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Invaginating structures at chemical synapses in the mammalian nervous system exist
in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes.
These invaginating structures can be divided into three categories. The first category
includes slender protrusions invaginating into axonal terminals, postsynaptic spines,
or glial processes. Best known examples of this category are spinules extending from
postsynaptic spines into presynaptic terminals in forebrain synapses. Another example
of this category are protrusions from inhibitory presynaptic terminals invaginating into
postsynaptic neuronal somas. Regardless of the direction and location, the invaginating
structures of the first category do not have synaptic active zones within the invagination.
The second category includes postsynaptic spines invaginating into presynaptic
terminals, whereas the third category includes presynaptic terminals invaginating into
postsynaptic spines or dendrites. Unlike the first category, the second and third
categories have active zones within the invagination. An example of the second category
are mossy terminal synapses of the hippocampal CA3 region, in which enlarged
spine-like structures invaginate partly or entirely into mossy terminals. An example of
the third category is the neuromuscular junction (NMJ) where substantial invaginations
of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and
cone synapses have invaginating processes from horizontal and bipolar cells. Because
horizontal cells act both as post and presynaptic structures, their invaginating processes
represent both the second and third category. These invaginating structures likely play
broad yet specialized roles in modulating neuronal cell signaling.
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INTRODUCTION

The classic image of a neuronal synapse with a bulbous presynaptic terminal separated from a
postsynaptic dendrite shaft or spine (Figure 1A; Shepherd, 2004) is often, in reality, complicated by
various invaginating structures. Even sponges, which seem to lack definitive neurons and chemical
synapses, can have neuron-like cells with elongate processes making invaginating contacts
with other cell processes; perhaps these invaginating contacts represent rudimentary chemical
synapses. Some cubozoan jellyfish possess highly developed eyes with photoreceptor synapses
that have complex invaginating postsynaptic spines. In fact, almost all major groups of animals,
invertebrate and vertebrate, have a variety of invaginating structures at many of their synapses.
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FIGURE 1 | Drawings and EM micrographs illustrating basic examples of the three categories of invaginating structures in mammalian synapses. In all drawings,
postsynaptic structures are blue, presynaptic structures are white, mitochondria are green and red arrowheads indicate the postsynaptic densities of synapses.
(A) A typical or regular postsynaptic spine forming a synapse with a presynaptic terminal. Arrowhead indicates the postsynaptic density (PSD) that is opposite the
active zone, where synaptic vesicles fuse with the presynaptic membrane. (B) A drawing of a category 1 invaginating structure shows a large mushroom spine with
a spinule (s) that invaginates into the presynaptic terminal; mushroom spines often have a spine apparatus (sa). These large spines with spinules are associated with
plasticity and spatial learning. The EM micrograph shows a spinule from a mushroom spine, invaginating into the presynaptic terminal (molecular layer of the dentate
gyrus of adult rat). (C) A drawing of a category 2 invaginating structure shows a postsynaptic spine protruding from a dendrite and invaginating into a presynaptic
terminal. The EM micrograph was taken from the CA3 region of an adult hippocampus. It shows a Mossy fiber terminal (MFT) forming synapses on the spine-like
thorny excrescences (t) extending from the apical dendrites of pyramidal cell neurons. The MFTs also form adherens junctions (a; a.k.a. attachment plaques) with the
apical dendrite (de). Note also that a cluster of synaptic vesicles has been enwrapped by phagophores to form an autophagosome (au; Petralia et al., 2011; Vijayan
and Verstreken, 2017). (D) A drawing of a category 3 invaginating structure shows a presynaptic terminal invaginating into a postsynaptic process. The EM
micrographs were taken from an adult rat dentate gyrus, and show cup spines with partially invaginating presynaptic terminals. The small terminal on the left is
almost fully below the edge of the cup, while the terminal on the right is only partially invaginated; in some examples of cup spines described in the literature, the
presynaptic terminal can be fully invaginating into the spine (see text for details). Note that tissue for EM in Figures 1, 2 was prepared using freeze substitution, and
sections were stained with uranyl acetate and lead citrate (Petralia and Wenthold, 1999; Petralia et al., 2010). Scale bar in the two figures is 500 nm. Animal
procedures were performed in accordance with guidelines approved by the institute Animal Care and Use Committee and NIH.

These invaginating structures can originate from the
postsynaptic process, the presynaptic terminal, or glial processes.
Many types of invaginating structures do not contain or
contact active zones (for example, Figure 1B). These active
zone-free invaginating structures have been given various names

including spinules, varicosities, and protrusions. In contrast,
active zone-associated invaginating structures can be derived
from postsynaptic processes that include postsynaptic spines
and spine-like structures, or from part or all of the presynaptic
terminal. We have previously described three categories of
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invaginating structures in all animals (Petralia et al., 2015, 2016,
2017). In this short review, we focus on the three categories in
mammals, and update the literature. We also discuss how all
these invaginations can be essential for precise signaling events
among neurons, and contribute to synaptic signaling.

EXAMPLES OF INVAGINATING
STRUCTURES AT MAMMALIAN
SYNAPSES

Category 1. Invaginating Spinules and
Related Structures
These invaginating protrusions can be derived from the
postsynaptic, presynaptic or glial components of synapses.
Although active zones often lie adjacent to the invaginating
structures, they do not have any active zone within the
invagination (see Figure 1B).

Postsynaptic
In mammals, postsynaptic spinules have been described best
in rat hippocampus, but spinules are found in other parts of
the brain such as cerebral cortex and cerebellum (Figures 1, 2;
Blanque et al., 2015; Petralia et al., 2015; Familtsev et al., 2016;
Rodriguez-Moreno et al., 2017). In the adult rat CA1 stratum
radiatum, Westrum and Blackstad (1962) found that spinules
are 25–100 nm wide and 75–150 nm long, but Spacek
and Harris (2004) found greater variation in size (diameters
from <8 nm to 150 nm), with some dendritic spine spinules
longer than 0.75 µm; and Tao-Cheng et al. (2009) found
postsynaptic spinules as long as 0.5 µm in hippocampal slice
cultures. Postsynaptic spinules include those that invaginate
into presynaptic terminals, as well as some that invaginate
into adjacent axonal or glial processes (Spacek and Harris,
2004). Often the tip of the spinule is surrounded by a coated
pit in the opposing cell membrane (hippocampus (Westrum
and Blackstad, 1962; Spacek and Harris, 2004; Yao et al.,
2005; Tao-Cheng et al., 2009); cerebellum (Eckenhoff and Pysh,
1979)). Spacek and Harris (2004) suggest that: ‘‘. . .spinules
provide a general mechanism for signaling and remodeling
throughout the brain’’. Postsynaptic spinules are involved in
synaptic plasticity that occurs during all stages of life, from
early postnatal development to old age; one of the best studied
examples of synaptic plasticity that involves spinules occurs in
large, mushroom-shaped spines of the hippocampus (reviewed
in Geinisman et al., 1994; Petralia et al., 2014). Typically, during
plasticity such as that initiated by long-term potentiation (LTP),
the mushroom spine grows in size (and adds postsynaptic
receptor molecules) and a perforation forms in the center of the
postsynaptic density (PSD). At the perforation, the postsynaptic
membrane may begin to invaginate into the presynaptic terminal
as a spinule (Figure 1B); eventually, the PSD may separate into
pieces (segmentation) as the spine continues to grow. These
spines may go through cycles of enlargement and shrinkage
associated with activity and aging. Also, the associated spinules
undergo rapid turnover during sustained synaptic activity; this
may be a mechanism of membrane retrieval by the presynaptic

terminal to compensate for excessive growth of spine membrane
induced by activity (Tao-Cheng et al., 2009).

Presynaptic
In adult rat hippocampus stratum radiatum, as described above,
most spinules originate from postsynaptic structures, but Spacek
and Harris (2004) found that about 12% grow from axons
and invaginate into other axons or glia. In several regions of
the limbic system, such as the globus pallidus, axon terminals
can interlock with each other along their lateral surfaces via
large processes called pseudopodial indentations (Boyne and
Tarrant, 1982). Thesemight function as ‘‘variable diffusion traps’’
that control ions in the extracellular spaces between adjacent
terminals, thus probably influencing their membrane potentials.
In the dentate gyrus, entorhinal cortex and basolateral amygdala,
some inhibitory GABAergic terminals extend short invaginating
projections into the postsynaptic neuron; the presynaptic
membrane contains cannabinoid receptors, and the invaginating
projection opposes a part of the postsynaptic membrane that
is rich in an enzyme, DGLα, that synthesizes an endogenous
cannabinoid (Figure 2A; Yoshida et al., 2011; Omiya et al.,
2015). This structure mediates a retrograde cannabinoid signal
producing specific tonic inhibition of synaptic activity. Other
interesting examples of presynaptic invaginating structures
include thin spinules in early postnatal rodents extending
from auditory hair cells and from cerebellar parallel fibers,
into postsynaptic afferent processes or Purkinje cell dendrites,
respectively (see Petralia et al., 2015). Also, Brusco et al. (2014)
shows examples of both presynaptic and postsynaptic spinules in
the amygdala.

Glial
Glial-derived invaginating projections are common in
invertebrates and some lower vertebrates, including at synapses
and associated with other parts of neurons (Petralia et al., 2015),
but relatively few have been described in mammals. In the cat,
Schwann cell processes from the surrounding myelin sheath can
extend small invaginating processes into spiral ganglion neurons
(Adamo and Daigneault, 1973). Various kinds of glial processes
commonly invaginate into axons of mammals (Spencer and
Thomas, 1974). One kind involves invaginating ‘‘tongues’’
or ‘‘protrusions’’ originating from surrounding Schwann or
oligodendrocyte cytoplasm; these processes appear to ensheath
and remove groups of abnormal axonal organelles, and are
more common in diseased axons (Spencer and Thomas, 1974).
Small spinules also can invaginate into axons from surrounding
glia; these typically end in coated pits in axons; Novotny (1984)
suggests that glia utilize these structures to transfer substances
essential for axonal function.

Category 2. Invaginating Postsynaptic
Spines
These postsynaptic spines protrude directly into the presynaptic
terminal and contain active zones within the invagination
(Figure 1C).

The best examples in mammals, in the hippocampal
CA3 region and retina, are described separately. Other
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FIGURE 2 | Examples of specialized invaginating structures. (A) A drawing of an unusual example of a category 1 invaginating structure: a presynaptic terminal
invaginates into the postsynaptic soma. The synapse has characteristics of inhibitory terminals with a less prominent PSD (arrowheads) and oval-shaped synaptic
vesicles. The GABA receptors are on the postsynaptic membrane, lining the PSD (arrowheads) and ringing the invagination, and there are endocannabinoid synthetic
enzymes on the postsynaptic side of the invagination (shown in yellow). Endocannabinoid release activates cannabinoid receptors in the presynaptic membrane, and
these then mediate retrograde suppression of neurotransmitter release from the terminal. (B) A drawing of a specialized example of a category 3 invaginating
structure: a generalized mammalian neuromuscular junction (NMJ). In this example, the presynaptic terminal is only partly invaginated (indented) into the muscle fiber.
The indention is lined with deep subjunctional folds in the postsynaptic membrane. A thin basal lamina (gray) extends within the synaptic cleft and into the folds.
(C) EM micrographs show examples of invaginating structures combining categories 1 and 2. These are from the CA3 MFT region, as described in Figure 1C.
Thorny excrescences (category 2) also commonly invaginate spinules (s; category 1) into the MFTs, especially apparent in the upper three micrographs. Note in the
left, lower micrograph how thin portions of the MFT shown between the two green arrows surround part of the invaginated thorny excrescence. A tiny spinule is
barely visible near the top green arrow. Note also how this MFT isolates the thorny excrescence surface from possible spillover from an adjacent inhibitory terminal (i);
the latter is identified by the elongate symmetrical density as well as by some obscure pleomorphic synaptic vesicles (compare to the more distinctive and rounder
excitatory synaptic vesicles in the MFTs). Common organelles in the thorny excrescences include the spine apparatus (sa) and multivesicular body (mv).
(D) A drawing of a specialized invaginating structure combining categories 2 and 3. A photoreceptor terminal-synaptic ribbon (r) contacts a deep invagination
containing postsynaptic processes (category 2) from horizontal (h) and bipolar (b) neurons, as well as projections from the terminal. Rod terminals in mammals
usually have a single invaginated ribbon/active zone with two horizontal and two bipolar cell processes, as well as “fingers” of rod cytoplasm, while cone terminals
have multiple invaginated ribbon/active zones, each with two horizontal and 1–2 bipolar cell processes (Rao-Mirotznik et al., 1995; Sterling and Demb, 2004; Petralia
et al., 2017). The horizontal cell processes also may act as invaginating presynaptic terminals (category 3) since they send a retrograde signal to the photoreceptor
terminal, mediating a feedback mechanism.

interesting examples of invaginating spines include: spines
invaginating into early-postnatal developing auditory hair cells
of the mouse and into giant terminals called endbulbs of Held
in the anteroventral cochlear nucleus of the early postnatal
cat, some invaginating filopodia-like spines in the red nucleus,

and those forming some crest synapses (for details, see Petralia
et al., 2016). Note that various structures called filopodia are
common in the nervous system; they look like spinules, only
are larger—usually >100 nm wide and >1 µm long, and
usually are not invaginating. Like spines, filopodia contain
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actin filaments; in contrast, the content of spinules is generally
diffuse and poorly defined, and it may be difficult to distinguish
wide spinules from thin filopodia. Some filopodia may mediate
synaptogenesis of spine synapses and be important components
of synaptic plasticity and learning (Fiala et al., 1998; Ozcan,
2017). Crest synapses are particularly unusual, and consist of a
flattened, disk-shaped spine with synaptic active zones on the
two sides, either invaginating into a single terminal or having two
terminals—one per side; they are found scattered throughout the
central nervous system (Akert et al., 1967; Petralia et al., 2016).
In addition, afferents to taste bud cells often form spine-like
indented or invaginated synapses in many mammals (Royer
and Kinnamon, 1988, 1991; Witt and Reutter, 1996); the more
deeply invaginating ones are described as finger-like projections
or processes (Royer and Kinnamon, 1988, 1991).

Category 3. Invaginating Presynaptic
Terminals
These presynaptic terminals protrude directly into the
postsynaptic structure (spine or dendrite) and contain active
zones within the invagination (Figure 1D).

A modest variety of invaginating presynaptic terminal
structures occur, including in developing auditory nerve
endbulbs on neuron somas in the cat, vestibular nerve terminals
on neuron somas of the rat lateral vestibular nucleus, crested
dendrites in the rat interpeduncular nucleus, and cup-shaped
spines (see Petralia et al., 2017); also, terminals often partially
invaginate (deep indention) into neuron somas in the monkey
lateral geniculate nucleus (Saavedra et al., 1968). The crested
dendrite is a unique dendritic structure containing several crest
spines joined with invaginating presynaptic terminals, found in
the interpeduncular nucleus of the rat (Murray et al., 1979).
A number of studies have described cup-shaped spines in the
cerebral cortex and hippocampus of mammals. Basically, the
spine appears to wrap around the smaller presynaptic terminal;
the best examples are seen in the rat hippocampal dentate gyrus
(Figure 1D; Desmond and Levy, 1983; Frotscher and Léránth,
1986). Presence of cup spines may be affected by neuronal
plasticity and they may be more frequent in slice and neuronal
cell cultures (Mitchell et al., 2012; Petralia et al., 2017; and
unpublished data).

Neuromuscular and Secretomotor Endings
In neuromuscular junctions (NMJs) of most animals,
invertebrate and vertebrate, presynaptic terminals are indenting
or invaginating into muscle fibers; thus, some kinds of terminals
are found in a shallow, elongate indention (‘‘gutter’’) on the
surface of the fiber, while others are invaginating completely
into the fiber (Figure 2B; Petralia et al., 2017). Most skeletal
muscles in mammals have twitch fibers, defined by their ability
to propagate an action potential along the fiber from the
NMJ. In skeletal muscles of mammals (and in vertebrates in
general), the NMJ postsynaptic membrane (muscle fiber) is
often highly folded into subjunctional folds. This is designed
to separate the acetylcholine neurotransmitter receptors on the
crests of the folds from the sodium channels at the bottom of

the folds, as well as align the receptors with the presynaptic
active zones (York and Zheng, 2017). The overall arrangement
serves to amplify the response to a relatively small amount
of neurotransmitter; this is especially efficient in humans
compared to mice and rats, since humans have a relatively
smaller NMJ area and larger area of folds compared to mice
and rats (and even more so compared to frogs; Martin, 1994;
Slater, 2008). In addition, an increased depth of the indention
or invagination appears to be tied somewhat to greater depth
and complexity of the subjunctional folds, and this also could
be related to the response speed of the muscle fibers (e.g., for
fast vs. slow twitch fibers; Ellisman et al., 1976; Petralia et al.,
2017). Various other kinds of muscle fibers have NMJs that
can be indented or invaginated, including the slow (tonic)
muscle fibers of ear and extraocular muscles, and muscle
spindles, cardiac muscle and smooth muscle in internal organs;
they also are found at motor nerve endings in exocrine and
endocrine gland cells (reviewed in detail in Petralia et al.,
2017).

Category 1+2. Hippocampal Excrescences
Mossy fiber terminal (MFT) synapses in the CA3 area (and
also hilus) of the hippocampus form unusual synapses with
invaginating postsynaptic, spine-like processes called thorny
excrescences (category 2; Petralia et al., 2015, 2016; also
Reberger et al., 2018). They seem to be a specialization largely
unique to mammals, although some similar structures are
present in lizards (reviewed in Petralia et al., 2016). The
large excrescences can contain some structures that are usually
absent in typical spines, such as mitochondria, multivesicular
bodies (Figures 1C, 2C), ribosomes and a few microtubules.
The excrescences are plastic structures and can form new
invaginating extensions with new active zones following LTP
(Zhao et al., 2012). MFTs originate from granule cells of the
dentate gyrus. These specialized synapses may have evolved
in mammals to mediate higher abilities for pattern separation
of episodic memory (Treves et al., 2008; Schmidt et al.,
2012). The distinct advantage of the invagination is evident
in the MFT-thorny excrescence structure. Basically, it forms a
very large, continuous synaptic membrane compartment with
multiple active zones and excludes any glial processes. This
special enclosed synaptic environment facilitates presynaptic
diffusion of calcium, spillover of neurotransmitter to reach
postsynaptic receptors at multiple active zones, and the spread
of zinc co-released from the synaptic vesicles with glutamate
(Li et al., 2001; Rollenhagen et al., 2007). So, the invaginated
environment keeps some components in and excludes others.
The circuitry is complicated and will not be described here,
but this unusual synapse is ‘‘designed to have a higher net
probability of release than most other cortical synapses. . .’’
(Henze et al., 2000). Hints of a similar design can be found
elsewhere. Thus, dendritic excrescences in the rat somatosensory
thalamus (ventrobasal complex) are multiple-branched spines
somewhat simpler than the hippocampal thorny excrescences
(Spacek and Lieberman, 1974); a similar arrangement may occur
in the hamster dorsal lateral geniculate nucleus (So et al., 1985).
They invaginate deeply into the large presynaptic terminal, that
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is stitched to the dendrite shaft via adherens-like junctions,
reminiscent of the hippocampal MFTs.

In adult rats, spinules (category 1) are common on
excrescences (Figure 2C; Petralia et al., 2011). Spatial (water
maze) training increases the size of the excrescences and the
number of spinules, and some spinules may even form bridges
between individual thorns of the excrescences (Stewart et al.,
2005); environmental enrichment also increases growth and
complexity of the excrescences (Gogolla et al., 2009). Spinules
may appear to form a contiguous sequence of structures with
autophagosomes in the MFT (Petralia et al., 2011), suggesting
that the spinules are involved in turnover of the excrescence
membrane during activity, as suggested by Tao-Cheng et al.
(2009) for hippocampus spinules in general. Interestingly,
MFT spinules and autophagosomes label prominently with
antibodies to the sonic hedgehog (Shh) signaling receptors,
patched and smoothened, perhaps indicating a role for Shh
in trans-synaptic signaling at the MFT synapse (Petralia et al.,
2011); Shh also promotes autophagy in synaptic terminals
(Petralia et al., 2013). Similarly, autophagy of the Wnt-signal
mediator, disheveled, is implicated in regulation ofWnt signaling
(Gao et al., 2010). In fact, the increased growth/complexity
of thorny excrescences in mice exposed to an enriched
environment is correlated with an increase in Wnt in the
CA3; and it is likely that enhanced behavioral experience
increases local signaling of Wnt at these synapses (Gogolla et al.,
2009).

Category 2+3. Photoreceptor Terminals
Photoreceptor terminals of many animals, both invertebrate and
vertebrate, typically have invaginating postsynaptic processes
(Petralia et al., 2016). In the retina of mammals, as for most
vertebrates, the presynaptic terminal active zones of the
rod and cone photoreceptor terminals usually have a deep
invagination (Figure 2D) typically with 3–4 postsynaptic
processes (spines or spine-like processes; category 2) including
two from horizontal cell neurons and one or two from bipolar
cell neurons (Sterling and Demb, 2004). The neurotransmitter
glutamate is released from vesicles associated with ribbon-
shaped, dense presynaptic structures (i.e., the synaptic ribbon)
and diffuses to reach various populations of postsynaptic
receptors placed at different distances from the active zone;
in cones at least, this includes some receptors below the
invagination (Haverkamp et al., 2000, 2001; Sterling and
Demb, 2004). The complex structure of the invagination
thus can serve to separate different receptor populations
at various distances to control responses according to
activity, glutamate release volume and subsequent extent of
spillover.

Interestingly, at least the horizontal cell processes also appear
to act as invaginating presynaptic terminals (category 3); these
can be presynaptic to both the photoreceptor terminal and the
bipolar cell processes. It is common to find numerous vesicles
in the invaginated horizontal cell processes; good examples are
found in rats, monkeys and humans; in addition, there is good
evidence that the latter processes can be GABAergic (Petralia
et al., 2017). However, definitive synapses between presynaptic

horizontal cell processes and postsynaptic photoreceptor plus
bipolar processes only have been described in the human
(Linberg and Fisher, 1988). There is considerable evidence
that horizontal processes provide a feedback mechanism
to the photoreceptor cell synapse, but the details of the
mechanism are debated; generally, this is believed to involve
one or more of the following: GABA, protons (pH) and
ephaptic transmission (close-range changes in electrical field;
Gardner et al., 2015; Kramer and Davenport, 2015; Chapot
et al., 2017). Ephaptic transmission might involve connexin
hemichannels; these have been found in horizontal cell
processes in fish, but it is not clear if they are present
in mammalian horizontal cell processes (Klaassen et al.,
2011; Gardner et al., 2015; Kramer and Davenport, 2015).
Alternatively, both ephaptic and pH-mediated transmission
in horizontal cells could be mediated via pannexin-based
channels (Kranz et al., 2013; Cenedese et al., 2017; Chapot
et al., 2017). In our own studies, we found preliminary
evidence of GABA receptor immunogold labeling between
horizontal cell processes and adjacent structures, including
rod cytoplasmic fingers (Petralia et al., 2017). While GABA
transmission, if it occurs, is assumed to involve postsynaptic
GABA receptors on the photoreceptor terminal, some evidence
indicates that these are autoreceptors on the horizontal cell
processes, and they mediate a pH-based feedback (Hirano et al.,
2016).

CONCLUSION

Invaginating structures are common at synapses and are
associated either with developmental plasticity or are integral
to the mature synapse structure. In some cases, like the
hippocampal MFTs or NMJs, mammals may show particularly
well-developed invaginating synaptic structures, reflecting
perhaps evolutionary enhancements in the mammalian brain
and in brain-muscle coordination. The three categories differ
in structure, but in all cases, the invaginated synapse forms
a special, enclosed environment that allows wide movement
of neurotransmitters and/or other chemicals while excluding
other substances, leading to modifications in neurotransmission
or selective chemical signaling between the neurons. The
invagination also may be specialized for signaling via ephaptic
conduction. This has been studied so far in only a few areas such
as the retina, but it is likely a widespread mechanism for synaptic
modulation, as noted by Gardner et al. (2015).
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