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Neuromodulators play a ubiquitous role across the brain in regulating plasticity. With

recent advances in experimental techniques, it is possible to study the effects of

diverse neuromodulatory states in specific brain regions. Neuromodulators are thought to

impact plasticity predominantly through two mechanisms: the gating of plasticity and the

upregulation of neuronal activity. However, the consequences of these mechanisms are

poorly understood and there is a need for both experimental and theoretical exploration.

Here we illustrate how neuromodulatory state affects cortical plasticity through these

two mechanisms. First, we explore the ability of neuromodulators to gate plasticity by

reshaping the learning window for spike-timing-dependent plasticity. Using a simple

computational model, we implement four different learning rules and demonstrate their

effects on receptive field plasticity. We then compare the neuromodulatory effects of

upregulating learning rate versus the effects of upregulating neuronal activity. We find

that these seemingly similar mechanisms do not yield the same outcome: upregulating

neuronal activity can lead to either a broadening or a sharpening of receptive field

tuning, whereas upregulating learning rate only intensifies the sharpening of receptive

field tuning. This simple model demonstrates the need for further exploration of the

rich landscape of neuromodulator-mediated plasticity. Future experiments, coupled with

biologically detailed computational models, will elucidate the diversity of mechanisms by

which neuromodulatory state regulates cortical plasticity.

Keywords: neuromodulation, noradrenaline, acetylcholine, dopamine, synaptic plasticity, computational modeling

1. INTRODUCTION

Cortical circuits are modified by experience. It is widely thought that such modifications enhance
the representations of behaviorally important sensory stimuli, such as natural scenes for the visual
cortex, or speech for the auditory cortex. These modifications can lead to the development or
refinement of receptive fields in cortical neurons through synaptic plasticity. Across many species,
the amount of cortical plasticity has been shown to depend on age. In juvenile mice, for example,
tuning curves can shift from responding maximally to a preferred stimuli to responding maximally
to a training stimulus (Dorrn et al., 2010). This is not thought to require neuromodulation
and, interestingly, is associated with a state of unbalanced excitation and inhibition. Conversely,
experimental data from adults suggest that sensory stimulation is not sufficient to induce a change
in receptive fields. Experiments in adult mice suggest that activation of neuromodulatory systems
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is also necessary for this change (Bear and Singer, 1985; Bakin
andWeinberger, 1996; Kilgard and Merzenich, 1998; Shulz et al.,
2000; Gu, 2002; Ma and Suga, 2005; Froemke et al., 2007;
Drever, 2011; Chun et al., 2013; Martins and Froemke, 2015).
In primary auditory cortex, Froemke et al. (2007) observed that
repeated exposure to a training sound frequency is not sufficient
to evoke experience-dependent plasticity in adult rats. However,
the tuning curve shifts to the training frequency if the stimulus
is paired with cholinergic stimulation (from Nucleus Basalis).
Interestingly, the stability of receptive fields is thought to be
associated with the balance between excitation and inhibition,
which is observed across many regions in the adult brain
(Destexhe and Sejnowski, 2003; Shu et al., 2003;Wehr and Zador,
2003; Haider et al., 2006; Froemke et al., 2007; Okun and Lampl,
2008; Froemke et al., 2013; Graupner and Reyes, 2013; Xue
et al., 2014). Experiments indicate that some neuromodulators
act to disrupt this balance (Froemke et al., 2007, 2013; Letzkus
et al., 2011), enabling cortical plasticity. These neuromodulatory
systems may be responsible for communicating the behavioral
context of sensory stimuli to other brain regions (Shulz et al.,
2000; Gu, 2002).

Neuromodulators are observed to induce different effects in
neural circuits. One main neuromodulatory effect is to gate
plasticity by modifying the spike-timing-dependent plasticity
(STDP) learning window (Bissière et al., 2003; Couey et al.,
2007; Seol et al., 2007; Caporale and Dan, 2008; Lin et al.,
2008; Pawlak and Kerr, 2008; Shen et al., 2008; Zhang
et al., 2009; Pawlak et al., 2010). For example, in lateral
amygdala, activation of D2 dopamine receptors was shown to
be necessary to induce long-term potentiation (LTP) (Bissière
et al., 2003). While in dorsal striatum, dopamine signaling via
D1/D5 receptors is required for both long-term potentiation
and long-term depression (LTD) (Pawlak and Kerr, 2008).
In prefrontal cortex layer 5 pyramidal neurons, nicotine was
shown to be able to reverse LTP into LTD (Couey et al.,
2007). In visual cortex, the combined action of acetylcholine
and noradrenaline is necessary for standard STDP, whereas
the action of noradrenaline alone was shown to reverse LTD
into LTP, and acetylcholine alone allows only LTD (Seol
et al., 2007). Therefore, depending on the brain region and,
possibly, the stimulation protocol, neuromodulatory signaling
can completely reshape STDP learning windows. Additionally,
dopamine has been shown to be important for reinforcement
learning (Schultz, 2002). Unlike previous work on dopamine
and reinforcement learning, we focus this perspective article on
other less explored neuromodulatory effects in an unsupervised
learning scheme.

Neuromodulators have also been shown to upregulate
neuronal activity. For example, cholinergic stimulation is known
to lower feedforward inhibition (Woody and Gruen, 1987;
Metherate et al., 1992; Xiang, 1998; Froemke et al., 2007, 2013).
Similarly, noradrenaline is known to trigger a disinhibitory effect
(Kuo and Trussell, 2011). It has been shown that stimulation of
Locus Coeruleus, themain source of noradrenaline, reduces tonic
inhibition in auditory cortex (Martins and Froemke, 2015). These
disinhibitory mechanisms are thought to be essential for adult
cortical plasticity (Hensch, 2005; Letzkus et al., 2011; Kuhlman

et al., 2013). Indeed, a computational study by Clopath et al.
(2016) demonstrated that a disinhibitory gate is required for adult
cortical plasticity. These findings indicate that a disinhibited
system promotes learning, consistent with recent experimental
work (Letzkus et al., 2011; Kuhlman et al., 2013).

In this perspective article, we review the possible effects of
neuromodulators by using a simple computational model of a
plastic feedforward network. First, we hypothesize four different
learning windows that would result from the action of different
neuromodulators. Then we show the consequences of these rules
on receptive field plasticity. We verify that an antisymmetric
STDP rule allows for receptive field development, whereas a
rule with more potentiation allows for a greater modification
of sensory representation. Finally, we compare the effect of
upregulating the learning rate to the effect of upregulating activity
and show that they are not necessarily equivalent. In the simple
model, upregulating activity can lead to either a sharpening
or a broadening of receptive field tuning. Upregulating
the learning rate, however, only amplifies the existing
structure.

2. RESULTS

To illustrate the effect of neuromodulation in cortical plasticity,
we use four possible STDP learning rules for excitatory synapses
(Figure 1A). Each one of the STDP rules can be thought of as the
action of a specific neuromodulatory state. The first rule is the
standard antisymmetric STDP rule, in which a presynaptic spike
preceding a postsynaptic action potential leads to potentiation
of synaptic connections, whereas the reverse leads to depression.
We refer to this rule as the Depression-Potentiation (DP) rule
(Figure 1A, blue curve). Although widely observed in neocortical
neurons of juvenile animals (Markram et al., 1997; Feldman,
2000; Sjöström et al., 2001; Nevian and Sakmann, 2006), the
DP rule seems to be neuromodulator dependent in adults. This
rule has been observed in visual cortex when both noradrenaline
and acetylcholine are present (Seol et al., 2007), whereas in
dorsal striatum it can be observed under activation of D1/D5
(dopamine-specific) receptors (Pawlak and Kerr, 2008). The
second rule is a symmetrical STDP rule, in which all pairs of
pre- and postsynaptic spikes lead to potentiation, regardless
of their order. As such, we refer to this as the Potentiation-
Potentiation (PP) rule (Figure 1A, red curve). This rule can
be observed in adult visual cortex under the activation of β-
adrenergic (noradrenaline-specific) receptors (Seol et al., 2007),
and in hippocampal neurons under the effect of dopamine
(Zhang et al., 2009). For the third rule, only presynaptic spikes
followed by postsynaptic action potentials elicit synaptic weight
changes, leading to potentiation. Thus, we refer to this as the
Unchanged-Potentiation (UP) rule (Figure 1A, green curve).
This rule can be associated with dopaminergic action via D2
receptors in Lateral amygdala (Bissière et al., 2003). Lastly, the
fourth rule states that synaptic weights are weakened every
time a postsynaptic spike precedes presynaptic action potentials,
and is unchanged otherwise and hence we refer to this as the
Depression-Unchanged (DU) rule (Figure 1A, pink curve). This
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FIGURE 1 | Receptive field plasticity under the effect of neuromodulation. (A) Diagram showing the four learning windows. Each learning window shows the

change in synaptic strength (1W) as a function of the difference between the post- and presynaptic spike times
(

1t = tpost − tpre
)

. Blue, rule DP

(Depression-Potentiation); red, rule PP (Potentiation-Potentiation); green: rule UP (Unchanged-Potentiation); pink, rule DU (Depression-Unchanged). (B) Network

diagram. Firing probabilities (signals, colored traces) are independently generated and each neuron’s firing probability is determined by a weighted sum of these

signals. Each signal can be understood as one specific sensory feature, such as one particular tone for auditory stimulation or one particular orientation for visual

stimulation. The input neurons project to one common postsynaptic neuron (gray circle). (C–E) Evolution of synaptic weights for the different learning rules. (C)

Evolution of weights for a simulation with 100 presynaptic neurons projecting to one postsynaptic neuron. The excitatory weights follow the DP rule with the amplitude

for depression slightly greater than the amplitude for potentiation. The small difference in amplitude is enough to generate bimodal distribution of weights. (D) Final

distribution of weights in (C). The synaptic weights are in the vertical axis and the counts of synaptic weights in each interval are in the horizontal axis. (E) First 10

seconds of the evolution of weights for plasticity rules PP, UP and DU (red, green and pink, respectively). The weights quickly achieve the upper or lower bounds. (F–K)

Simulation of a network with 10 presynaptic neurons. The excitatory connections follow the four STDP rules in (A). (F) Final synaptic weights for each input neuron,

except black line, which is the initial weights. The initial receptive field was tuned to input neuron 7 (grey arrow). All the inputs had the same intensity. (G) Final synaptic

weights for each input neuron when stimulus 4 (training input, black arrow) is 100% stronger than the other stimuli. Black curve shows the initial weights, tuned to

input neuron 7 (grey arrow). (H) Difference between the synaptic weight from input neuron 4 (training input) and the weight from input neuron 7 (initial preferred input)

as a function of time. We call this difference ‘input specificity’. (I–K) Same as (F–H) but for a system in which the excitatory weights are also constrained by a

normalization rule. In Figures (F–K), curves show the mean averaged over 100 trials and shaded areas represent one standard deviation from the mean.
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rule has been reported in prefrontal cortex under nicotinergic
modulation (Couey et al., 2007).

We simulate a feedforward network, in which a set of
presynaptic input neurons project onto one postsynaptic neuron
(Figure 1B). Input neurons fire with a time-varying firing
rate with Poisson statistics. Neighboring input neurons
have correlated activity, as for example neurons with
similar frequency/orientation (sensory feature) preference
in auditory/visual cortex (for more details, see Section 4 and
Supplementary Figure 1). Using this network, we illustrate the
receptive field formation and adaptation under different learning
rules, which are shaped by different neuromodulatory states.

2.1. Standard STDP Leads to Symmetry
Breaking
Hebbian learning rules, when associated with a competitive
mechanism, are known to induce symmetry breaking of synaptic
weights, i.e., some weights become strong and some weights
become weak. However, it is well known that even without
explicit competition, it is possible to induce symmetry breaking.
This happens when the STDP rule is such that the depression
component of the STDP learning window is larger than the
potentiation component (i.e., the integral of the learning window
is negative) (Song et al., 2000). To illustrate the behavior
of synaptic weights for the four different learning rules, we
first simulate a network composed of 100 presynaptic neurons
with all synaptic weights initially set at the same value. The
DP rule can be modified to ensure that the amount of
depression is slightly higher than the amount of potentiation
(by increasing the amplitude of depression by 2%, as observed
in several experiments (Bi and Poo, 1998; Feldman, 2000).
We observe that, after some time, some of the weights get
completely depressed whereas the remaining get completely
potentiated, i.e., the weights go to their upper and lower
bounds (Figures 1C,D). This happens because inputs with
strong connections can more easily induce a postsynaptic action
potential. As a consequence, the spiking activities of strongly
connected inputs are more correlated with the activity of the
postsynaptic neuron, resulting in a further strengthening of
weights. For those inputs with weak connections, there is
almost no correlation between their activity and that of the
postsynaptic neuron. These low correlations ensure the learning
window is equally sampled so that the asymmetry of potentiation
and depression results in depression of these weak synaptic
weights. This effect was formally derived in several studies
(e.g., Kempter et al., 1999; Song et al., 2000; Gilson et al.,
2009; Babadi and Abbott, 2016). For the remaining learning
rules, synaptic weights are either all potentiated or all depressed
(Figure 1E).

Taken together, the DP rule is the only one which allows for
the emergence of receptive fields in this simple model. This rule
can be associated with the combined action of noradrenaline
and acetylcholine in visual cortex (Seol et al., 2007). This model
suggests that development of receptive fields in this region can
be facilitated through the action of these neuromodulators. The
first section of this perspective considered the neuromodulatory

state for receptive field formation. Next, we will show that the
neuromodulatory state for receptive field adaptation might be
different.

2.2. The Stronger the Potentiation, the
Faster the Receptive Field Plasticity
In order to demonstrate the effect of different neuromodulatory
states on the stability of receptive fields, we first consider the case
where all inputs have on average the same firing rate. We assume
a network with 10 inputs in which the postsynaptic neuron is
already tuned to a preferred stimulus, i.e., it has a stronger weight
for input 7 than for other inputs. For the DP rule (standard
STDP) we observe a small increase in all synaptic weights, even
though the amounts of potentiation and depression are the
same. Synaptic changes are larger for synapses that were initially
stronger in these simulations (Figure 1F, blue curve). The activity
of presynaptic neurons increases the probability of postsynaptic
action potentials. Therefore, events in which presynaptic neurons
fire before the postsynaptic neuron (while close in time) are more
likely to occur than the opposite, as shown previously (Kempter
et al., 1999; Song et al., 2000; Gilson et al., 2009). The PP rule,
with the largest amount of potentiation, results in the largest
change of receptive field (Figure 1F, red curve), whereas the UP
rule generates an intermediate increase (Figure 1F, green curve).
For the DU rule, we observe a small decrease of all synaptic
weights (Figure 1F, pink curve). Therefore, we observe that the
final receptive field remains tuned to the initial tuning frequency
for all learning rules (Figure 1F).

It has been demonstrated that neuromodulation can facilitate
plasticity in different systems (Bear and Singer, 1985; Bakin
and Weinberger, 1996; Shulz et al., 2000; Gu, 2002; Froemke
et al., 2007; Chun et al., 2013; Martins and Froemke, 2015). In
this section, we want to illustrate how different learning rules,
mediated by different neuromodulatory states, affect receptive
field plasticity. To do this, we over-represent one input (input 4),
called the training input, by increasing the firing rate of one input
neuron and its neighbors. This corresponds to stimulating one
sensory feature excessively—e.g., by the repeated presentation of
one tone (for auditory stimulus) or one orientation (for visual
stimulus). We observe a shift in the receptive field towards the
training input for learning the PP and UP rules (Figure 1G, red
and green curves), which are potentiation-only rules. For the DP
rule, we observe a small increase in the connection from the
training input. After 40 s, the peak of the receptive field is still
at the initially preferred input. As such, the receptive field did
not shift to the training input (Figure 1G, blue curve). When
applying the DU rule, the stronger activation of the training
input leads to a stronger depression of the corresponding synapse
(Figure 1G, pink curve). When we compare the strength of the
synapse from the training input with the one from input 7
(the initially preferred input), we observe that the rules with
only potentiation lead to fast receptive field plasticity towards
the new preferred stimulus. Since the weights are bounded, this
shift in the preferred input is transient and the postsynaptic
neuron is untuned at the end of the simulation (Figure 1H). The
antisymmetric DP rule leads to a slower shift yet achieving, on
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average, the same value of input specificity as the PP and UP
rules (Figure 1H). The DU rule forces all the weights to decrease
until they reach the lower bound value. Therefore, the difference
between the neuron’s response to the training input and the
initially preferred input slowly converges to zero (Figure 1H,
pink curve). Not surprisingly, only rules with potentiation lead
to a receptive field shift towards the training input. Additionally,
rules with a larger amount of potentiation result in a faster
receptive field shift.

In the model so far, there was no explicit competition
mechanism between weights for any of the learning rules
implemented until now. We now want to illustrate whether such
amechanismwould facilitate or obstruct receptive field plasticity.
To address this question, we use a normalization rule together
with the STDP learning rules. Again, we first consider the case
where all the inputs have on average the same firing rate. For
rules DP, PP and UP, we observe a narrowing of the receptive
field tuning, whereas rule DU leads to a flattening (Figure 1I).
When one stimulus is stronger, the receptive field is shifted
towards the strongest stimulus for rules DP, PP and UP, whereas
rule DU results in a weakening of the connection associated
with this stimulus until it reaches the lower bound (Figure 1J).
This receptive field shift is slower than for the case without
normalization but can lead to a strong receptive field tuned to
the new stimulus (Figure 1K).

In summary, the learning rule with the largest amount of
potentiation is more efficient for receptive field plasticity, both
with and without normalization. This learning rule, rule PP,
can be associated with the action of noradrenaline on visual
cortex (Seol et al., 2007). Therefore, our results suggest that
noradrenaline is a good candidate for facilitating receptive field
plasticity in this brain region.

2.3. Modulation of Neuronal Activity and
Learning Rates Have Different Effects in
Receptive Field Plasticity
Neuromodulation has been shown to affect many processes.
Primarily, it has been shown to upregulate activity (e.g., by
disinhibition—Froemke et al., 2007; Martins and Froemke, 2015)
or to gate plasticity (e.g., by changing the learning rule—Bissière
et al., 2003; Couey et al., 2007; Seol et al., 2007; Pawlak and
Kerr, 2008). Intuitively, these two effects seem to be equivalent,
since synaptic weight changes from Hebbian learning can be
modeled as a product of the learning rate and neuronal activity.
But is this really the case? Here we demonstrate in our simple
computational model that upregulating either the learning rate
or neuronal activity leads to different synaptic weight changes.
To this end, we model a feedforward network with only one
presynaptic and one postsynaptic neuron. The synaptic weights
are updated according to learning rule DP (Figure 1A) with a
learning rate amplitude α, and the presynaptic neuron fires with
firing rate ν. We add an extra noise current to the postsynaptic
neuron in order to ensure postsynaptic firing at 10 Hz when the
input neuron is kept silent.

First, we ask how plasticity depends on the synaptic weight,
and whether the modulation of learning amplitude can alter this

dependence (Figures 2A–C). We calculate the ratio between the
synaptic weight change, 1w, and the synaptic weight, w, as a
function of the weight. If the change is proportional to the weight,
the ratio is constant. However, for small values of presynaptic
activity, ν, strong weights increase relatively faster compared with
weak weights, regardless of the value of the learning amplitude,
α (Figure 2A). We observe that 1w/w is proportional to the
learning amplitude (1w/w = kα) and the proportionality
constant, k, is higher for strong weights (Figure 2B). As such,
strong weights change relatively faster than weak weights and the
modulation of learning can only amplify or reduce this difference,
but not reverse it.

Having shown how plasticity depends on the learning rate,
we now ask whether there is a similar dependence on neural
activity (Figures 2D–F). We observe that, for large values
of ν, the relative weight increase (1w/w) does not increase
with weight. Instead, small weights can grow faster than large
weights for large enough values of ν (Figure 2C). For large
weights, the modulation of neuronal activity has a similar
effect to the modulation of learning rate. However, for weak
weights, the modulation of neuronal activity can have a stronger
effect (Figure 2D). Therefore, by controlling the activity of the
presynaptic neuron, it is possible to shift from a scenario where
strong weights learn faster to a scenario in which weak weights
learn faster.

In summary, regulation of activity can lead to a scenario
where weak weights learn relatively faster than strong weights.
In other words, the regulation of activity can control whether
the receptive field of a neuron is either sharpened of broadened.
To demonstrate this, we simulate a feedforward network with 10
presynaptic neurons for two levels of presynaptic activity. For
low activity, we observe a sharpening, whereas high activity leads
to a broadening of the receptive field (Figure 2F, Supplementary
Figure 2). The upregulation of learning rate, on the other hand,
can only amplify receptive field changes in our model. Therefore,
for low firing rates, the regulation of learning rate will always
lead to a sharpening of the receptive field tuning, regardless of
the learning rate amplitude (Figure 2C, Supplementary Figure 2).
These two modulation mechanisms act independently and do
not disturb each other in our model (Supplementary Figure 2).
The same behavior is observed when we use a more realistic,
non-linear STDP model such as the triplet model (Pfister
and Gerstner, 2006) (Supplementary Figure 3). Due to this
large qualitative difference, more experiments are needed in
order to identify how much, in which proportion, and when
neuromodulation affects either learning, neural activity, or a
combination of both.

3. DISCUSSION

In this perspective article, we used four different learning
rules, each associated with one or more neuromodulatory
states, to illustrate how neuromodulation can affect receptive
field plasticity. In order to explore the effects of different
neuromodulatory states, we implemented these four learning
rules in a feedforward network. As expected (Song et al., 2000),
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FIGURE 2 | Modulation of activity vs modulation of learning rate. A network with one pre- and one postsynaptic neuron was simulated (in A, B, D and E). The

synaptic weight changed following a standard STDP rule with amplitude α and the presynaptic neuron fired with firing rate ν. For synaptic weight w = 0, the

postsynaptic neuron fired with firing rate ∼10Hz. (A) Ratio between the synaptic change and the synaptic weight as a function of the weight for different values of α,

with α0 = 0.0005 and presynaptic firing rate ν = 10Hz. (B) Ratio between the synaptic change and the synaptic weight as a function of the amplitude of learning for

w = 3.0 (red) and w = 7.0. In both cases, the presynaptic firing rate was set to ν = 10Hz. (C) Synaptic weights for a feedforward network with 10 presynaptic

neurons and one postsynaptic neuron. The final synaptic weights were calculated for low presynaptic neuronal activity (ν = 1Hz) and two values of learning rate:

α = 0.01 (small α, red curve) and α = 0.02 (large α, blue curve). The initial and final tuning curves were re-scaled by dividing all the tuning curves by their respective

maximum weights. The increase in α always sharpens the receptive field tuning (for low presynaptic activity). (D) Ratio between the synaptic change and the synaptic

weight as a function of the weight for different values of ν, with ν0 = 10Hz and the amplitude of learning α = 0.0005. (E) Ratio between the synaptic change and the

synaptic weight as a function of the presynaptic neuronal firing rate for w = 3.0 (red) and w = 7.0. In both cases, the amplitude of learning was set to α = 0.0005. (F)

Synaptic weights for a feedforward network with 10 presynaptic neurons and one postsynaptic neuron. The final synaptic weights were calculated for learning rate

α = 0.02 and two values of presynaptic activity: ν = 1Hz (small ν, red curve) and ν = 10Hz (large ν, blue curve). The initial and final receptive fields were re-scaled by

dividing all the tuning curves by their respective maximum weights. The modulation of neuronal activity, ν, can lead to either a sharpening or a flattening of receptive

field tuning, depending on the value of ν. In Figures (A,B,D,E), the curves are averages over 200 trials. In Figures (C,F), the curves are averages over 50 trials.

we observed that receptive field development was only possible
for one of these rules. This learning rule (DP) can be associated
with the combined action of noradrenaline and acetylcholine in
visual cortex, or the action of dopamine via D1/D5 receptors in
dorsal striatum. It suggests that these neuromodulators can be
important to the development of receptive fields in these brain
regions, under the assumption that STDP is the dominant player
in cortical plasticity. In our analysis, we also asked what would
be the best rule to change a receptive field once it is formed.
To this end, we combined each learning rule with trained input.
This simulates the association of a neuromodulatory state paired
with a stimulus (e.g., a tone frequency, or an oriented bar). We
observed that the rule with the largest amount of potentiation
leads to faster receptive field plasticity. This rule can be associated
with the action of noradrenaline on visual cortex, for example.
This provides a mechanistic understanding of why noradrenaline
can be important to receptive field plasticity in cortical areas, as
seen in Martins and Froemke (Martins and Froemke, 2015).

Finally, we asked whether the modulation of presynaptic
activity is equivalent to the modulation of plasticity. Our analysis
suggests that the upregulation of learning rates can lead to faster

learning. However, for low presynaptic activity, strong synaptic
weights learn relatively faster than weak weights, regardless of the
learning rate amplitude. Since strong weights become stronger,
we see a sharpening of receptive field tuning. Upregulating
activity, on the other hand, can lead to a scenario in which weak
weights learn relatively faster than strong weights. This indicates
that modulation of presynaptic activity could lead to a weakening
of receptive fields by broadening their tuning.

In this perspective article, we illustrate some of the potential
effects that neuromodulators can have in cortical plasticity. By
assuming simple neuromodulator-meditated modifications of
learning rules, we see interesting differences in the outcomes
of receptive field development and adaptation. In all our
simulations, we have only used pair-based spike-timing
dependent plasticity rules (Gerstner et al., 1993, 1996; Abbott
and Blum, 1996; Bi and Poo, 1998; Zhang et al., 1998; Roberts,
1999; Abbott and Nelson, 2000; Mehta et al., 2000; Song et al.,
2000; Sjöström et al., 2001; Caporale and Dan, 2008). This
allowed us to explore a wide range of different possibilities within
a frequently explored and well described framework. Some
of the behaviors shown in this perspective article can also be
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explored analytically, using established techniques of plasticity
in feedforward network (Kempter et al., 1999; Song et al., 2000;
van Rossum et al., 2000; Kempter et al., 2001; Rubin et al., 2001;
Câteau and Fukai, 2003; Izhikevich and Desai, 2003; Zhu et al.,
2006; Burkitt et al., 2007; Gilson et al., 2009, 2010; Gjorgjieva
et al., 2011; Ocker et al., 2015; Babadi and Abbott, 2016).

Experimental exploration of the effects of neuromodulation in
cortical plasticity is a rapidly growing topic of interest. However,
the precise effects of neuromodulators in neuronal networks
remain unclear, and further experimental data is required. More
biologically detailed rules can be explored as descriptions of
the effect of neuromodulation on cortical plasticity come to
light. Previous voltage-dependent or calcium-dependent models
of synaptic plasticity may be modified in this regard (Senn
et al., 2001; Shouval et al., 2002; Pfister and Gerstner, 2006;
Clopath et al., 2010; Graupner and Brunel, 2012). The effects
of neuromodulators under these complex learning rules could
be even vaster than for those studied in this perspective
article. Moreover, we limited our perspective to a qualitative
analysis.Withmore experimental data andmore detailedmodels,
it would be possible to extend this study to a quantitative
description.

Synaptic connections in young animals are thought to be
highly plastic and are associated with a state of unbalanced
excitation and inhibition. In this case, neuromodulation might
not be needed for plasticity. However, in adults, experiments
indicate that neuromodulation is necessary to open a window
of plasticity. We illustrate here that this can be done either
by modulating the learning rule (by gating learning) or by
modulating neuronal activity (e.g., by disinhibition—Clopath
et al., 2016). However, these two scenarios do not yield similar
plasticity outcomes in our computational model. In the future,

it would be interesting to have more experimental data on
how behavior - mediated by neuromodulation - affects both the
learning rule and neuronal activity. These insights can then be
fed back to computational models to further understand their
functional implications.

4. METHODS

See Supplementary Material. The code is posted in ModelDB.
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