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Synaptic transmission between neurons is the basic mechanism for information

processing in cortical microcircuits. To date, paired recording from synaptically

coupled neurons is the most widely used method which allows a detailed functional

characterization of unitary synaptic transmission at the cellular and synaptic level in

combination with a structural characterization of both pre- and postsynaptic neurons

at the light and electron microscopic level. In this review, we will summarize the

many applications of paired recordings to investigate synaptic function and structure.

Paired recordings have been used to study the detailed electrophysiological and

anatomical properties of synaptically coupled cell pairs within a synaptic microcircuit;

this is critical in order to understand the connectivity rules and dynamic properties of

synaptic transmission. Paired recordings can also be adopted for quantal analysis of

an identified synaptic connection and to study the regulation of synaptic transmission by

neuromodulators such as acetylcholine, themonoamines, neuropeptides, and adenosine

etc. Taken together, paired recordings from synaptically coupled neurons will remain a

very useful approach for a detailed characterization of synaptic transmission not only in

the rodent brain but also that of other species including humans.

Keywords: paired recordings, synaptic connection, structure-function analysis, quantal analysis, neuromodulation

INTRODUCTION

To understand local neuronal microcircuits in the brain, it is necessary to know the morphological
and electrophysiological properties of both the pre- and postsynaptic neurons, the synaptic
connection type(s) and their structure-function relationship. However, in many studies of synaptic
transmission the identity of the pre- and postsynaptic neuron is not well or not at all characterized.
This is because of the relatively unspecific stimulation protocols (e.g., extracellular stimulation)
often used to investigate synaptic connectivity, which generally do not allow to determine the
structural and functional properties of the presynaptic neuron. Paired recordings together with
intracellular staining by markers such as biocytin/neurobiotin and/or fluorescent dyes are better
suited for studying local neuronal microcircuits. This technique permits a simultaneous, correlated
characterization of the structural and functional properties of a synaptic connection.
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Monosynaptic connections between identified neurons have
been investigated in both cortical and subcortical brain regions
using paired recordings in acute brain slices (Malinow, 1991;
Mason et al., 1991; Buhl et al., 1994; Deuchars et al., 1994;
Bolshakov and Siegelbaum, 1995; Miles et al., 1996; Stratford
et al., 1996; Geiger et al., 1997; Markram et al., 1997a; Thomson
and Deuchars, 1997; Feldmeyer et al., 1999; Gupta et al., 2000;
Tamas et al., 2000, 2003; Holmgren et al., 2003; Szabadics et al.,
2006; Helmstaedter et al., 2008; Olah et al., 2009, for reviews, see
Miles and Poncer, 1996; Debanne et al., 2008; Feldmeyer and
Radnikow, 2016). Sharp microelectrodes were initially used in
these experiments (Mason et al., 1991; Buhl et al., 1994; Deuchars
et al., 1994). However, electrophysiological recordings with sharp
microelectrodes have several limitations, e.g., the electrical noise
is high and the membrane seal poor, the approach is generally
blind and thus the inter-somatic distance between pre- and
postsynaptic neurons not well controlled (Brette and Destexhe,
2012). Later, patch pipettes were employed in order to measure
synaptic responses with a higher signal-to-noise ratio and an
improved temporal resolution. A significant advance was the
use of infrared differential interference contrast optics (Dodt
and Zieglgansberger, 1990) that significantly improved the visual
identification of neurons in acute brain slices (Stuart et al., 1993)
so that it became possible to obtain recordings from synaptic
connections between visually identified neurons.

An advantage of paired recordings is the fact that functional
characterization can be combined with the morphological and/or
molecular analysis at both the light and electron microscopic
level (Deuchars et al., 1994; Markram et al., 1997a, 1998b; Reyes
et al., 1998; Feldmeyer et al., 2002, 2006; Silver et al., 2003;
Tamas et al., 2003; Kapfer et al., 2007; Silberberg and Markram,
2007; Helmstaedter et al., 2008). After histochemical processing,
the expression of specific marker proteins of the synaptically
connected neuron pair can be determined, in a subsequent
step the somatodendritic and axonal morphologies recovered
and then reconstructed in three spatial dimensions. This will
allow a quantitative analysis of morphological features such as
orientation, branching pattern, spatial length density etc. These
parameters could provide a basis for an objective classification of
pre- and postsynaptic neurons in a specific synaptic connection.
Furthermore, paired recordings also permit the identification
of synaptic contacts of unitary synaptic connections using a
combination of light and electron microscopy. In addition to
this detailed analysis of the synaptic transmission at a defined
neuronal microcircuit paired recordings also allow the study of
quantal properties of identified synapses and the modulation of
synaptic transmission by neurotransmitters such as acetylcholine,
noradrenaline, dopamine, serotonin, and adenosine.

ELECTROPHYSIOLOGICAL,
MORPHOLOGICAL AND/OR, MOLECULAR
CHARACTERIZATION OF SYNAPTIC
CONNECTIONS IN LOCAL NEURONAL
MICROCIRCUITS

The most crucial step for paired recordings in acute brain slices is
to find a sufficiently stable synaptic connection so that a detailed

analysis of its structural and functional properties is possible.
This step depends on several important factors which will be
discussed here in brief (for more details, see Radnikow et al.,
2012; Feldmeyer and Radnikow, 2016). First, it is important to
determine the optimal procedure for preparing brain slices so
that the axo-dendritic branches of both pre- and postsynaptic
neuron for the synaptic connection under study is well preserved.
A suitable slice thickness needs to be determined depending on
the recording configuration (whole-cell with patch pipettes or
intracellular with sharp microelectrodes); an increase in the slice
thickness may significantly increase the connection probability
and the quantification of synapse number per connection
(Thomson and Lamy, 2007; Stepanyants et al., 2009). Second, the
composition of solutions used during the slicing and incubation
needs to be adjusted carefully according to the age of animals
and type of species. Several slicing and incubation solutions
for adult and senescent animal and human brain tissue are
available under http://www.brainslicemethods.com/ (Ting et al.,
2014, 2018a,b). Finally, the connection probability of different
neuron types is highly variable (from 5 to 70%) depending on
both the presynaptic axonal projection and the postsynaptic
dendritic arborization (Thomson and Lamy, 2007; Lefort et al.,
2009; Fino et al., 2013; Pfeffer et al., 2013; Jiang et al., 2015;
Markram et al., 2015; Radnikow et al., 2015; Seeman et al.,
2018; Jouhanneau and Poulet, 2019). Therefore, choosing the
appropriate strategy, either a random patch or a “searching”
protocol (Qi et al., 2015), is critical for the success of paired
recordings. Paired recordings from synaptically coupled neurons
allow a wide variety of functional and structural analysis. The
most relevant issues will be described below.

Electrophysiological Characterization of
Local Synaptic Transmission
The synaptic strength (or weight) is a key parameter to
characterize the efficacy of a synaptic connection. It reflects
whether the synaptic connection has a strong or weak influence
on postsynaptic output. It is measured as the peak amplitude
of postsynaptic potentials (PSPs) evoked by presynaptic action
potentials (APs). For excitatory synaptic connections in the
neocortex, the PSP amplitude is not normally distributed but
skewed toward lower values (∼0.5mV) with a long tail with
higher values (>2mV) (Figures 1A,B) (Markram et al., 1997a;
Feldmeyer et al., 1999, 2002, 2006; Sjostrom et al., 2001;
Holmgren et al., 2003; Lefort et al., 2009). It has been shown
by theoretical analysis that this synaptic weight distribution
can be understood through optimization of information storage
in neuronal networks (Brunel et al., 2004; Varshney et al.,
2006; Barbour et al., 2007). It has also been suggested that the
high-amplitude connections represent rare, strong connections
that mediate stimulus-specific response amplification in cortical
microcircuits (Cossell et al., 2015).

The time course of postsynaptic response is another important
determinant of the computational power of a synaptic connection
and significantly affects the synaptic integration in postsynaptic
neurons. Long-lasting PSPs show a stronger summation while
brief postsynaptic responses are necessary to achieve a high
temporal fidelity for repetitive synaptic inputs. Quantitatively,
the time course of excitatory or inhibitory PSPs (EPSPs/IPSPs)
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FIGURE 1 | Electrophysiological characterization of synaptic connections using paired recordings. (A) Paired recordings from a synaptic connection established

between a presynaptic L4 spiny neuron and a postsynaptic L2/3 pyramidal cell. Top, a presynaptic AP; Middle, ten successive EPSPs in response to a presynaptic

AP; Bottom, the average EPSP. (B) Histogram of the EPSP amplitudes in L4-L2/3 connections (n = 64). (C) Histogram of the coefficients of variation (C.V.s) of EPSPs

in L4-L2/3 connections (n = 64). (D) Histogram of the failure rate (in %) in L4-L2/3 connections (n = 64). Figure has been adapted from Feldmeyer et al. (2002)

with permission.

is described by its 20–80% rise time, decay time constant and
half-width. It should be noted that the EPSP/IPSP time course
is shaped by (low-pass) dendritic filtering due to the distance
between the recording site (normally at the soma) and the
synapse location (Rall, 1967).

The latency is defined as the time difference between the
peak of presynaptic AP and the beginning of the PSP. The
size and variation of latencies determines the time window of
integration of the synaptic response. Many factors such as the
fine structure of the pre- and postsynaptic sites, the release
probability of neurotransmitters, and the passive and/or active
electrophysiological properties of both pre- and postsynaptic
neurons affect the latency in synaptic transmission.

The reliability is an important property of a synaptic
connection, which characterizes the extent of the PSP variability.
Synaptic reliability and variability are sensitive to recording

conditions, e.g., the temperature and Ca2+ concentration in
the recording solution. The reliability of synaptic transmission

increases with the increasing temperature (Hardingham and

Larkman, 1998; Volgushev et al., 2004) and Ca2+ concentration
(Rozov et al., 2001; Silver et al., 2003) due to enhanced transmitter
release. To determine this parameter, an AP is elicited in
the presynaptic neuron resulting in an EPSP or IPSP in the
postsynaptic neuron (Figures 1A, 4A). Between 50 and 100
sweeps are recorded to determine the mean amplitude of the
synaptic response (Figures 1B, 4B) and its variance. A frequently
usedmeasure for the reliability is the coefficient of variation (CV)
which is defined as:

CVPSP =
√
(σ 2

PSP − σ 2
Noise)/µPSP

where σ2PSP is the variance of the PSP amplitude, σ2Noise the
variance of the membrane potential fluctuation, and µPSP the
mean PSP amplitude (Figure 1C). The variance of the PSP
is corrected by subtracting the membrane potential variance,
which includes membrane potential noise (i.e., from random
ion channel openings) and electrical noise introduced by the
recording equipment. CVPSP is a surrogate measure for the
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release probability of transmitters. However, this measure is only
indirect and a detailed quantal analysis (see below) is needed to
determine its actual value.

The failure rate is defined as the frequency with which a
synapse fails to respond to a presynaptic AP (Figure 1D). In
general, synaptic connections with a low neurotransmitter release
probability (e.g., synapses formed by L6A cortico-thalamic
pyramidal neurons) (Yang et al., 2019) and/or few synaptic
contacts (e.g., synapse formed between parallel fibers from
granule cells and Purkinje cell dendrites) (Isope and Barbour,
2002) show a significant number of failures. However, failures
may not be apparent despite a relatively low release probability
when the number of synaptic contacts is sufficiently large. Under
this condition it is likely that vesicle release would occur at least
at a small fraction of synaptic contacts; hence, no failures would
be observed. This is in accordance with findings in a number
of paired recording studies in acute cortical slices that generally
report a low failure rate of synaptic transmission (Atzori et al.,
2001; Koester and Johnston, 2005; Feldmeyer et al., 2006; Frick
et al., 2008; Lefort et al., 2009).

Changes in the strength of the synaptic response are critical
for the flexibility and plasticity of synaptic function. For
monosynaptic connections, paired recordings have shown that,
during the delivery of multiple stimuli at short time intervals,
the size of the postsynaptic responses can become either larger
or smaller, a phenomenon known as short-term facilitation or
depression, respectively. When the release probability is low
during the initial presynaptic AP, PSP facilitation is likely to
occur. This is likely to results from an increase in the Ca2+

concentration in the presynaptic terminal with each successive
presynaptic AP which will lead to successively larger PSPs (i.e.,
an increase in release probability). After some time the release
probability and hence the PSP amplitude will decrease again
because of a depletion of the readily releasable pool of synaptic
vesicles (see below). Short-term synaptic depression, on the other
hand, occurs when the initial release probability is high, i.e., when
many synaptic vesicles are released during the first presynaptic
AP. This then results in a transient depletion of synaptic vesicle
from the readily releasable pool (Zucker and Regehr, 2002;
Rizzoli and Betz, 2004, 2005). Whether a synaptic connection
shows short-term facilitation or depression depends on the pre-
and/or postsynaptic neuron identity (Markram et al., 1998b;
Reyes et al., 1998; Scanziani et al., 1998; Gupta et al., 2000; Koester
and Johnston, 2005; Ma et al., 2012) (Figure 3). By eliciting a pair
(or train) of APs in the presynaptic neuron at a fixed interval
(e.g., 100ms) and measuring the amplitude of the postsynaptic
response, the paired-pulse ratio (PPR) is calculated as PPR
= PSP2/PSP1. The PPR is commonly used to characterize short-
term synaptic plasticity and specifies whether the initial release
probability is high or low. Although the PPR is widely used, it is
not sufficient to unmask the interplay between release, depression
and facilitation (Dittman et al., 2000). There is some ambiguity
in using the PPR to determine depression/facilitation dynamics
in the case of strongly facilitating synapses. In these synapses,
PPR might be small for the first two PSPs and gradually becomes
larger during repetitive presynaptic stimulation (Markram et al.,
1998a). For such cases a train of frequency-dependent APs

elicited in the presynaptic neuron is more appropriate to be
adopted for measuring the postsynaptic response.

Synaptic function is also affected by retrograde messengers
(e.g., glutamate, GABA, endocannabinoid) released from
postsynaptic dendrites (Zilberter et al., 2005). Paired recordings
between layer 2/3 pyramidal cells and bitufted interneurons
showed that the dendritic GABA release depresses excitatory
transmission via presynaptic metabotropic GABAB receptors
in the rat neocortex (Zilberter et al., 1999). For the inhibitory
transmission, depolarization-induced suppression of inhibition
(DSI) was found widely in different cortical areas including the
hippocampus (Wilson and Nicoll, 2001), cerebellum (Kreitzer
and Regehr, 2001), and neocortex (Trettel and Levine, 2003). DSI
has been shown to be caused by the postsynaptic deporalization-
induced dendritic release of endocannabinoids, which diffuse
retrogradely to presynaptic axonal terminals where they bind to
cannabinoid 1 receptors to reduce the GABA release.

It should be noted that there are some differences between
in vitro acute brain slice (or ex vivo) and in vivo recording
conditions. Therefore, the property of synaptic transmission
studied in vitro may be different from that in vivo condition.
A prominent difference is the extracellular Ca2+ concentration
which is ∼1.2–1.3mM free Ca2+ in the cerebrospinal fluid
(Heinemann et al., 1977; Massimini and Amzica, 2001; Crochet
et al., 2005; Borst, 2010) but 2mMCa2+ compound in a standard
extracellular perfusion solution. Because calcium salts do not
fully dissociate the free Ca2+ concentration in the extracellular
fluid will be lower than the absolute CaCl2 concentration
[or any other calcium salt this is substituted for CaCl2 (e.g.,
Ca(CH3SO3)2)]. An absolute CaCl2 concentration of 2mM
amounts to 1.7mM free Ca2+ (as can be measured with an
ion-selective electrode and/or calculated from the dissociation
constant). Thus, compared to the in vitro condition, the PSP
amplitude and reliability will be lower and the failure rate
higher under in vivo condition because of the reduced synaptic
release probability. In addition, the short-term synaptic plasticity
is likely to change from strong depression to no change or
weak facilitation. In addition, the membrane conductance of
neocortical neurons is high in vivo because of the intense synaptic
bombardment, which rarely appears under in vitro conditions
(Destexhe et al., 2003). Therefore, the time course of PSPs
recorded in vivo is also different from that in vitro, e.g., the
decay of PSPs is faster in vivo than in vitro because of enhanced
membrane conductances.

Long-term synaptic changes such as long-term potentiation
(LTP) and depression (LTD) have been considered as the
cellular mechanism of learning and memory (Huganir and
Nicoll, 2013). Paired recordings have been widely adopted to
investigate the LTP and LTD and uncover their induction
conditions andmechanisms (Malinow, 1991; Arancio et al., 1995;
Bolshakov and Siegelbaum, 1995; Liao et al., 1995; Markram
et al., 1997b; Bi and Poo, 1998; Egger et al., 1999; Montgomery
et al., 2001). For example, the postsynaptic insertion of AMPA
receptors has been considered to be the molecular basis of
LTP induction. Spike-timing-dependent plasticity (STDP) is one
Hebbian type of long-term synaptic plasticity. Its induction
depends on the precise timing of pre- and postsynaptic AP
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FIGURE 2 | Morphological characterization of synaptic connections using paired recordings in combination with biocytin fillings. (A) Morphological reconstruction of a

synaptically coupled cell pair between a L4 spiny stellate cell and a L2/3 pyramidal neuron. The somatodendritic and axonal compartments of the presynaptic spiny

stellate cell are drawn in red and blue, respectively. The somatodendritic and axonal compartments of the postsynaptic L2/3 pyramidal neuron are drawn in black and

green, respectively. The gray square represents the L4 barrel where the spiny stellate cell is located. Left inset, four putative synaptic contacts established by the axon

of the L4 spiny stellate cell with the dendrites of the L2/3 pyramidal neuron are marked by blue dots. Right inset, electron micrographs of the synaptic contacts. All

(Continued)
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FIGURE 2 | four synaptic contacts which were identified with the light microscope were confirmed at the electron microscopic level. The axonal boutons (b) of the L4

spiny stellate cell established synaptic contacts on dendritic shafts (d) in contacts 1–3 while on a dendritic spine in contact 4 of the L2/3 pyramidal neuron. (B)

Histogram of the geometric distances from the somata of putative synaptic contacts in 13 L4 spiny neuron-L2/3 pyramidal cell pairs. Inset, distribution of number of

synaptic contacts per connection. (C) 2D maps of axonal (left) and dendritic (middle) “length density” of synaptically coupled L4 spiny neurons and L2/3 pyramidal

cells (n = 9), aligned with respect to the barrel center. The predicted innervation domain (right) of L2/3 dendrites by L4 axons is given by the product of the L4 axonal

density and the L2/3 dendritic density. Contours (thin lines) enclosing 80% of the integrated density are superimposed. Positions of L4 spiny neuron sonata (red dots),

L2/3 pyramidal cell sonata (white triangles), putative synaptic contacts (cyan dots), and outlines of barrels (thick lines) are indicated symbolically. Inset, zoom in the

predicted innervation domain superimposed by putative synaptic contacts. (A,B) have been adapted from Feldmeyer et al. (2002) with permission and (C) from Lubke

et al. (2003) with permission.

firing. Paired recordings between layer 5 pyramidal cells showed
that if a presynaptic neuron fires earlier (e.g., +10ms) than
its postsynaptic neuron, LTP will be induced. Otherwise, if the
presynaptic neuron fires later (e.g.,−10ms) than its postsynaptic
neuron, LTD will develop (Markram et al., 1997b; Bi and Poo,
1998, 2001; Abbott and Nelson, 2000). However, this rule does
not apply to synaptic connections established between layer 4
spiny neurons. Whether presynaptic neurons fire earlier or later
(e.g., ±10ms) than postsynaptic neurons LTD will always be
induced because of presynaptic metabotropic glutamate receptor
activation (Egger et al., 1999).

In addition to chemical synapses, synaptic coupling can also
occur via electrical synapses or gap junctions, in particular
between immature neurons and interneurons of the same
type. Paired recordings are also feasible to record from
neurons coupled via gap junctions and to characterize their
electrical properties such as the coupling coefficient and
junctional conductance (Galarreta and Hestrin, 1999; Gibson
et al., 1999). When combining with the biocytin labeling,
the morphological properties of gap junctions can be studied
at both light and electron microscopic levels as described
below (Tamas et al., 2000).

Paired (ormultiple) recordings allow to study the organization
principles of neuronal networks and shed light on their
fundamental features. Previous connectivity studies suggest that
neuronal networks are not randomly connected but may have
a fine-scale specificity of connectivity (Song et al., 2005; Brown
and Hestrin, 2009; Yu et al., 2009; Ko et al., 2011; Perin et al.,
2011; Jiang et al., 2013; Cossell et al., 2015). For example, it
was demonstrated that two excitatory neurons are more likely
to be connected if they share a common neighbor, the so-called
“common neighbor rule,” in neuronal networks of cortical layers
2/3 and 5 (Song et al., 2005; Ko et al., 2011; Perin et al., 2011).
The preference of connection formation between two excitatory
neurons also depends on their long-range axonal targets (Brown
and Hestrin, 2009), developing origins (Yu et al., 2009) and
orientation selectivities (Ko et al., 2011).

Morphological and/or Molecular
Characterization of Synaptic Connections
For a detailed characterization of the morphological properties
of synaptic connections, an optimal biocytin filling and a careful
histochemical processing are of major importance. We have
optimized these procedures in our laboratory (see Marx et al.,
2012; Radnikow et al., 2012; Qi et al., 2015; Feldmeyer and
Radnikow, 2016).

Following histochemical processing biocytin-labeled neuronal
cell pairs are inspected under the light microscope using
a 100× or a 50× oil immersion objective. Oil immersion
objectives with a high numerical aperture (= 1.4) have to be
used in order to focus throughout the entire slice thickness
(∼300µm). Computer-assisted 3D neuronal reconstructions
are made using the Neurolucida R© system (Microbrightfield).
This is a neuroanatomical reconstruction system for tracing
the neuronal somatodendritic and axonal branches in all three
dimensions (3D). Tracing is normally done manually; automatic
or semi-automatic tracing approaches are often not applicable
because of the dense and profuse branching of the dendritic
branches and in particular axonal collaterals of the pre- and
postsynaptic neurons (Figure 2A). Dendrites and axons are
traced at high resolution, i.e., with 0.5–1.0µm step size in z-
direction. Furthermore, frequent alignments in the x, y, and
z-dimensions of the neurons are required.

To identify synaptic contacts formed between the pre-
and postsynaptic neurons a light microscope with the highest
magnification [e.g., 1000×, 100× objective (oil immersion)
and 10× eyepiece] is used. Putative synaptic contacts are
defined as locations where a presynaptic axonal bouton comes

near or overlaps with a dendritic spine or shaft of the
postsynaptic neuron at the same focus (Figure 2A). Then, the

spatial distribution of putative synaptic contacts on postsynaptic
somatodendritic compartments can be determined (Figure 2B).
In order to verify putative synaptic contacts identified under
a light microscope a subsequent electron microscopic (EM)
analysis is required (Markram et al., 1997a; Feldmeyer et al.,
2002); under EM pre- and postsynaptic axonal boutons and
dendritic spines or shafts, respectively, can be identified
unambiguously (Figure 2A).

A quantitative morphological analysis of reconstructed
neurons can be performed using the Neuroexplorer R©

(Microbrightfield) software. This software extracts parameters
including the length of axonal and dendritic branches, the
degree of arborization, the orientation etc., which can be used
to classify neuronal cell types, e.g., by using the cluster analysis.
Furthermore, morphological data about the axonal and dendritic
arborization of the pre- and postsynaptic neurons can be further
processed to calculate axonal and dendritic length ’density maps’
(Figure 2C) (Lubke et al., 2003; Narayanan et al., 2015). These
“density maps” could reflect a general pattern of axonal or
dendritic length distribution across the layers and columns. By
calculating the product of the presynaptic axonal density with the
postsynaptic dendritic density, the average ’innervation domains’
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FIGURE 3 | Electrophysiological, morphological and molecular characterization of synaptic connections by combining paired recordings with immuno-fluorescent

stainings for specific marker proteins. (A) Two main types of GABAergic interneurons in the neocortex are PV+ fast spiking interneurons (left, red) which express the

Ca2+-binding protein parvalbumin (PV) and SST+ non-fast spiking interneurons (right, violet) which express the neuropeptide somatostatin (SST). (B) Two interneuron

types form synaptic connections with different characteristics. Left, PV+ fast spiking interneurons receive initially strong but quickly depressing EPSPs from

neighboring excitatory neurons. At the same time, they produce depressing IPSPs in synaptically connected neighboring excitatory neurons. Right, SST+ non-fast

(Continued)
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FIGURE 3 | spiking interneurons, in contrast, receive initially weak and gradually facilitating EPSPs from neighboring excitatory neurons and in turn elicit facilitating

IPSPs in their target excitatory neurons. (C) Boldog et al. identified a specialized human cortical GABAergic cell type, the so-called L1 rosehip cell (RC). L1 RCs

express cholecystokinin (CCK), but not PV, SST, or other molecular markers. L1 RCs exhibit an intermittent non-fast spiking firing pattern with subthreshold membrane

potential oscillations (boxed segments). By combining paired recordings with Ca2+ imaging the authors were able to demonstrate that L1 RCs establish inhibitory

synapses onto apical dendritic tufts of L2/3 pyramidal cells to regulate the AP backpropagation in a segment-specific manner. Electrical signals and morphologies of

L1 RCs are in red and those of L2/3 pyramidal cells in green. (A,B) have been adapted from Feldmeyer et al. (2018) with permission and (C) from Boldog et al. (2018)

with permission.

can be determined (Figure 2C). Such ’innervation domains’
delineate the probability distribution of synaptic contacts for an
identified synaptic microcircuit (Lubke et al., 2003; Stepanyants
and Chklovskii, 2005).

In addition to biocytin labeling alone, a combination
with immunofluorescent staining is also possible, e.g., for
specific molecular marker proteins such as Ca2+-binding
protein/neuropeptide like parvalbumin, somatostatin,
vasoactive intestinal polypeptide (VIP), cholecystokinin
(CCK) or transcription factor like Fez2, CTIP2, Foxp2 for
different inhibitory and excitatory neuron types, respectively
(Figures 3A,C). For this, the neuron is filled with biocytin
and a biocytin-conjugated fluorescent dye during the
electrophysiological recording (e.g., Alexa Fluor 594) so that it is
easily distinguished from other neurons after paraformaldehyde
fixation. In a second step, immunofluorescent staining is
performed after brief period of fixation (<1 day) using a primary
antibody for the marker protein and a secondary antibody
coupled to a fluorosphore. Finally, the neuron is permanently
stained via the biocytin-horseradish peroxidase (HRP) reaction
in which diaminobenzidine (DAB) is converted in a dark
brownish precipitate. This allows high resolution morphological
reconstructions of the labeled neurons (Figure 3C). It should
be noted, however, that this multiple staining protocol may
compromise the efficiency and quality of the biocytin-HRP
staining to some extent, especially when the waiting time
between fluorescence imaging and DAB processing is too long,
making reconstructions of the neuronal morphology less reliable.

UNCOVERING THE QUANTAL PROPERTY
OF SYNAPTIC TRANSMISSION BETWEEN
IDENTIFIED CORTICAL NEURONS

As described above, postsynaptic responses in postsynaptic
neurons induced by presynaptic neuronal firing fluctuate in
amplitude with time; in some trials the presynaptic AP may even
fail to elicit a PSP. These fluctuations have been interpreted in
the framework of the quantal analysis of synaptic transmission.
Quantal analysis extracts the basic functional properties of
synapses from postsynaptic responses using statistical models
based on some assumptions (for review, see Korn and Faber,
1991). It can give an insight into the function of synapses
and identify the locus of changes in synaptic strength (Stevens,
1993). Three parameters are adopted to describe the synaptic
properties: the number of release sites (N), the release probability
(p), and the amplitude of postsynaptic response following a

single vesicle release—the quantum (q). The size of postsynaptic
response and its variability are determined by these quantal
parameters. Presynaptic modulation is related to p (i.e., the
release probability), while postsynaptic changes (i.e., in the
number of postsynaptic receptors etc.) are related to q. The
formation of new contacts would be related to a change in
N. In addition, an increase in p from zero at existing release
sites in so-called “silent” synapses could also be treated as an
increase in N. In the past years, paired recordings in different
preparations including the neocortex, hippocampus, striatum,
and cerebellum have been extensively used to uncover the values
for parameters N, p, and q of synaptic connections (Bekkers
and Stevens, 1990; Malinow and Tsien, 1990; Larkman et al.,
1991; Gulyas et al., 1993; Isaac et al., 1995; Liao et al., 1995;
Scheuss et al., 2002; Silver et al., 2003; Koos et al., 2004; Biro
et al., 2005; Saviane and Silver, 2006; Bremaud et al., 2007;
Hardingham et al., 2010; Huang et al., 2010; Molnar et al.,
2016).

Using the frog neuromuscular junction preparation, del
Castillo and Katz (Del Castillo and Katz, 1954) found that several
peaks appear in the PSP amplitude histogram. Later, it has
been shown that the number of peaks matched the number of
anatomical synaptic contacts and the location of peaks is always
multiple of that in theminiature PSP amplitude histogram, which
led to postulate of the “one-site/one-vesicle” hypothesis (Del
Castillo and Katz, 1954; Korn et al., 1981). However, at most
synapses the PSP amplitude histogram displays no clear peaks.
Therefore, more sophisticated methods have been introduced so
that quantal analysis can be applied more generally. Clements
and Silver developed the variance-mean (V-M) analysis of
synaptic transmission, also calledmultiple probability fluctuation

analysis, MPFA (Clements and Silver, 2000). The variance and
mean are calculated from the fluctuation of PSP amplitudes
in response to a presynaptic AP. A fundamental feature of
this method is that it explores the fluctuation of synaptic

responses at different p (induced by altering the extracellular
Ca2+ concentration) (Figure 4C), therefore it can provide more
information about the underlying synaptic mechanisms because
of multiple points in V-M plot. Assuming that the vesicle
release follows a binomial model, a plot of the variance vs. the
mean of synaptic responses at different p displays a parabolic
relationship. From the V-M plot, the values for N, p, and q can be

estimated (Figure 4D). Scheuss and Neher further extended the
application of the V-M analysis to the synaptic response during

a train of APs (Scheuss and Neher, 2001). Instead of changing
p by altering extracellular [Ca2+], this method allows to sample
from a dynamic p, i.e., the PSP amplitude variation during AP
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FIGURE 4 | Uncovering quantal properties of synaptic transmission between identified cortical neurons. (A) Top, the single AP evoked by a brief suprathreshold

depolarizing current pulse. Bottom, 14 individual EPSPs (gray traces), the mean of the 44 EPSP successes (black solid line), and the mean of the 279 failures (black

dashed line) recorded at −72mV in 1mM [Ca2+] and 5mM [Mg2+]. (B) Histogram of EPSP amplitude and scaled baseline noise (dashed line). For EPSP recordings

from this specific synaptic connection, the failure rate (f) is 0.84 and the coefficient of variation of the quantal EPSP amplitude (CVQ) is 0.41 which was calculated from

the background-subtracted variance. (C) Mean EPSPs recorded in different extracellular Ca2+ and Mg2+ concentrations at a postsynaptic membrane potential of

−73mV. (D) Relationship between the variance of the EPSP amplitude which was corrected for background variance and mean EPSP amplitude for a synaptically

coupled L4-L2/3 cell pair. Each data point shows a different release probability condition. Error bars indicate the theoretical standard error in the estimate of the

variance. Solid line shows the fit to a multinomial model with q = 0.09mV, NF = 5.25, and α = 19,800. (E) A brief train of 20 APs (top) in a presynaptic CA1 pyramidal

cell evoke facilitating EPSCs in an oriens-alveus interneuron. Individual EPSCs are shown in gray and the averaged EPSC in black. (F) Relationship between the

variance values of the postsynaptic responses which were calculated at each AP of the train and the mean current. A multinomial quantal model was fitted to the data,

resulting in an NF(MPFA) of 4, and a q of 24.7 pA. (A–D) have been adapted from Silver et al. (2003) with permission and (E,F) from Biro et al. (2005) with permission.

train in the presynaptic neuron (Figures 4E,F). In this way, the
experimental protocol is simplified because prolonged recordings
are not necessary. Therefore, this approach ismore readily usable.

In addition to the aforementioned univesicular release
hypothesis (UVR), a multivesicular release hypothesis (MVR)
has been proposed, where several vesicles are released at a single

synaptic site. Recent studies in the neocortex of rodents and
humans have supplied controversial evidence regarding uni-
and multivesicular release. It has been reported that synaptic
connections between layer 4 excitatory neurons and layer
2/3 pyramidal cells in the rat barrel cortex exhibit the UVR
(Silver et al., 2003). In contrast, synaptic connections between
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layer 4 excitatory neurons exhibit either UVR in the primary
visual cortex or MVR in the primary somatosensory cortex
of mice (Huang et al., 2010). Synaptic connections between
layer 5B pyramidal cells also exhibit MVR in the developing
and adult somatosensory cortex of rats (Rollenhagen et al.,
2018; Barros-Zulaica et al., 2019). Depending on the species,
synaptic connections between pyramidal cells and interneurons
exhibit either UVR in the rat neocortex or MVR in the human
neocortex (Molnar et al., 2016). Therefore, transmitter release at
different synaptic connections can be mediated by UVR or MVR
depending on the synapse type, the cortical area and the species.

STUDYING THE REGULATION OF
SYNAPTIC TRANSMISSION BY
NEUROMODULATORS

Given that synaptic transmission between individual neuron
pairs is the basic unit in information processing in the brain, it is
crucial to understand how synaptic transmission is dynamically
regulated by neuromodulators. Neuromodulator receptors are
ubiquitously distributed in the brain and can be found on
both dendrites and axon terminals of excitatory and inhibitory
neurons (Marder, 2012). Most neuromodulators, such as
acetylcholine, norepinephrine, dopamine, serotonin etc., are
synthesized by a relatively small population of neurons located
in several distinct nuclei in the basal forebrain, midbrain or
brainstem. These neuromodulator-releasing neurons have long-
range axonal afferents that project to many cortical areas. Once
released from their axon terminals, neuromodulators can diffuse
over substantial distances and act on receptors remote from
their release sites (a mechanism termed “volume transmission”)
(Zoli et al., 1999; Agnati et al., 2010). Other neuromodulators,
such as adenosine and different types of neuropeptides (e.g.,
VIP, Neuropeptide Y), are locally synthesized and released by
neurons and/or glial cells during neuronal network activity.
Synaptic transmission between synaptically coupled neurons
are constantly under the influence of neuromodulators. The
effect of these neuromodulators can change the function and
dynamics of cortical microcircuits in a differential way because
the receptor types and their distribution may differ in pre- and
postsynaptic neurons. The effects of neuromodulators can be
studied by bath-application of the specific neuromodulator, their
agonists and antagonists. In this way, the exact concentration
of applied compounds at equilibrium is known and hence
pharmacological approaches, including dose-response
relationships can be applied easily to dissect the molecular
mechanisms of neuromodulator effects. Bath-application of
neuromodulators at different concentrations might correspond
to physiological concentrations of neuromodulatory release
at different brain states. For example, in the neocortex, the
acetylcholine concentration changes dramatically during sleep,
wakefulness, arousal and sustained attention (Himmelheber
et al., 2000; Teles-Grilo Ruivo et al., 2017). It is worth noting
that the concentration of bath-applied agonists needs to be
carefully adjusted in the physiologically meaningful range, e.g.,
1–10µM for acetylcholine. Excessive concentrations (>100µM

for acetylcholine) should be avoided in order not to distort
the quantification of the synaptic effects of neuromodulators.
The effects of neuromodulators can also be studied by local
puff-application of the neuromodulator itself or one of its
agonists/antagonists; however, with this method the actual
concentration of the neuromodulator is not known. In this way
transient components of the response can be detected; this is not
possible when using bath-application. By combining local puff-
application of neuromodulator agonists with bath-application
of neuromodulator antagonists, the subtypes of neuromodulator
receptors can be determined pharmacologically. Recently,
optogenetic stimulation of specific types of neuromodulator
afferents (e.g., cholinergic afferents from the basal forebrain)
has been applied to detect synaptic responses to the endogenous
release of neuromodulators (Hedrick and Waters, 2015; Urban-
Ciecko et al., 2018). Below, acetylcholine and adenosine are
chosen as examples to illustrate the regulation of synaptic
transmission by neuromodulators.

Acetylcholine (ACh) plays an important role in arousal,
attention and vigilance. In the neocortex, ACh is released mainly
from axonal boutons of neurons located in the nucleus basalis
of Meynert in the basal forebrain. Cholinergic afferent terminals
are distributed at high density throughout the cortical layers
(Kalmbach et al., 2012). It has been proposed that most of
the intra-cortical ACh is not released at synaptic contacts but
rather diffusely into the extracellular space, i.e., by volume
transmission. However, some evidence suggests that phasic
release exists ubiquitously in the cortical cholinergic system
(Sarter et al., 2009). The effects of ACh in the neocortex
are mediated by two types of ACh receptors, the G-protein-
coupled muscarinic AChRs (mAChRs) and the nicotinic AChR
ion channels (nAChRs). It has been shown that ACh affects
excitatory synaptic transmission by causing either a reduction
or an increase in the release probability. An ACh-induced
reduction in release probability has been shown through
paired recordings of excitatory L4-L4 (Figures 5A,B) and L4-
L2/3 (Figures 5C,D) synaptic connections in the rat barrel
cortex (Eggermann and Feldmeyer, 2009) which exhibited a
decreased EPSP amplitude and increased failure rate, variability
and PPR. M4 mAChRs located in presynaptic L4 axonal
terminals caused the suppression of synaptic release probably by
decreasing the open probability of presynaptic Ca2+ channels.
Such a suppressive effect of ACh was also found in excitatory
connections established by L2/3 and L5 pyramidal neurons
(Levy et al., 2006, 2008). In layer 6, the ACh effect on
synaptic transmission depends on the presynaptic neuron
type: ACh decreases the synaptic release probability of L6
cortico-cortical pyramidal neurons to other excitatory and
inhibitory neurons via activating the presynaptically located M4

mAChRs. In contrast, ACh enhances the synaptic transmission
originating from L6A cortico-thalamic pyramidal neurons via
activating the α4/β2 nAChRs located at presynaptic axonal
terminals (Yang et al., 2019). A similar nicotinic enhancement
effect of ACh was found both in vitro and in vivo at
synaptic connections between L2 pyramidal neurons and
somatostatin-expressing interneurons (Urban-Ciecko et al.,
2018).
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FIGURE 5 | Studying the regulation of synaptic transmission by neuromodulators. (A) Paired recordings from a synaptic connection between two L4 spiny neurons.

Bath-applied acetylcholine (ACh, 100µM) reduces the EPSP amplitude (coral trace). (B) Time course of the ACh effect on the first EPSP amplitude [open boxes,

control; filled circles, in the presence of 1µM tropicamide (TRO), a selective M4 muscarinic acetylcholine receptor antagonist]. (C) Paired recordings from a synaptic

connection between a L4 spiny neuron and a L2/3 pyramidal cell. A train of five APs elicited in a presynaptic L4 spiny neuron (bottom) evoked EPSPs in a postsynaptic

L2/3 pyramidal cell (top) in the control condition (black) and in the presence of 100µM ACh (coral). (D) Summary of the effects in L4-to-L2/3 connections (n = 4) in the

control condition (black open box) and in the presence of 100µM ACh (coral filled box). Left, the EPSP amplitude. Middle, the coefficient of variation (C.V.). Right, the

paired-pulse ratio. Open circles are values for individual connections, connecting lines indicate the direction of change. Error bars indicate the standard deviation. (E)

Paired recordings from synaptic connections formed between L4 spiny neurons, between L4 spiny neurons and L4 interneurons, and between L4 interneurons show

that adenosine (ADO) differentially modulate the excitatory and inhibitory synaptic transmission. Overlay of average EPSPs recorded under three recording conditions:

control (black), 100µM adenosine (purple), and 100µM adenosine plus 5µM 8-cyclopentyltheophylline (CPT), a specific adenosine A1 receptor antagonist (gray) are

shown for four connection types. (A–D) have been adapted from Eggermann and Feldmeyer (2009) with permission and (E) from Qi et al. (2017) with permission.

In contrast to ACh, adenosine is an endogenous
neuromodulator which is generated during high neuronal
activity, e.g., by the intra- and extracellular metabolism of
adenosine triphosphate. Adenosine has been suggested to play
an important role in the sleep homeostasis (Porkka-Heiskanen
et al., 1997, 2000). Recently, the effect of adenosine on synaptic

transmission has been assessed using paired recordings (Kerr
et al., 2013; Qi et al., 2017). Adenosine induces a suppression of
the neurotransmitter release probability at intralaminar L2/3,
L4, and L5 and translaminar L4-L2/3 excitatory connections.
The adenosine effect is most likely mediated by A1 adenosine
receptors located in presynaptic axonal terminals; they induce a
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reduction in the open probability of presynaptic Ca2+ channels
involved in triggering the release of neurotransmitters. This
effect is already apparent at low endogenous concentrations of
adenosine (∼1µM) which are tonically released (Qi et al., 2017).
In contrast, adenosine has a much smaller effect on inhibitory
synaptic transmission onto excitatory neurons: here, only the
IPSP time course is altered due to activation of postsynaptically
located A1 adenosine receptors. There is no effect on inhibitory
synaptic transmission onto interneurons (Figure 5E).

In addition to ACh and adenosine, a synapse type-dependent
neuromodulation has also been found for other neuromodulators
such as dopamine. Paired recordings from pyramidal cells and
interneurons in ferret prefrontal cortex showed that dopamine
depresses excitatory transmission between two pyramidal cells
through D1 receptor actions at a presynaptic site (Gao et al.,
2001) but has no effect on excitatory transmission between
pyramidal cells and fast-spiking (FS) interneurons (Gao and
Goldman-Rakic, 2003). In addition, dopamine differentially
modulates inhibition of pyramidal cells from FS vs. non-
FS interneurons. Dopamine decreases release of GABA onto
pyramidal cells through effects on presynaptic D1 receptors
on axonal terminals of FS interneurons, whereas inhibition
from non-FS interneurons onto pyramidal cells is enhanced,
presumably owing to a postsynaptic effect (Gao et al., 2003).
Similarly, differential modulatory effects of dopamine on
different types of synaptic transmission in the medial prefrontal
cortex (Dembrow et al., 2010; Dembrow and Johnston, 2014)
and neostriatum (Tecuapetla et al., 2007, 2009) have also been
found. In summary, the effect of neuromodulators on synaptic
transmission depends on the synapse type which is determined
by both presynaptic and postsynaptic neuronal identities.

OUTLOOK

Paired recordings from synaptically coupled excitatory and/or
inhibitory neurons are a powerful technique to investigate the
structure-function relationship of synaptic microcircuits at the
subcellular, cellular, and network level. It allows the simultaneous
electrophysiological, morphological and/or molecular analysis of
both the pre- and postsynaptic neurons in synaptic connections.
This is as yet difficult if not impossible for other techniques using
extracellular (electrical or optical) stimulation of presynaptic
neurons, see e.g., Crochet et al. (2005) and Pala and Petersen
(2018). In addition, long-time stable paired recordings permit
an in-depth characterization of a defined unitary synaptic
connection using, e.g., the quantal analysis. Furthermore,
agonist and/or antagonist can be applied readily to neurons
in slice preparations (and even spatially focussed), which
allows studying the effects of neuromodulators on the synaptic
transmission. However, to appreciate the insight obtained from
paired recordings in brain slices, one needs to be aware of
several shortcomings.

A major disadvantage of slice preparations is the often
substantial truncation of axonal branches so that only parts
of the axon are reserved in the 300–400 µm-thick brain slice.
For some pyramidal cell types, the degree of truncation could

be up to 90% when taking into account projections to other
cortical or subcortical areas (Stepanyants et al., 2009; Narayanan
et al., 2015). Therefore, the slice preparation is not suited for the
study of synaptic connections between neurons whose cell bodies
are more than >300µm in the lateral direction. For studying
synaptic connections between neurons with inter-soma distances
>500µm within the same column, e.g., translaminar L2/3-to-
L5 or L4-to-L6 connections (Reyes and Sakmann, 1999; Qi and
Feldmeyer, 2016), paired recordings in the slice preparation is
still usable when the slicing procedure is optimized. However,
local axonal projections, in particular those of interneurons are
generally recovered with a relatively low degree of truncation
(∼10% or less) (Koelbl et al., 2015; Emmenegger et al., 2018)
because of their limited horizontal and vertically projections (see
Movie S1). Synaptic connections involving these neuron types
can therefore be characterized with high accuracy and reliability
and their connectivity estimates are largely correct. Except for
these local synaptic connections, absolute values for connectivity
ratios between two neuron types obtained in slice preparations
are highly questionable, in particular for those with large inter-
somatic distances such as translaminar or non-local intralaminar
synaptic connections. This problem is even more prominent
when slicing procedures have not been optimized for a given
synaptic connection at a defined developmental stage. Another
problem for connectivity estimates is that distal synaptic contacts,
e.g., those on the apical tuft dendrites of pyramidal neurons,
may escape detection (Williams and Stuart, 2002, 2003). When
recorded at the soma the amplitude of their synaptic response
is very small and therefore likely to be obscured by electrical
noise. However, this type of problem is not confined to the paired
recording approach but could also arise in other techniques
adopted to study the synaptic connectivity.

In recent years light-induced activation of neurons by photo-
release of caged glutamate (Callaway and Katz, 1993) or by
activation of channelrhodopsin-2 channels expressed in different
neuronal compartments, e.g., soma, dendrites (Boyden et al.,
2005), or axonal terminals (Petreanu et al., 2007) has been
used to investigate neuronal microcircuits on a larger scale.
However, it is so far not possible to identify the detailed structural
properties of presynaptic neurons with these optical approaches.
Furthermore, the number and location of synaptic contacts for
a synaptic connection cannot be identified. Paired recordings,
however, allow a detailed characterization of both pre- and
postsynaptic neurons and their synaptic contacts in a synaptic
connection. This is of paramount importance because many
studies have demonstrated that both GABAergic interneurons
and glutamatergic excitatory neurons in the neocortex are
highly diverse with respect to their morphologies and synaptic
properties. Therefore, the identification of both pre- and
postsynaptic neurons is necessary for a deep characterization of a
synaptic connection.

To enhance the success rate of recording synaptic connections
in local neuronal microcircuits, the number of simultaneously
recorded neurons (n) has been increased from dual (2), triple
(3), quadruple (4), octuple (8) up to 12 (Thomson et al., 2002;
Song et al., 2005; Kampa et al., 2006; Brown and Hestrin, 2009;
Lefort et al., 2009; Yu et al., 2009; Ko et al., 2011; Perin et al.,

Frontiers in Synaptic Neuroscience | www.frontiersin.org 12 February 2020 | Volume 12 | Article 5

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Qi et al. Paired Recordings From Cortical Neurons

2011; Rieubland et al., 2014; Jiang et al., 2015; Guzman et al.,
2016; Peng et al., 2017; Hemberger et al., 2019). Multiple (n
> 2) recordings may yield more synaptic connections because
the number of potential synaptic connections (m) established
between n neurons increases steeply with increasing n: m = n
× (n−1). However, multiple recordings especially when n > 4
have several shortcomings compared to paired recordings. First,
the mechanical stability will decrease the more electrodes are
placed together in the recordings chamber while the electrical
noise of the recording will increase substantially because of
capacitive coupling (electrical “cross-talk”) in multichannel
electrophysiology experiments. This is particularly problematic
when the two recorded signals are not of similar amplitude
as is the case in paired recordings (presynaptic AP vs. small
postsynaptic response) (Nelson et al., 2017). It is likely to
decrease the probability of successful, high resolution recordings
from a large number of neurons. In addition, the quality of
the measured signals (i.e., the signal to-noise ratio of the
recordings) will also deteriorate so that the detection of small
PSPs (10–20 µV) is severely compromised (Seeman et al., 2018).
Furthermore, the time for recording from an individual synaptic
connections will be relatively short, i.e., the characterization of
this connection limited because of the restricted overall total
recording time for all possible synaptic connections. Therefore,
a detailed functional characterization of the properties of unitary
PSPs (e.g., quantal analysis) is very difficult. Moreover, when
biocyin is added to pipettes during multiple recordings, many
neurons will be stained in the same slice after the histochemical
processing, which makes a reliable and complete reconstruction
of neuronalmorphology (including both the dendritic and axonal
branches) extremely complicated if not impossible, especially
when more than two interneurons with a dense axonal plexus
are involved. Finally, the estimate of connectivity ratios for
all connection types using multiple recordings in the same
slice preparation is likely to be unreliable in particular for
translaminar or non-local intralaminar synaptic connections
because the slicing procedure is optimal only for a few specific
connection types (mainly the local ones) but not for the
majority. This problem could be overcome in paired recordings
through optimizing the slicing procedure for specific types of
synaptic connections. Despite of aforementioned shortcomings
that exist so far, multiple recordings show great promise
for future high-throughput analysis of cortical microcircuits
in rodent and more precious human brains (Peng et al.,
2019).

Not only cortical inhibitory but also excitatory neurons show
a high diversity (Zeng and Sanes, 2017). To directly target specific
neuronal subpopulations, paired recordings have been conducted
in acute brain slices from transgenic animals where one specific

or several populations of neurons are labeled by fluorescent
groups (e.g., GFP, YFP, tdTomato etc.) as in transgenic, knock-
in animals or via viral infection (Pfeffer et al., 2013; Seeman
et al., 2018). Paired recordings can be combined easily with
other cutting-edge techniques, such as optogenetics, Ca2+

imaging, activity-dependent immediate early gene expression
and pseudorabies virus retrograde tracing etc. (Wickersham et al.,
2007; Yassin et al., 2010; Ko et al., 2011; Jouhanneau et al., 2014;
Lee et al., 2014; Cossell et al., 2015; Morgenstern et al., 2016).
More recently, the paired recording approach has also been
adopted to record from synaptically coupled neurons in the intact
brain of anesthetized mice (Jouhanneau et al., 2015, 2018). Paired
recordings have also been used to investigate the functional and
structural properties of synapses in surgically dissected human
brain slices (Molnar et al., 2008; Testa-Silva et al., 2010, 2014;
Boldog et al., 2018; Seeman et al., 2018). For human tissue, paired
recording in slices is still the only method of choice to study the
functional neuronal microcircuits in preparations from human
brains. Therefore, paired recordings will remain an important
approach for studying neuronal microcircuits in different brain
regions and species.
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