both the recurrent and the feedforward
networks. All neurons are leaky integrate and fire neurons, whose
membrane potential is governed by the equations:

C
dν

p
i

dt
= gL(EL − ν

p
i )+ gE,i(EE − ν

p
i )+ gI,i(EI − ν

p
i ) (21)

dsk

dt
= −

1

τs
sk + ρ(1− sk)

∑

l

δ(t − tkl ) (22)

where ν
p
i represents the membrane potential of the i-th neuron

in population p, which can be either excitatory (E) or inhibitory
(I), and where sk is the synaptic activation of the k-th pre-
synaptic neuron. Other parameters are: membrane capacitance
(C); leak, excitatory, and inhibitory conductances (gL, gE,i, gI,i);
leak, excitatory, and inhibitory reversal potentials (EL, EE, EI);
percentage change of synaptic activation with input spikes (ρ)
and time constant for synaptic activation (τs). Different synaptic

time constants were used in different neurons types and in the
different models. The delta-function in Equation (22) indicates
that these changes occur only at the moment of the arrival of a
pre-synaptic spike at tk

l
where the index l says that this is the l’th

spike in neuron k.
The total excitatory and inhibitory conductances are

computed from the individual outgoing synaptic activations, sk,
and the synaptic strength, �ik, between the post-synaptic neuron
i and the pre-synaptic neuron k. Thus, for both excitatory and
inhibitory currents we have

gE,i =
∑

k

�E
ik sk (23)

gI,i =
∑

k

�I
ik sk (24)

where the index k runs over all pre-synaptic neurons (either from
the excitatory or inhibitory populations accordingly) contacting
the post-synaptic neuron i which for gE,i is either an excitatory or
an inhibitory neuron and for gI,i is an excitatory neuron.

In the simplest recurrent network (Figure 2A) we have only
excitatory neurons, and the time constant we use is as in our
previous work (Gavornik et al., 2009) τs = 80ms. The excitatory
feedforward synapses have a time constant of τs = 10 ms. In
the network with both excitatory and inhibitory connections
(Figure 2B), the time constant of inhibitory synapses is τs =

10ms. More details about this network can be found in Huertas
et al. (2015).

In the feedforward network there is only a single postsynaptic
integrate and fire neuron with τs = 10 ms. In all cases input
patterns set the rate for a Poisson process that generates random
spikes in the afferent feedforward synapses. To calculate the
Hebbian term that generates the traces, we first compute an
estimate of the rate in each neuron using the following process:

τr
dri(t)

dt
= −ri(t)+ Si(t) (25)

where Si(t) represents the spike times in neuron i and has the
form Si(t) =

∑

k δ(t− ti
k
), where ti

k
is the timing of spike number

k in neuron i. Here we used τr = 50ms, results are insensitive to
the precise choice.

A copy of the code used to perform the simulations in the
paper can be requested from the authors.
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