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In the past 20 years, ketamine has become a promising treatment for Major Depressive
Disorder (MDD) due to its rapid and sustain antidepressant effects in patients. A
single ketamine treatment causes improvement in depressive symptoms within hours
and can last weeks, long after it is eliminated. Previous studies have demonstrated
increased synaptic plasticity at CA3-CA1 synapses in hippocampus (HPC) 24 h post
ketamine treatment suggesting increased activity-dependent hippocampal function may
underlie the antidepressant effects of ketamine. If true, these changes should also
occur within hours of treatment, a time when symptoms are first alleviated in patients.
To determine if augmented synaptic plasticity is observed at an earlier time point,
we measured theta-burst and high frequency tetanus induced long-term potentiation
(LTP) at CA3-CA1 synapses 3 h following intravenous (IV) ketamine administration.
Additionally, we measured basal hippocampal function and spine density to investigate
whether connectivity was increased with ketamine treatment. We report that theta-
burst but not high frequency tetanus induced LTP is significantly increased 3 h after
in vivo ketamine with no changes in basal synaptic function or morphology. Our
finding supports increased activity-dependent hippocampal function underlying the
antidepressant effects of ketamine as it occurs at a time point that correlates with initial
improvements of depressive symptoms in patients.
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INTRODUCTION

Understanding how ketamine, a psychoactive drug of abuse, causes rapid antidepressant effects has
been a priority, as it has the ability to alleviate depressive symptoms within 1–3 h of intravenous
(IV) administration (Berman et al., 2000; Zarate et al., 2006; Fond et al., 2014) and improve
cognition within days of treatment (Lara et al., 2013). With Major Depressive Disorder (MDD)
having a lifetime prevalence of 17% (Kessler et al., 2005) and first-line antidepressants taking weeks
or months to improve symptoms (Trivedi et al., 2006), this rapid action of ketamine is promising
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for many. However, widespread use of ketamine may be limited
due to psychotomimetic side effects, prompting studies to
determine the mechanism of action so alternatives can be
developed. Fortunately, the rapid antidepressant-like behavioral
effect of ketamine is mimicked in rodents (Garcia et al., 2008,
2009; Maeng et al., 2008; Li et al., 2010, 2011; Autry et al.,
2011; Burgdorf et al., 2013), providing an experimental model
within which mechanisms contributing to the anti-depressant
and cognitive enhancing effects can be determined.

Most preclinical studies have assessed the impact of ketamine
on glutamate transmission and spine density at 24 h post-
injection. Ketamine increases spine density 24 h post treatment
in prefrontal cortex (PFC; Li et al., 2010, 2011; Burgdorf et al.,
2013) and area CA1 (Liu et al., 2016), suggesting increased
connectivity in these brain regions, which may counteract
the neuronal atrophy implicated in the pathophysiology of
MDD (Neumeister et al., 2005). Functionally, AMPA receptor
(AMPAR)-mediated transmission is augmented in PFC (Li
et al., 2010, 2011), and studies in hippocampus (HPC) report
enhanced long-term potentiation (LTP) in area CA1 24 h after
ketamine administration, indicating increased circuit function
(Burgdorf et al., 2013; Graef et al., 2015). Yet, these studies
have not assessed how the circuit has changed during the
time frame in which humans initially experience improved
mood.

In addition to the lack of information on how ketamine
impacts circuit function during the first few hours following
administration, a second limitation of many preclinical studies
is the intraperitoneal (IP) rather than the IV route of ketamine
administration used in humans, which enables ketamine to reach
brain within 1 min (Cohen et al., 1973). Our previous in vitro
study demonstrates bath application of 1 µM ketamine increases
synaptically driven CA1 pyramidal excitability (Widman and
McMahon, 2018). In support, another study showed ketamine
(1 µM) bath application increased CA1 somatic excitatory
postsynaptic potentials (EPSPs) compared to the dendritic EPSP
(Izumi and Zorumski, 2014), suggesting an enhanced pyramidal
cell excitability in the presence of ketamine. Additional studies
demonstrate AMPAR-mediated transmission is enhanced within
1 h after bath application of ketamine (20 µM) in HPC
(Autry et al., 2011; Nosyreva et al., 2013; Zhang et al.,
2016), although these studies used ketamine concentrations at
least two times higher than what is thought to reach brain
in humans (Hartvig et al., 1995). These findings indicate
ketamine likely augments function as soon as it reaches the
brain, which will be within minutes following an IV injection.
Interestingly, ketamine increases release of BDNF, and the
antidepressant-like effects of ketamine rely on BDNF (Lepack
et al., 2014). However, it is unknown whether the increased
activity of CA1 pyramidal cells and BDNF release with ketamine
may enhance BDNF-dependent plasticity within hours of
treatment.

If increased circuit function in HPC is involved in the
antidepressant efficacy of ketamine, these changes should be
occurring as soon as the antidepressant behavioral effect is
observed. Therefore, we examined whether ketamine increases
hippocampal circuit function at 3 h post injection. In addition,

we determined whether an increase in dendritic spine density
might also be observed in area CA1 and PFC at this early time
point. Finally, we used gas chromatography/mass spectrometry
(GC/MS) to determine the time frame at which ketamine remains
in brain to correlate with possible changes in synaptic function.
Importantly, we administered ketamine IV to mimic the route
of administration inpatients. We found that 3 h post treatment,
ketamine was undetectable in brain, yet we observed increased
LTP magnitude induced using theta burst stimulation (TBS)
but not high frequency stimulation (HFS), in the absence of
changes in basal synaptic transmission and dendritic spine
density.

MATERIALS AND METHODS

All experimental procedures were approved by the University
of Alabama at Birmingham’s Institutional Animal Care and Use
Committee and were performed in accordance with National
Institutes of Health experimental guidelines.

Animals and Injections
Male Sprague-Dawley rats (2–4 months old; Charles River
Laboratories) housed in a 12 h light/dark cycle with free
access to food and water were used throughout the study.
For IV administration, ketamine (100 mg/ml) was diluted to
20 mg/ml with sterile saline, and rats were given a 10 mg/kg
ketamine dose or equal volume of saline directly into the
lateral tail vein. During the injection, animals were briefly
restrained using a decapicone (Braintree Scientific, Braintree,
MA, USA).

Gas Chromatography—Mass
Spectrometry (GC/MS)
Rats were rapidly decapitated at 0 min, 30 min and 3 h following
IV ketamine administration and HPC, PFC and cerebellum were
collected. Sample preparation and analyte extraction techniques
were adapted from a method for extracting ketamine provided
by DPX Technologies (Columbia, SC, USA). Samples were
weighed and added to a 2 ml snap vial with 10–15 metal
beads (2.4 mm). Then, 500 µL water and 50 µL of the
internal standard, ketamine-d4 (100 mg/L), were added. Tubes
were vortexed until the tissue sample was fully homogenized
and centrifuged at 12.5 × 1000 rpm for 15 min in an
Eppendorf Minispin centrifuge. The supernatant was transferred
to a new tube containing 1 mL of acetonitrile in order
to precipitate proteins. Tubes were vortexed for a minute
and centrifuged at the same speed for another 15 min. The
aqueous layer was added to a test tube containing 2 mL of
sodium acetate buffer (0.1 M, pH 5) to begin the extraction
procedure. Solid-phase extraction (SPE) dispersive pipette
tips (5 ml, 5S-5TF25-02-030-050-5B DPX Technologies) were
used to perform the extraction of ketamine and norketamine
(NK). The tips were conditioned by aspirating and dispensing
3 mL of methanol followed by 3 mL of water. Then the
liquid sample was aspirated for 15 s and dispensed from
the tips; this step was repeated four times. Next, 2 mL
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of sodium acetate buffer were aspirated and dispensed one
time, followed by 2 mL of methanol. Lastly, 3 mL of a 3%
ammonium hydroxide solution in acetonitrile (pH 10) was
aspirated and dispensed into a clean test tube and evaporated
to dryness under nitrogen in an Organomation Associate’s
N-EVAPTM112. The residue was dissolved in 100 µL of hexane
and transferred to 200 µL microvials for GC/MS analysis
with an Agilent 6890N Network GC system/5975 inert Mass
Selective Detector with selected ion monitoring. The ions used
for quantitation for ketamine, ketamine-d4 and NK were 180,
184 and 166 respectively. Qualifier ions used for ketamine were
138 and 152 and for NK were 131 and 195. A calibration
curve for quantifying the ketamine and NK was created by
preparing solutions of known concentrations of ketamine and
NK. These solutions went through the extraction process
in order to account for any loss of the analytes occurring
during the extraction process. Calibration curve standards
were prepared at 1, 3, 5, 10 and 15 ng/µL each week from
ketamine, NK and d4Ketamine standards (1 mg/mL) purchased
from Cerilliant and a calibration curve was prepared based
on the results. The line of best-fit equation was generated
in Microsoft Excel and used to calculate concentrations in
samples. Calibration curves were linear for all of the analytes
with r2 values ranging from 0.98 to 0.99, and the limit
of quantitation for both ketamine and NK was 1 ng/µL.

Hippocampal Slice Preparation
Three hours post ketamine or saline injection, rats were
decapitated following isoflurane anesthesia. Hippocampal slices
were prepared as previously described (Stewart et al., 2017;
Smith and Mcmahon, 2018; Widman and McMahon, 2018).
Briefly, brains were rapidly removed and placed in cold,
high-sucrose, low-Na+ artificial cerebrospinal fluid (aCSF)
containing (in mM): 85 NaCl, 2.5 KCl, 4 MgCl2, 0.5 CaCl2,
1.25 NaH2PO4, 25 NaHCO3, 25 glucose and 75 sucrose.
Coronal slices (400 µM) were cut using a vibratome (Leica
VT1000P) from dorsal HPC in cold, high-sucrose, low-Na+ aCSF
equilibrated with 95% O2 and 5% CO2. Slices were allowed
to recover for 1 h at room temperature in standard aCSF
containing (in mM): 119 NaCl, 2.5 KCl, 1.3 MgCl2, 2.5 CaCl2,
1.0 NaH2PO4, 26 NaHCO3 and 11 glucose equilibrated with 95%
O2 and 5% CO2.

Electrophysiology
Slices were placed in a submersion chamber and continuously
perfused (3–4 ml/min) with standard aCSF equilibrated with
95% O2 and 5% CO2 and maintained at 26–28◦C. Extracellular
field excitatory postsynaptic potentials (fEPSPs) at CA3-CA1
synapses were recorded by stimulating Schaffer collaterals with
pairs of pulses (0.1 Hz, 100 µs duration at 50 ms interval) in
stratum radiatum with a twisted nichrome wire bipolar electrode
and recorded with a glass pipet filled with aCSF placed nearby
in stratum radiatum. To generate stimulus-response curves, the
stimulus intensity was increased by 10 µA intervals, from a
threshold stimulus of 20 µA, until a maximum fEPSP was
achieved. At least five fEPSPs were recorded at each stimulus

FIGURE 1 | Ketamine is quickly eliminated from brain following intravenous
(IV) injection. (A) Ketamine is detected in hippocampus (HPC), prefrontal
cortex (PFC) and cerebellum (Cb) immediately following IV injection in the
lateral tail vein. Low levels of norketamine (NK) are observed in each brain
region at this timepoint (n = 6 animals). (B) Thirty minutes following IV injection,
levels of ketamine are reduced and more NK is detected in each brain region
(n = 5−6 animals). (C) By 3 h after IV injection, ketamine and NK are
undetectable in HPC and a small amount of ketamine and NK is measured in
PFC and Cb (n = 5−6 animals). All values are mean ± SEM.

strength and averaged to obtain a single value. Paired pulse
ratio (PPR) was measured during baseline recording using pairs
of pulses delivered at a 50 ms interstimulus interval. PPR was
calculated by dividing the slope of the second fEPSP by the first.
After a 20 min stable baseline of recording, LTP was induced
using either TBS or HFS. TBS consisted of 10 bursts of five pulses
at 100 Hz. The intraburst interval was 200 ms and the train was
repeated four times with a 20 s interval between trains. HFS
consisted of 2–100 Hz trains at 1 s duration with a 20 s interval
between trains. Following TBS or HFS, stimulation returned to
baseline frequency (0.1 Hz) and the fEPSPs were recorded for at
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FIGURE 2 | IV ketamine does not alter basal synaptic transmission at CA3-CA1 synapses 3 h post injection. (A) No significant difference in stimulus-response curves
is observed between ketamine- (n = 7 slices/7 animals) and saline-treated rats (n = 6 slices/6 animals). (B) Paired pulse ratio (PPR) is not significantly different
between ketamine- (n = 17 slices/12 animals) and saline-treated rats (n = 18 slices/13 animals, p = 0.22, unpaired t-test). Scale bars, 10 ms and 0.5 mV. All values
are mean ± SEM.

least 40 min. The last burst in the TBS and the second train of
HFS were used to measure steady state depolarization.

Golgi Staining
For morphology studies, brains were processed using the
FD GolgiStain Kit (FD NeuroTechnologies) according to the
manufacturer’s protocol. Rats were anesthetized with isoflurane
and rapidly decapitated 3 h after either IV ketamine or saline
injection. The brain was removed and one hemisphere was
submerged in Solutions A and B for 14 days and then transferred
to Solution C for 72 h. Next, brains were embedded in 3% agar
and cut into 150 µm coronal sections using a vibratome. Slices
were mounted onto 3% gelatin coated slides, and were rinsed
with ddH2O before being placed into Solutions D and E for
development. Then, sections were dehydrated with increasing
ethanol concentrations, cleared in xylene, and coverslipped with
Eukitt mounting medium.

Microscopy was performed on a MicroBrightField system
(MBF Bioscience). Stereo Investigator software was used to take
z-stack images of tertiary dendrites from CA1 pyramidal cells in
HPC and secondary dendrites of layer V pyramidal cells in PFC
at 100× magnification. Criteria for selecting dendrites included:
10–40 µm length with no branch points, dendrites could not
spanmore than 20µm in depth, and dendrites had to be traceable
back to the cell body. For each animal, a total of 5–9 sections
of dendrites that met criteria were imaged from HPC and PFC
of each rat. Spine density (number of spines/10 µm section of
dendrite) was analyzed using Neurolucida with the experimenter
blind to the treatment group. The dendrite was traced manually
and spines were traced using a point-and-click method within
Neurolucida.

Analysis and Statistics
For electrophysiology experiments, data were acquired using
Clampex 10.3 (pClamp, Molecular Devices, Sunnyvale CA, USA)

and analyzed offline in Clampfit 10.3. An unpaired two-sample
t-test was used to test for statistical significance using Origin 9
(Origin Labs, Northampton, MA, USA) or Prism 7 (GraphPad,
La Jolla, CA, USA); significance was set to p < 0.05. All datasets
are represented at mean ± SEM and graphs were composed in
Prism 7.

RESULTS

Ketamine Reaches Hippocampus Within
Seconds Following IV Administration
IV administration is the fastest route possible to deliver
drugs, leading to rapid distribution throughout the body.
Because patients receive ketamine as an IV infusion, ketamine
should reach brain within seconds and could potentially
trigger immediate changes in brain circuits that lead to
enhanced connectivity. To test whether ketamine reaches brain
within minutes of an IV injection in rats and is rapidly
cleared, we performed GC/MS. Specifically, we investigated the
concentration of ketamine and its metabolite, NK, in PFC,
HPC, and cerebellum. Immediately following an IV injection,
ketamine is detected in PFC, HPC and cerebellum with little to
no NK (Figure 1A, n = 6 animals). After 30 min, lower levels
of ketamine are observed in all brain regions and more NK is
quantified (Figure 1B, n = 5–6 animals). By 3 h after an IV
injection, nearly all ketamine and NK are eliminated from PFC,
HPC, and cerebellum (Figure 1C, n = 5–6 animals) suggesting
the ketamine rapidly reaches brain and is quickly eliminated
following injection.

Ketamine Has No Effect on the Strength of
Hippocampal Basal Synaptic Transmission
The antidepressant effects of ketamine begin within 1–3 h in
humans (Berman et al., 2000; Zarate et al., 2006; Fond et al.,
2014), and if increased hippocampal function is key to the
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FIGURE 3 | Theta-burst but not high frequency tetanus induced long-term potentiation (LTP) is increased 3 h post IV ketamine treatment. (A) No significant difference
in LTP magnitude induced using high frequency stimulation (HFS) is observed between ketamine- (n = 7 slices/6 animals) and saline-treated rats (n = 7 slices/7
animals, p = 0.60, unpaired t-test). Scale bars, 10 ms and 0.5 mV. (B) Ketamine treatment did not significantly change the steady state depolarization during HFS
(ketamine-treated n = 7 slices/6 animals, saline-treated n = 7 slices/7 animals, p = 0.98, unpaired t-test). Scale bars, 100 ms and 0.5 mV. (C) The LTP magnitude
induced using theta burst stimulation (TBS) was significantly higher in ketamine- (n = 11 slices/10 animals) vs. saline-treated controls (n = 11 slices/8 animals,
p = 0.04, unpaired t-test). Scale bars, 10 ms and 0.5 mV. (D) No significant difference in steady state depolarization during TBS was observed (ketamine-treated n =
11 slices/10 animals, saline-treated n = 11 slices/8 animals, p = 0.77, unpaired t-test). Scale bars, 5 ms and 0.5 mV. All values are mean ± SEM.

improved mood, it should be enhanced during this same time
frame. To investigate this, we administered ketamine or saline
IV in the lateral tail vein of adult male rats and assessed the
strength of basal synaptic transmission at CA3-CA1 synapses
in stimulus-response curves 3 h post-treatment, using a dose
previously shown to have an antidepressant response (Maeng
et al., 2008; Li et al., 2010; Autry et al., 2011). No differences
in the stimulus-responses curves were observed (Figure 2A
ketamine mean = 0.56 ± 0.05 mV/ms, n = 7 slices/7 animals,
saline mean = 0.55 ± 0.09 mV/ms, n = 6 slices/6 animals,
p = 0.86, unpaired t-test at maximum stimulus intensity,
150 µA), indicating that glutamate transmission was not
enhanced by ketamine at this early time point. PPR was
measured to determine whether ketamine alters presynaptic
release probability. During basal transmission, PPR did not
differ between ketamine and saline treated rats (Figure 2B
ketamine mean = 1.56 ± 0.03, n = 17 slices/12 animals, saline
mean = 1.50 ± 0.03, n = 18 slices/13 animals, p = 0.22, unpaired
t-test) providing indirect evidence that ketamine treatment
is not significantly changing release probability. Finally, we
found no difference in the magnitude of the steady-state
depolarization during the tetanus, with either HFS (Figure 3B
ketamine mean = 547.7 ± 113.2, n = 7 slices/6 animals,
saline mean = 551.2 ± 45.0, n = 7 slices/7 animals, p = 0.98,
unpaired t-test) or TBS (Figure 3D ketamine mean = 26.7± 2.2,

n = 11 slices/10 animals, saline mean = 25.7 ± 2.5,
n = 11 slices/8 animals, p = 0.77, unpaired t-test) providing
additional evidence that basal glutamatergic transmission is not
altered 3 h post-IV ketamine.

LTP Magnitude Is Increased Post-IV
Ketamine Only When Induced With TBS
Previous studies reported enhanced LTPmagnitude at CA3-CA1
synapses 24 h post-IV ketamine injection (10 mg/kg and
3 mg/kg; Burgdorf et al., 2013; Graef et al., 2015). Here,
we examined whether enhanced LTP is observed as soon as
3 h post-IV ketamine, a time point that correlates with the
earliest improvement in depressive symptoms (Berman et al.,
2000; Zarate et al., 2006; Fond et al., 2014). Additionally,
we used both HFS and TBS to induce LTP, as these
different stimulation patterns activate different intracellular
pathways to cause long lasting potentiation (Zhu et al.,
2015). Three hours post-IV injection, the LTP magnitude
induced using HFS (two 100 Hz trains at 1 s duration, 20 s
interval between trains) did not differ between ketamine-
and saline-treated male rats (Figure 3A ketamine mean:
1.41 ± 0.17, n = 7 slices/6 animals, saline mean: 1.32 ± 0.06,
n = 7 slices/7 animals, p = 0.60, unpaired t-test). In contrast,
the LTP magnitude induced using TBS (four trains of 10 bursts
consisting of five pulses at 100 Hz, 200 ms intraburst interval,
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FIGURE 4 | Spine density in HPC or PFC is not altered 3 h post IV ketamine injection. No significance difference in spine density is measured between ketamine-
and saline-treated rats in HPC (A) (ketamine-treated n = 5 animals/35 dendrites, saline-treated n = 6 animals/40 dendrites, p = 0.66, unpaired t-test) or PFC (B)
(ketamine-treated n = 5 animals/35 dendrites, saline-treated n = 5 animals/35 dendrites, p = 0.35, unpaired t test). Scale bars, 5 µm. All values are mean ± SEM.

20 s interval between trains) was significantly higher in
ketamine vs. saline-treated controls (Figure 3C ketamine mean:
1.49 ± 0.08, n = 11 slices/10 animals, saline mean: 1.26 ± 0.04,
n = 11 slices/8 animals, p = 0.04, unpaired t-test). Comparison
of the magnitude of LTP in the HFS and TBS saline-treated rats
yielded no significant difference (HFS induced LTP: 1.32± 0.06,
n = 7 slices/7 animals, TBS induced LTP: 1.26 ± 0.04,
n = 11 slices/8 animals, p = 0.47, unpaired t-test), showing that
the type of stimulation used did not affect the overall magnitude
of LTP.

Ketamine Has No Effect on Spine Density
in Hippocampus or Prefrontal Cortex 3 h
Post-IV Injection
Decreased dendritic spine density is implicated in the
pathophysiology of MDD, and many studies have examined
whether antidepressant treatments can reverse this (Duman,
2014), with most studies examining morphological effects
of ketamine 24 h post-injection. In PFC, spine density of
layer V pyramidal cells is increased (Li et al., 2010), and
spine density was also increased in area CA1 with ketamine
treatment (Liu et al., 2016). However, investigation of spine
density changes immediately after ketamine treatment is
limited. One recent study demonstrated that ketamine
increased spine density in PFC 3 h post treatment (Sarkar
and Kabbaj, 2016). We examined spine density changes in
area CA1 of HPC and in medial PFC 3 h post-IV injection. No
significant difference was detected between ketamine- and saline-
treated rats in either brain region (Figure 4A ketamine mean:
13.24 ± 0.31 spines/10 µm, n = 5 animals/35 dendrites, saline
mean: 12.91 ± 0.61 spines/10 µm, n = 6 animals/40 dendrites,
p = 0.66, unpaired t-test; (Figure 4B ketamine mean:
8.62 ± 0.37 spines/10 µm, n = 5 animals/35 dendrites, saline

mean: 9.13 ± 0.35 spines/10 µm, n = 5 animals/35 dendrites,
p = 0.35, unpaired t-test). These data imply that connectivity in
the form of increased synapse density is not altered at this early
time point after ketamine treatment.

DISCUSSION

Here, we report IV ketamine treatment enhances TBS induced
LTPwithout changing the strength of basal synaptic transmission
or HFS induced LTP at CA3-CA1 synapses in adult male
rats. While in vitro studies show synaptic transmission is
enhanced within 1 h of bath application of ketamine (20 µM;
Autry et al., 2011; Nosyreva et al., 2013; Izumi and Zorumski,
2014), we observed no difference in synaptic transmission
3 h after IV treatment. This discrepancy may be due to
differences in in vivo and in vitro ketamine concentration,
as the IV injection likely does not reach 20 µM. Although
there was no difference in basal transmission, increased
synaptic transmission via activity-dependent plasticity following
ketamine treatment suggests ketamine is priming hippocampal
circuits and increasing the response of CA1 pyramidal cells to
synaptic activity.

Interestingly, enhanced plasticity was only observed in slices
from ketamine-treated animals when TBS was used as the
LTP-inducing stimulus. Previous studies demonstrate that TBS
and HFS activate different intracellular pathways (Zhu et al.,
2015), and that TBS LTP is more reliant on BDNF signaling
than HFS induced LTP (Chen et al., 1999; Patterson et al., 2001;
Edelmann et al., 2015; Aarse et al., 2016). This is an important
distinction because ketamine has been shown to increase activity-
dependent release of BDNF, and the antidepressant-like effects
of ketamine rely on BDNF (Lepack et al., 2014). Therefore,
ketamine is potentially increasing BDNF levels in HPC that
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underlie the enhanced TBS LTP magnitude compared to
saline-treated animals. However, we cannot exclude that other
intracellular pathways may be involved, and future studies are
warranted to assess whether BDNF is involved in the enhanced
TBS LTP.

The lack of increase in spine density is consistent with
the lack of increase in the strength of basal transmission
measured in the stimulus-response curve. Additionally, the
morphological changes induced by ketamine treatment may rely
on increased function, such as increased LTP, and appear at
later timepoints. However, a previous study reported ketamine
treatment increased spine density in PFC 3 h post injection
(Sarkar and Kabbaj, 2016). The disagreement between our
finding and this previous study could be due to different methods
of labeling. We are not able to select which cells are stained using
the Golgi method, and it is possible only a small subset of cells
had increased spine density, which would be lost in the overall
population.

A previous study suggests the antidepressant effect of
ketamine is through a metabolite, hydroxynorketamine (HNK;
Zanos et al., 2016). Despite this, it remains unclear whether
the brain HNK concentration would reach the effective
concentration following ketamine IV infusion in patients
(Collingridge et al., 2017). Here, we report ketamine is eliminated
from brain within 3 h and levels of the metabolite, NK,
reach a fraction of the ketamine concentration in brain,
supporting the concept of ketamine having an initial trigger
in brain that leads to lasting molecular and structural changes.
Ketamine likely causes a transient increase in glutamatergic
transmission as in vitro studies indicate ketamine increased

CA3-CA1 synaptic responses (Nosyreva et al., 2013; Izumi
and Zorumski, 2014; Zhang et al., 2016) and disinhibited
CA1 pyramidal cells (Widman and McMahon, 2018). This may
lead to release of more BDNF, which allows for the enhanced
LTP we observe at CA3-CA1 synapses. Additionally, LTP can
lead to increase protein synthesis, which is observed hours
after ketamine treatment (Maeng et al., 2008; Li et al., 2010,
2011; Autry et al., 2011; Burgdorf et al., 2013; Nosyreva et al.,
2013). Together, this series of functional and cellular changes
could lead to the antidepressant behavioral effects that last
for days.
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