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This review article deals with the mechanisms of extrasynaptic release of transmitter
substances, namely the release from the soma, axon and dendrites in the absence
of postsynaptic counterparts. Extrasynaptic release occurs by exocytosis or diffusion.
Spillover from the synaptic cleft also contributes to extrasynaptic neurotransmission.
Here, we first describe two well-known examples of exocytosis from the neuronal soma,
which may release copious amounts of transmitter for up to hundreds of seconds after
electrical stimulation. The mechanisms for somatic exocytosis of the low molecular
weight transmitter serotonin, and the peptides oxytocin and vasopressin have been
studied in detail. Serotonin release from leech neurons and oxytocin and vasopressin
from rodent neurons have a common multi-step mechanism, which is completely
different from that for exocytosis from presynaptic endings. Most transmitters and
peptides released extrasynaptically seem to follow this same mechanism. Extrasynaptic
exocytosis may occur onto glial cells, which act as intermediaries for long-term
and long-distance transmission. The second part of this review article focuses on
the release upon synthesis of the representative diffusible molecules nitric oxide
(NO) and endocannabinoids. Diffusible molecules are synthesized “on demand” from
postsynaptic terminals in response to electrical activity and intracellular calcium
elevations. Their effects include the retrograde modulation of presynaptic electrical
activity and transmitter release. Extrasynaptic neurotransmission is well exemplified in
the retina. Light-evoked extrasynaptic communication sets the gain for visual responses
and integrates the activity of neurons, glia and blood vessels. Understanding how
extrasynaptic communication changes the function of hard-wired circuits has become
fundamental to understand the function of the nervous system.

Keywords: transmitter release, exocytosis, extrasynaptic transmission, volume transmission, diffusive
transmitters

INTRODUCTION

The demonstration by Santiago Ramon y Cajal of the existence of stereotyped circuits in the
nervous system, followed by the discovery that acetylcholine, adrenaline and noradrenaline
are released by nerve terminals by Elliot (1904), Loewi (1921) and Dale et al. (1936)
set the basis for the discoveries by Bernard Katz and his colleagues on the fundamental
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mechanism for synaptic communication (for review see Katz,
1996). The later discovery of electrical junctions (Furshpan
and Potter, 1959) complemented the dominating concept that
neuronal circuits function in a hard-wired manner. However,
with time it also became clear that the input/output relationship
of neuronal circuits varies depending on the previous patterns
of electrical activity. Short- and long-term synaptic plasticity
explains of some transitory changes in the strength of the circuit
connectivity. However, extrasynaptic communication explains
the integral modulation of whole neuronal circuits, glia and
blood vessels in periods ranging from seconds to hours.

The classical observations of Dalstrom and Fuxe that the
serotonin cell bodies in the Raphe nucleus are surrounded by
free serotonin (reviewed by Fuxe et al., 2007; Borroto-Escuela
et al., 2015), and the observation by Paton and Vizi (1969)
that biogenic amines inhibit non-synaptically the cholinergic
transmission onto muscle fibers suggested that transmitters
may act extrasynaptically. The evidence was soon expanded to
other transmitters and peptides, thus leading to the mechanistic
concept of volume transmission, defined by Fuxe et al. (2007)
as a form of communication mediated by extracellular diffusion
of transmitter substances through the extracellular space (for
review see Borroto-Escuela et al., 2015). Indirect evidence for
the somatic release of transmitters came from experiments by
Dun and Minota (1982) showing that electrical stimulation
of the soma of peripheral neurons changed the membrane
potential in a non-synaptic manner. Direct demonstrations
of the extrasynaptic release of all sorts of low molecular
transmitters and peptides came later, from experiments in central
and peripheral neurons of vertebrates and invertebrates (for
review see Trueta and De-Miguel, 2012). This bulk of evidence
lead to the term of ‘‘extrasynaptic communication’’ to define
volume transmission in response to transmitter liberation from
extrasynaptic sites, in the soma, dendrites and axons (De-
Miguel and Nicholls, 2015). Extrasynaptic release occurs in the
absence of postsynaptic counterparts. In addition, synaptically-
released transmitters, for example, dopamine, noradrenaline
or glutamate (Zhang and Sulzer, 2003; Rice and Cragg, 2008;
Courtney and Ford, 2014) spillover from the synaptic cleft and
reach extrasynaptic receptors, thus contributing to extrasynaptic
communication within small volumes of tissue. Glial cells
are integral components of extrasynaptic communication by
responding to transmitters and peptides and releasing the same
or others. As will be seen below, the capillary blood flow is a target
for extrasynaptic modulation.

Extrasynaptic release of transmitters occurs in central and
peripheral neurons of vertebrates and invertebrates. Most low
molecular weight transmitters and different peptides are released
extrasynaptically (Trueta and De-Miguel, 2012). In addition,
gases such as nitric oxide (NO), carbon monoxide (Queiroga
et al., 2015) and hydrogen sulfide (Paul and Snyder, 2018), or
the liposoluble endocannabinoid family (Iannotti et al., 2016; Lu
and Mackie, 2016) and the hydrogen peroxide (Lee et al., 2015),
are synthesized ‘‘on demand,’’ and reach their targets retrogradely
(usually presynaptic), by diffusion.

In this mini-review article, we have assumed the immense
task of comparing the mechanisms of release by exocytosis and

by the synthesis of diffusible molecules. To achieve this goal,
we first compare the best-known release mechanisms of classic
transmitters, peptides, NO and cannabinoids. Then, we take
advantage of the well-known retinal structure and function to
give an account on how synaptic and extrasynaptic transmission
interact to modulate visual sensitivity and blood flow.

THE MECHANISM FOR EXTRASYNAPTIC
EXOCYTOSIS

This section compares the extrasynaptic exocytosis of the
low molecular weight transmitter serotonin and the peptides
oxytocin and vasopressin. The release mechanism of both
substances has been studied step by step in great detail. Somatic
exocytosis of serotonin, resumed schematically in Figure 1, has
been studied in the large soma of the classical Retzius neuron
of the leech (De-Miguel et al., 2015); somato-dendritic oxytocin
and vasopressin have been studied in thalamic mammalian
neurons (Ludwig and Leng, 2006; Ludwig and Stern, 2015).
The accessibility of both neuron types has permitted to apply
diverse technical approaches in the search for direct experimental
evidence on the exocytosis mechanism. The mechanism for both
types of molecules are remarkable similar, and quite different
from that for synaptic exocytosis. Since one example comes from
release of a low molecular weight transmitter in an invertebrate
and the other from peptides in mammals, the similarity predicts
universal mechanistic steps governing somatic exocytosis. The
cumulative evidence obtained from other central and peripheral
neuron types from vertebrates and invertebrates, releasing low
molecular transmitters or peptides strengthen this hypothesis
(for review see Trueta and De-Miguel, 2012).

Serotonin, oxytocin and vasopressin are packed in large
(∼100 nm) electrodense vesicles (a definition that stems from
their appearance under the electron microscope) that rest
at a distance from the plasma membrane (Coggeshall, 1972;
Schimchowitsch et al., 1983). Single action potentials fail to
evoke the large-scale exocytosis that characterizes these somata.
However, rapid trains of impulses or large depolarizations,
trigger a massive exocytosis that lasts for hundreds of
seconds (Trueta et al., 2003; Ludwig and Stern, 2015). The
frequencies of the trains of impulses that produce somatic
exocytosis of serotonin are physiological, and can be evoked by
mechanosensory stimulation to the skin (Velázquez-Ulloa et al.,
2003).

The coupling between excitation and exocytosis incorporates
a cascade of sequential steps. The large intracellular calcium
transient produced mostly by its entry through L channels
(Trueta et al., 2004; Tobin et al., 2011) activates an intracellular
calcium-induced calcium release that generates a calcium
‘‘tsunami’’ that invades the whole soma (Sabatier et al., 1997;
Ludwig et al., 2002; Tobin et al., 2011; Leon-Pinzon et al.,
2014). As result, vesicles become transported actively to the
plasma membrane across an actin cortex (Tobin and Ludwig,
2007; Tobin et al., 2011; De-Miguel et al., 2012). In serotonergic
neurons, vesicle clusters are carried by molecular motors over
0.6–6.0 mm distances at 15–90 nm/s velocities (De-Miguel
et al., 2012). This transport determines the characteristic long

Frontiers in Synaptic Neuroscience | www.frontiersin.org 2 June 2018 | Volume 10 | Article 13

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Del-Bel and De-Miguel Extrasynaptic Neurotransmission

FIGURE 1 | Mechanism for somatic exocytosis of serotonin in leech Retzius neuron. (A) Vesicles forming clusters rest at different distances from the plasma
membrane. Clusters are attached to microtubules via kinesin motors. At rest the actin cortex restricts vesicle mobilization. Clusters already inside the cortex
spontaneously send vesicles to the plasma membrane where they release serotonin. Trains of electrical impulses promote calcium entry through L channels. Calcium
induces calcium release from endoplasmic reticulum via ryanodine receptor activation. The amplified calcium wave arrives at the mitochondria, which responds
producing ATP. The kinesin myosin motors become activated by ATP, thus transporting the vesicle clusters towards the plasma membrane. Electrical activity and
calcium change the configuration of the actin cortex, which now becomes permeable for vesicle transport, with incorporation of myosin motors. The vesicle clusters
are propelled towards the plasma. (B) Arrival of vesicle clusters at the plasma membrane occurs seconds after electrical activity and the intracellular calcium wave
ended. The large-scale exocytosis is produced by a positive feedback loop established by serotonin released by the individual vesicles. The serotonin that has been
released activates autoreceptors and phospholipase C. IP3 activates calcium release from the external layer of endoplasmic reticulum. This calcium maintains
exocytosis until the last vesicles in the cluster fuse. (C) Amplified scheme of the positive feedback system, introducing the glia as serotonin transporter. Hypothetically
this transport occurs via SER transporters that introduce serotonin when the internal concentration is low and release it at distal sites when the internal concentration
is high.

latency of the large-scale somatic exocytosis, which starts seconds
after the end of the calcium transient produced by electrical
stimulation (Leon-Pinzon et al., 2014). Somatic exocytosis is
maintained by a transmitter and calcium positive feedback loop
(Wotjak et al., 1994; Leon-Pinzon et al., 2014). In serotonergic
neurons, activation of 5-HT2 receptors by the serotonin that has
been released increases the calcium concentration in the soma
shell via the activation of phospholipase C and the production
of IP3. This calcium elevation, promotes exocytosis as new
vesicles arrive, but its localization prevents the transport of
vesicle clusters resting more internally (Leon-Pinzon et al.,

2014). The feedback loop ends when the last vesicles in
the pool fuse with the plasma membrane. Strikingly enough,
somatic exocytosis of serotonin in leech neurons occurs onto
glial cells (Trueta et al., 2004). As will be seen below, in
peripheral neurons and in retina, activation of glial cells by
extrasynaptic exocytosis extends the duration and consequences
of extrasynaptic communication.

Evidence from mammalian serotonergic Raphe neurons
points to a similar mechanism for somatic exocytosis. The
capacity of serotonin to emit fluorescence upon multiphoton
excitation allowed the group of Sudipta Maiti (Kaushalya et al.,
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2008; Sarkar et al., 2012) to study somatic exocytosis in
Raphe neurons isolated from rodents. Depolarization with a
high potassium extracellular solution triggers the mobilization
of fluorescent serotonergic-containing spots to the plasma
membrane followed by exocytosis. The size of these fluorescence
spots resembles that of vesicle clusters in Retzius neurons.

Most neurotransmitters are released extrasynaptically and
follow the mechanistic rules described above for serotonin and
peptides (Trueta and De-Miguel, 2012). A well-studied example
is dopamine release from amacrine cells in the retina of rodents
and from invertebrate neurons (Chen et al., 1996; Puopolo et al.,
2001). The somata and dendrites of dopaminergic neurons in
the substantia nigra and the ventral tegmental area also release
dopamine (Björklund and Lindvall, 1975; Geffen et al., 1976;
Cheramy et al., 1981). However, there are also certain variations:
somatic release of dopamine in basal ganglia seems to occur
from clear vesicles (Jaffe et al., 1998). The functional effects of
extrasynaptic release of dopamine in the retina are discussed
below.

EXTRASYNAPTIC TRANSMISSION
MEDIATED BY THE SYNTHESIS OF
DIFFUSIBLE MOLECULES: THE
NITRERGIC AND ENDOCANNABINOID
SYSTEMS

A separate set of diffusible transmitters is synthesized on
demand upon increases of electrical activity and activation of
certain G protein-coupled receptors, both of which produce
increases of intracellular calcium concentration. Most diffusible
neurotransmitters are liberated upon one or two rapid enzymatic
steps after which they diffuse to the extracellular space. Therefore
there is no defined mechanism for their release. Gases like NO,
carbon monoxide and hydrogen sulfate diffuse freely across
plasma membranes. They activate specific cellular and molecular
targets (Bredt and Snyder, 1990; Wang, 2002). Another
family of diffusible transmitters, the endocannabinoids, are the
endogenous activators of the specific receptors that respond to
chemicals produced by the plant cannabis. Endocannabinoids
are also produced on demand by a receptor-stimulated cleavage
of membrane phospholipid precursors. Once synthesized,
endocannabinoids also diffuse rapidly out the neurons (Piomelli,
2003; Mechoulam and Parker, 2013).

THE NITRIC OXIDE (NO) SYSTEM

Because of its physicochemical nature, NO is a volume
transmitter (Agnati et al., 2010; Garthwaite, 2016). Increases
in the intracellular calcium levels in the presence of the
enzyme nitric-oxide-synthase (NOS), a calcium-calmodulin
enzyme, produces NO from its precursor L-arginine (see
Garthwaite et al., 1988; Bredt and Snyder, 1990; Garthwaite,
2008, 2016). Themechanism of NO inactivation remains unclear,
although cytochrome P450 oxidoreductase and astrocytes seem
to contribute (Hall et al., 2009; Rodriguez-Grande and Konsman,
2018).

The best-characterized stimulator of NO synthesis is the
massive exocytosis of glutamate from hippocampal presynaptic
endings (Garthwaite, 2008, 2016). During low presynaptic
activity, glutamate activates mostly postsynaptic AMPA/kainate
receptors. However, an increased glutamate release upon bursts
of presynaptic action potentials promotes the opening of NMDA
receptors. The pore of NMDA receptors is highly permeable to
calcium that concentrates in the postsynaptic terminal. NMDA
receptors and nNOS are associated by the postsynaptic density
protein-95 (Brenman et al., 1996; Sattler et al., 1999). In this
way, calcium influx activates the NOS/calmodulin complex that
produces NO. The NO synthesis continues as long as the calcium
levels are elevated. The NO synthesis is also activated by the
cytoplasmic calcium increases in response to the activation of
voltage-gated calcium channels or intracellular calcium release
(Daniel et al., 1998).

Right after being synthesized, NO diffuses through aqueous
and lipid environments, thus acting on pre- and postsynaptic
targets. Unlike transmitters released by exocytosis, NO lacks
enough chemical sophistication to activate specific receptor
binding sites. However, it may activate the soluble enzyme
guanylyl cyclase that converts guanosine-5′-triphosphate into
cyclic guanosine-monophosphate (Arnold et al., 1977). NO also
produces the nitrosylation of proteins and the generation of
reactive oxygen species (Ahern et al., 2002).

The NO targets are presynaptic terminals, glia and blood
vessels. For this reason NO is a retrograde transmitter. The
physicochemical properties of NO allow its uniform diffusion
bypassing most if not all anatomical constrains. NO may act in
concert with other transmitters, producing subtle alterations in
the function of ion channels and other proteins (for review see
Steinert et al., 2010). Moreover, NO may link monoaminergic
and glutamatergic transmission (West and Grace, 2000; Kiss and
Vizi, 2001; Mitkovski et al., 2012). An excess of NO synthesis
becomes neurotoxic by the formation of reactive oxygen species.

NO produces in rats and schizophrenic patients a rapid and
long-lasting improvement of anxiety and depressive symptoms
(Guimarães et al., 1994; Issy et al., 2011; Hallak et al.,
2013). The inhibition of NO synthesis produces anxiolytic-
, antidepressant-, anti-fear and anti-traumatic like effects (for
review see Guimarães et al., 2005; Steinert et al., 2010; Paul
and Snyder, 2018). In addition, reduces the L-DOPA-induced
that follows the depletion of dopaminergic neurons in rodents
and non-human primates (Del Bel et al., 2005; Padovan-Neto
et al., 2009; Bortolanza et al., 2015; for review see Del-Bel et al.,
2011). For these reason, all of these symptoms seem to have
extrasynaptic communication components and open a field of
study from the view of extrasynaptic communication.

THE ENDOCANNABINOID SYSTEM

Endocannabinoids also contribute to extrasynaptic
communication. The production of cannabinoids also occurs
on demand in postsynaptic endings (Kano et al., 2009; Castillo
et al., 2012; Iannotti et al., 2016; Lu and Mackie, 2016), upon
increases of electrical activity (Piomelli, 2003; Mechoulam and
Parker, 2013). Constitutive membrane phospholipids like di-and
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tri-acylglycerols are metabolized intracellularly by a calcium-
dependent diacylglycerol-lipase, to produce the best-known
cannabinoids: anandamide and 2-arachidonoylglycerol (2-AG;
for review, see Bisogno et al., 2005). Anandamide is synthesized
upon activation of phospholipase β-coupled- glutamate,
muscarinic or dopamine receptors. The synthesis of 2-AG
requires an intracellular calcium elevation, as it happens for
NO. The increases in the calcium concentration activate the
enzyme N-arachidonoyl-phosphatidyl ethanolamine-specific
phospholipase. Anandamide and 2-AG leak passively by
diffusing throughout lipid membranes. However, a rapid and
selective carrier accelerates this process in neurons and glial cells
(Beltramo et al., 1997). Endocannabinoids are also secreted in
extracellular membrane vesicles originated in microglial cells
(Gabrielli et al., 2015).

Endocannabinoids are retrograde modulators of synaptic
function by acting on specific presynaptic and glial cannabinoid
receptors (reviewed in Hashimotodani et al., 2007; Kano et al.,
2009). The type 1 (CB1) and type 2 (CB2) specific cannabinoid
receptors belong to the G protein-coupled receptor family. A
third cannabinoid receptor is the transient receptor potential
vanilloid type 1 (TRPV1). Endocannabinoids may also modulate
synapses by using glial cells as intermediaries. In addition, glial
cells also produce endocannabinoids (Stella, 2010).

Termination of the endocannabinoid signaling occurs
through a carrier-mediated transport into cells, followed by
intracellular degradation (Piomelli, 2003; Iannotti et al., 2016; Lu
and Mackie, 2016). 2AG is mostly degraded in presynapse by the
enzyme monoacylglycerol lipase (Dinh et al., 2002; Marrs et al.,
2010), while anandamide is degraded mostly in postsynapses by
the fatty acid amide hydrolase to produce arachidonic acid and
ethanolamine (Di Marzo et al., 1994; for review, see Iannotti
et al., 2016; Lu and Mackie, 2016).

When we fell down as children, our grandmothers massaged
our hurt knees to reduce our pain. A good explanation for
grandmother’s empirical knowledge came from experiments
made in leech. Endocannabinoids released upon stimulation
of touch- or pressure-mechanosensory neurons innervating the
skin, act on TRPV receptors to decrease nociceptive synaptic
transmission and increase the responses of the touch and
pressure sensory connections (Summers et al., 2017).

Endocannabinoids modulate the excitatory and inhibitory
synaptic strength of sensorymotor pathways (Pedrazzi et al.,
2015). However, that endocannabinoid receptors appear more
prominently in inhibitory terminals suggest their function to
reduce over-excitability (Freund et al., 2003; Chevaleyre et al.,
2006; for review, see Iannotti et al., 2016; Lu and Mackie,
2016). Endocanncabinoids inhibit transmitter release by
closing calcium channels, opening K+ channels, inhibiting
adenylyl cyclase and stimulating protein kinases (Kano
et al., 2009; Castillo et al., 2012). In addition, activation of
CB1 receptors increase the spontaneous firing of noradrenergic,
serotonergic and dopaminergic neurons, and increases the
synthesis of these neurotransmitters (Mechoulam and Parker,
2013). Endocannabinoids also improve certain regeneration
processes (Kwiatkoski et al., 2012) and increase neurogenesis
(Campos et al., 2016). The endocannabinoid system may also be

neuroprotector and a target to control neurodegenerative and
neuropsychiatric diseases (for review see Campos et al., 2012,
2016).

INTEGRATION OF SYNAPTIC AND
EXTRASYNAPTIC TRANSMISSION IN THE
RETINA

In this section, we will use the excellent possibilities offered
by the histological organization and supercomputing power
of the retina to exemplify how extrasynaptic communication
integrates the function of neurons, glia and blood vessels. The
link between extrasynaptic communication and its effects in the
retina has been widely studied for dopamine, with some examples
in the contribution of NO and cannabinoids. However, these
substances suffice to exemplify the wide spectrum of concerted
extrasynaptic communication actions that modulate function in
a well-known neural tissue.

A bright light shone onto a retinal receptive field evokes
electric signals in photoreceptors. On their way to the ganglion
cells, interactions with bipolar, horizontal and amacrine cells,
produce the characteristic ‘‘on’’ and ‘‘off’’ visual responses. In
addition, activation of amacrine cells evoke the extrasynaptic
exocytosis of dopamine (Puopolo et al., 2001) and GABA
(Hirasawa et al., 2009). The mechanism for dopamine release
(Puopolo et al., 2001) is as described for serotonin and oxytocin.
Through volume transmission, dopamine increases the gain of
the sensory field by three complementary effects: (a) potentiating
the activity of glutamate receptors in bipolar and horizontal
cells (Knapp and Dowling, 1987; Maguire and Werblin, 1994);
(b) reducing the diameter of the visual field by uncoupling
horizontal cells (Piccolino et al., 1984; DeVries and Schwartz,
1989); and (c) uncoupling the connections of AII rod amacrine
cells andmodifying the center-surround balance in ganglion cells
(Daw et al., 1990).

Increases in the extracellular concentration of transmitters,
activates the retinal glia—the Muller cells. The Muller cells
respond by releasing ATP through a special type of channels, the
pannexins (Dahl, 2015). ATP depresses the electrical activity of
ganglion cells and evokes vasodilation of blood vessels (Newman,
2015).

Diffusible transmitters also contribute to retinal function. The
blockade of NO synthesis increases blood pressure (Deussen
et al., 1993). In addition, the activation of cannabinoid receptors
reduces L calcium and K currents in cones while increases
L currents and reduces K currents in rhodes (Straiker et al.,
1999).

DISCUSSION AND PERSPECTIVES

Extrasynaptic transmission is multivariate in every region of
the nervous system. Several modes and sites of transmitter
release exist different neurons. In addition, one neuron can be
modulated by different transmitters. All modes of extrasynaptic
release are triggered by increases of electrical activity, followed
by large increases in the intracellular calcium concentration.
Signaling is slow when compared to synaptic communication,
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which occurs within half a millisecond. The threshold and
amount of each extrasynaptic mode of release are coded
by the frequency and duration of the stream of action
potentials. In return, extrasynaptically released transmitters
modulate, and in most cases reduce, the neuronal electrical
activity.

Axons and dendrites contain clusters of clear and dense core
vesicles anchored at different distances of the plasma membrane.
These diverse configurations endow neurons with regional
release possibilities. Passage of electrical activity along the neuron
may then trigger different modes of exocytosis. Depending on
the transmitter released and the region where release occurs,
extrasynaptic exocytosis may have different timing and regional
effects.

The ample catalog of transmitter molecules and extrasynaptic
receptors contributing to extrasynaptic signaling adds a
wide range of activity-dependent physiological responses
to neuronal circuits. This contributes to explain the
diversity of circuit responses, depending on the activity
levels. Extrasynaptic communication incorporates glia,
which adds feedback communication to neurons, releases
chemical messages and regulates blood flow. Therefore,
to understand the function of the nervous system, it is
now essential to understand the roles of extrasynaptic
neurotransmission.

Several pertinent questions that can be addressed now
concern how many release modes a single neuron has? How
release from different neuronal compartments modulates activity

locally? How extrasynaptic release produces a self-modulation?
How can we relate extrasynaptic neurotransmission to
motivation, modulation, state-dependence or activity-
dependence? Although not touched for the case of extrasynaptic
exocytosis, an important question that can now be posted is the
contribution of extrasynaptic communication in normal and
diseased brain. Several examples were discussed for diffusible
transmitters. For some diseases like depression or Parkinson’s,
the demonstrations of the role of extrasynaptic exocytosis of
low molecular transmitters and peptides seems around the
corner.
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