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Dendritic spines are the morphological basis of excitatory synapses in the cortex

and their size and shape correlates with functional synaptic properties. Recent

experiments show that spines exhibit large shape fluctuations that are not related to

activity-dependent plasticity but nonetheless might influence memory storage at their

synapses. To investigate the determinants of such spontaneous fluctuations, we propose

a mathematical model for the dynamics of the spine shape and analyze it in 2D—related

to experimental microscopic imagery—and in 3D. We show that the spine shape is

governed by a local imbalance between membrane tension and the expansive force

from actin bundles that originates from discrete actin polymerization foci. Experiments

have shown that only few such polymerization foci co-exist at any time in a spine, each

having limited life time. The model shows that the momentarily existing set of such foci

pushes the membrane along certain directions until foci are replaced and other directions

may now be affected. We explore these relations in depth and use our model to predict

shape and temporal characteristics of spines from the different biophysical parameters

involved in actin polymerization. Approximating the model by a single recursive equation

we finally demonstrate that the temporal evolution of the number of active foci is sufficient

to predict the size of the model-spines. Thus, our model provides the first platform to

study the relation between molecular and morphological properties of the spine with a

high degree of biophysical detail.

Keywords: dendritic spines, actin, simulations, model, spontaneous shape change

1. INTRODUCTION

Dendritic spines are small protrusions from neural dendrites, which form the post-synaptic part of
most excitatory synapses in the cortex (Yuste, 2010). One of the central paradigms of neuroscience
is that synapses store memories by changing their transmission efficacies during learning (Martin
et al., 2000) and it has been shown that synaptic transmission efficacy correlates with size and
shape of the spines. This has been mostly studied using the volume of the spine head (Matsuzaki
et al., 2001, 2004; Zhou et al., 2004; Hotulainen and Hoogenraad, 2010, more details in Fauth and
Tetzlaff, 2016) providing evidence for a link between spine-morphological and synaptic-functional
properties. However, it recently became clear that most of the dynamic properties of changing
spine volumes emerge from spontaneous spine specific processes that are not determined by
the activity of the pre- or post-synaptic neuron (Dunaevsky et al., 1999; Yasumatsu et al., 2008;
Dvorkin and Ziv, 2016). As such spontaneous fluctuations could affect memory functions due to
the above described link (Mongillo et al., 2017), a thorough understanding of their characteristics
and underlying processes is necessary. Experiments imaging the shape of dendritic spines can
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provide snapshots at distinct time points, but mathematical
models are needed to bridge between these time points and to
understand shape fluctuations and their properties. However,
so far only phenomenological models have been proposed
(Yasumatsu et al., 2008; Loewenstein et al., 2011; Statman et al.,
2014; Hartmann et al., 2015) that describe fluctuations coarsely
on a timescale of days. Here, we take a different approach by
modeling the fast actin dynamics underlying shape fluctuations.
This approach also allows us to explore the influence of the
molecular and mechanical processes involved and to make
predictions on the fluctuations when their properties vary.

The spine shape is determined by its cytoskeleton, the main
component of which is actin. Actin is a globular protein (G-
actin), which can assemble into filamentous polymers (F-actin).
These polymers undergo a continuous treadmilling process
(Figure 1A; see e.g., Pollard et al., 2000; Mogilner and Edelstein-
Keshet, 2002; Bennett et al., 2011 for details): G-actin with
bound ATP is added preferentially to the barbed (+) ends of
the filament (see for example added monomer marked with P in
Figure 1A), while at the pointed (−) end older actin monomers
of the filament are mostly depolymerized. Thus, actin filaments
are polar structures with one end growing more rapidly than
the other. This asymmetry between barbed and pointed end is

FIGURE 1 | Components of the proposed spine fluctuation model. (A) Schematic picture of actin filaments in a polymerization foci at successive time-points.

Additional to polymerization of new actin monomers at the barbed ends, other events can occur in actin filaments, such as: branching the barbed ends by inserting

branching protein Arp2/3, capping barbed ends with capping proteins, uncapping minus end and depolymerizing uncapped minus ends. These events are indicated

by an arrow and the corresponding first letter (see glossary above the panels). (B) Our model for spine fluctuation assumes that the shape of the membrane is

determined by the membrane forces Fmem resisting bending and stretching and the forces generated by actin polymerization Ffil at a few foci. (C) Actin filaments at

the foci are considered to extent laterally to the membrane. Hence, force is proportional to the number of barbed ends at the focus and attenuated by a spatial kernel

W(x). The membrane is simulated by a discrete mesh (here depicted by dots) that moves every time-step proportional to imbalance of the acting forces (black

membrane → gray membrane). (D) The dynamics of actin in each focus are abstracted to a Monte Carlo model describing the state of the barbed and pointed ends

of any filament. We depict these state representations for the time course shown in (A). During simulations, the transitions between different states happen according

to the processes described in (A) with defined rates. See main text for details.

further strengthened when the ATP bound at actin filaments
hydrolyzes to ADP, which promotes disassembling of the pointed
ends by severing proteins, such as cofilin (D in Figure 1A),
when the pointed end is in an uncapped state (U in Figure 1A).
Following this, the disassembled cofilin-ADP-actin dissociates to
cofilin and anADP-actinmonomere and finally, profilin catalyzes
the exchange of ADP to ATP and the resulting ATP-actin is
again available for the polymerization process at the barbed end
(omitted in Figure 1A). Additional to this treadmilling process,
complexes, such as Arp2/3 can induce branching of a filament
whose two daughter-filaments have uncapped barbed ends (B in
Figure 1A) and capped minus ends. Moreover, barbed ends can
become unable to polymerize G-actin due to capping proteins (C
in Figure 1A).

Although the treadmilling process in dendritic spines occurs
at different velocities, two distinctive pools of F-actin can be
identified (Honkura et al., 2008): The static pool, which has a
slow treadmilling velocity and is localized at the base of the spine
head whilst the dynamic pool treadmills faster and is found at
the tip of the spine head. Honkura et al. (2008) suggest that these
pools have different functions: the static pool gives stability to the
base of the spine, while the dynamic pool causes spine expansion
due to the higher rate of actin polymerization resulting from
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the fast treadmilling velocity. Therefore, in this paper, we will
focus on the dynamic pool. Interestingly, the fast treadmilling in
this pool is not occurring uniformly distributed over the whole
spine, but at discrete foci of actin polymerization (Frost et al.,
2010). There are usually only a handful of those foci in one spine,
which are well-separated from each other and can be identified
by their increased polymerization rate. Because polymerization
has been identified as the molecular mechanism responsible
for spine shape fluctuations (Fischer et al., 1998), it can be
assumed that these foci generate the main expansive force that
underlies shape fluctuations, which are usually inhomogeneous
and asymmetric. Although the role of actin in synaptogenesis and
synaptic function has been thoroughly described (Cingolani and
Goda, 2008; Hotulainen et al., 2009; Korobova and Svitkina, 2010;
Basu and Lamprecht, 2018; Borovac et al., 2018), the exact role of
actin spontaneous protrusions is still unknown, albeit found in
the living mouse brain (Berning et al., 2012) and across different
neuron types (Dunaevsky et al., 1999).

Mathematical models that link actin activity to such
asymmetric spine fluctuations are, however, missing so far.
Although models of the actin treadmilling process have been
derived (Mogilner and Edelstein-Keshet, 2002) and adapted to
the conditions in the dendritic spine (Bennett et al., 2011), they
have not been connected to spine shape. To evaluate how shape
is influenced by actin dynamics, one has to consider not only
the forces created by the filaments, but also the counteracting
forces from the lipid membrane that encloses the spine. Such
models for force generation by actin filaments (Mogilner and
Oster, 1996) and their interaction with the membrane have been
derived and successfully applied to the movement of bacteria,
cell motility (Mogilner and Oster, 2003; Rubinstein et al., 2009;
Craig et al., 2015; for a review see Mogilner, 2006), and to
explain dendritic spine maturation (Miermans et al., 2017). Yet,
most of these models describe the dynamics of the cell shape
based on density descriptions of the actin filaments or assume
a homogeneous distribution of F-actin. However, considering
the comparably small numbers of filaments within the spine
(compare Korobova and Svitkina, 2010), a density description is
not applicable. The homogeneity assumption, in turn, entails very
regular and symmetric spine shapes, which are not observed in
experiment (e.g., Fischer et al., 1998) and also are not consistent
with the existence of actin polymerization foci.

Here, we present a model that considers heterogeneous actin
dynamics caused by foci of actin polymerization. We use the
forces generated by their treadmilling activity together with the
counteracting forces from the membrane and the membrane-
mediated coupling to other foci to derive a model of spine
membrane shape fluctuations in 2D. Moreover, we extend the
model to 3D to have a more realistic description of the spine
and show that shape fluctuations behave similarly to those in 2D,
suggesting that the 2D model can be used as a computationally
more efficient surrogate. We show that the properties of spine
fluctuations are strongly influenced by the dynamics of filament
assembly constituting the determinants of the force generation
by actin. The central finding of this study is that spine shape
fluctuations can be fully explained by the effect that the small
number of polymerization foci leads to a discretization of the

outwards pushing-force direction, while their limited life time
determines the temporal properties of these fluctuations. Thus,
we can also show that spine area evolution can be predicted by
the number of polymerization foci. Thus, this model provides the
required biophysically detailed basis for future investigations of
spine shape changes induced by synaptic plasticity.

2. MATERIALS AND METHODS

2.1. Model
Based on the findings of Frost et al. (2010), we assume that
the spine shape is determined by a small number of distinct
foci of actin polymerization (gray filaments in Figure 1B), for
which the processes of treadmilling, branching, and capping
of the filaments are modeled individually (see section 2.1.2).
As a consequence, each focus can have multiple barbed
ends generating forces that push the membrane outward (see
section 2.1.4, red arrows in Figures 1B,C). These forces concur
with the inward directed forces generated by the membrane’s
resistance against deformation (see section 2.1.5, green arrows
in Figures 1B,C). If these forces are locally unbalanced, the
membrane moves giving rise to shape fluctuations (transition
from black to gray membrane shape in Figure 1C). To simulate
this interaction of membrane shape and forces, we use discrete
time-steps and the finite elements method. In particular, the
membrane is represented by a mesh of points (or vertices)
for which geometrical properties, forces, and movements are
calculated (see Supplementary Material).

2.1.1. Membrane Mesh Initialization and

Morphological Constraints
As stated above, we represent the membrane enclosing the spine
by a mesh of vertices k ∈ {1, 2, ...nvertices} described by their (two-
dimensional) position vectors xk = (xk, yk), 1 ≤ k ≤ n. Upon
initialization, a polygonal approximation for a circle with radius
rs and centered at the origin of the x-y plane is created. As in this
study we focus on the shape fluctuations of mature spines, we
implement two major morphological constraints:

On the one hand, the spine neck of mature spines typically
contains heavily interlinked actin bundles which are rather stable
and have a much slower treadmilling velocity than those in the
spine tips (Okamoto et al., 2004). Along this line, the spine
neck width is largely stable on the here considered timescale of
hours (Tønnesen et al., 2014). Therefore, we fix the location of
mesh-points at the neck throughout the whole simulation. We
establish those fixed mesh points during the mesh initialization
by selecting all points x = (x, y) with y ≤ hneck and fixing them
to (x, hneck). Here we define hneck as the value of y where x = rneck
and y < 0.

On the other hand, the movement of the post-synaptic
density (PSD) is constrained as it is heavily interlinked with
the presynaptic site. Also, the PSD size on unstimulated spines
is conserved over the timescale of hours (Meyer et al., 2014).
Therefore, we fix the mesh-points (x, y) with y ≥ hPSD to
(x, hPSD), where hPSD is the value of y where x = rPSD and
y > 0. Hence, the resulting initial shape resembles a flat disk.
A schematic depiction of this process is given in Figure S1. Note
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that because the number of synaptic receptors is correlated with
PSD size, the assumption of fixed PSD size implies no change in
synaptic current.

2.1.2. Actin Dynamics at Individual Foci
We adapt the stochastic model proposed by Bennett et al. (2011)
for F-actin dynamics of the actin dynamic pool in the spine head.
Because we are concerned about the spontaneous spine shape
fluctuations, we only simulate the treadmilling process of Bennett
et al. (2011) in which G-actin is polymerized at the uncapped
barbed ends in every time-step of length 1t . In addition, the
following processes can occur at each actin filament:

• Uncapped barbed ends branch by including an Arp2/3
molecule and give rise to a new filament with a probability
1tγbranch(t).

• Uncapped barbed ends are capped by a capping protein
with a probability 1tγcap. Because polymerization is not
possible when a barbed end is capped, such barbed end does
not generate force. As uncapping occurs very seldom, these
filaments are eliminated from the simulation.

• Capped minus ends are uncapped with a probability 1tγuncap.
• Uncapped minus ends are severed with a probability 1tγsever ,

which leads to the removal of the respective filament.

Note that these events are necessary so that the length and
concentration of F-actin are within a biologically plausible range.
Otherwise, filaments will grow and live indefinitely. In Bennett
et al. (2011), the branching rate for a filament γbranch(t) depends
on the total number of barbed ends B(t) in the spine at time t,
γbranch(t) = γ̂branch(t)/B(t). However, in our model we assume
that there are discrete foci of actin polymerization. Hence,
we adapt the branching rate to be proportional to the local
number of barbed ends Bi at each focus i, thus γ i

branch
(t) =

γ̂branch(t)/B
i(t).

Moreover, actin dynamics in our model are embedded in a
2Dmembrane that approximates the dendritic spinemorphology
instead of one straight line used by Bennett et al. (2011) in which
the barbed ends at the membrane branch freely at a rate γ̂branch(t)
proportional to a constant treadmilling velocity vT(t). However,
the cell membrane imposes a resistance to filament assembly
and thus, decreases this rate: if the membrane resistance is high,
then the filament will be less likely to branch. In our model,
this membrane resistance depends on the local spine geometry.
Hence, following Mogilner and Edelstein-Keshet (2002) we
assume that the branching rate depends on the treadmilling
velocity vT(t) = φkonδa where δ is the length of an actin
monomer, kon the barbed end monomer assembly rate, and a the
concentration profilin-ATP-actin available for polymerization.
As we are notmodeling plasticity related changes in this study, we
can consider a as a constant (see Supplementary Material). This
free polymerization velocity is attenuated due to a counteracting
membrane force according to the Brownian ratchet theory
(Mogilner and Oster, 1996; Footer et al., 2007), which takes into
account the absolute temperature T, the Boltzmann’s constant kB
and the force Fimem(t) working against polymerization which is
generated by the membrane at the ith focus center. Thus, the

branching probability at each focus is given by

γ i
branch(t) = φkonδa exp

(

−||Fimem(t)||δ
kBTBi(t)

)

1

Bi(t)
. (1)

Note that this membrane-force-dependency of the branching rate
generates a feedback between the number of barbed ends and
membrane shape.

In this study, we are not interested in the geometrical
configuration of the actin filaments but rather in the amount
of force generated by actin polymerization. Therefore, we
characterize F-actin by the states (capped/uncapped) of its barbed
end (normally uncapped) and pointed end (normally capped
or bound to a Arp2/3 complex) instead of explicitly simulate
each filament and how it grows in space as in Bennett et al.
(2011). Such filament states change when a branching, capping
or severing event occur in the model described above, i.e., when a
random number drawn for this filament falls below the indicated
probability. We iterate through all filaments with uncapped
barbed ends within the active actin polymerization foci and the
above processes in the indicated order. Afterwards, the remaining
uncapped barbed ends in each polymerization focus i are counted
and their number Bi is used to calculate the expansive force
exerted by that focus (see section 2.1.4). Figure 1D shows an
exemplary temporal evolution of the active filaments in one of
the polymerization foci, where all of these processes occur. The
rate values are stated in Table 1.

2.1.3. Foci Generation and Removal
Note that the activity of a focus is determined by its uncapped
barbed ends, which can only emerge from other uncapped barbed
ends due to branching; hence, foci naturally become inactive and
removed as soon as they have no uncapped barbed ends left.
Therefore, mechanisms for generation of new foci are necessary.
Frost et al. (2010) observed that the discrete actin polymerization
foci locate mostly at the spine tip but also through out the spine.
The majority of their F-actin is shorter than 200 nm and reaches
a peak density within 300 nm of the PSD center. Moreover, Frost
et al. (2010) noted that the dynamics of F-actin at these foci must
be regulated near the membrane due that the branching protein
Arp2/3 concentrates within 100 nmof the spinemembrane whilst
the filament severing protein cofilin concentrates within 200 nm
of the membrane. Furthermore, data from Rácz and Weinberg
(2008) show that Arp2/3 complex is mainly distributed in a
doughnut-shaped domain within the spine that could represent
a zone where F-actin branches and generates the forces necessary
for membrane protrusion. Taken all together, we assume that
actin polymerization foci must initiate near to the membrane and
PSD so that filaments conserve their small size and co-locate with
the branching proteins.

Therefore, in our model the nucleation of a new actin
polymerization focus i is implemented in two steps: First,
a two dimensional nucleation position denoted by a vector
Xi
n (see Figure 1C) is selected in the following way: To

simultaneously account for the above geometrical restrictions
and the asymmetrical form of the spine head, we generate a set
of 1,000 uniformly distributed candidate points inside the spine.
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TABLE 1 | Model parameter values.

Symbol Unit Definition Value References

1t s Length of the time-step 1/8 Frost et al., 2010 (fitted as in Mogilner and Edelstein-Keshet, 2002)

δs µm Target length of and edge 0.03 Fitted for numerical accuracy (see text)

rs µm Initial spine radius 0.5 Tønnesen et al., 2014; Miermans et al., 2017

rneck µm Neck radius 0.0995 Tønnesen et al., 2014; Miermans et al., 2017

rPSD µm PSD radius 0.3571 Meyer et al., 2014

nf0 1 Initial number of nucleation points 4 Frost et al., 2010

γcap s−1 Barbed-end capping rate 1 Bennett et al., 2011

γuncap s−1 Uncapping rate for—ends 1/30 Bennett et al., 2011

γsever s−1 Depolymerization/Severing rate of—ends 1 Bennett et al., 2011

γf s−1 Nucleation rate of new actin focus of activity 0.1 Basu and Lamprecht, 2018, see text

a µM Concentration of profilin-ATP-actin at steady state 3.8 Bennett et al., 2011, see Supplementary Material

φ µm−2 Proportionality constant 75 –

kon µM−1s−1 Barbed-end monomer assembly rate constant 11.6 Mogilner and Edelstein-Keshet, 2002

δ µm Length of an actin monomer 0.0022 Mogilner and Edelstein-Keshet, 2002

kBT pNµm Thermal energy 0.0041 Mogilner and Edelstein-Keshet, 2002

P pNµm−2 Difference between internal and external pressure 85.7143 Young-Laplace law see Deserno, 2015

τ pNµm−1 Surface tension 15 Pontes et al., 2013

κ pNµm Bending modulus 0.18 Pontes et al., 2013

α pN Strength of filament influence 3.8 Miermans et al., 2017

σ 1 Extend of filament influence 0.3 –

ζ µm2s−1pN−1 Strength of force update 0.002 –

λ µm Nucleation distance parameter 0.025 –

From this candidate set, we remove all points that are not within
a distance of 0.1µm from the membrane and that are within
0.1µm from the PSD. Then, one of the remaining ncand points

j is selected with probability pj = e−dj/λ

(

ncand
∑

l=1

e−dl/λ

)−1

, which

depends on its distance from the PSD dj via a scale parameter λ.
For λ → 0+ nucleation near to the PSD is favored whereas for
λ → ∞ the distance to the PSD has no influence.

Second, the primary nucleation direction is randomly selected
as the vector pointing from Xi

n to one of the membrane points
that are within 0.1µm. The position of the selected membrane
vertex k is referred to as the center of the focus Xi

c : = xk. As the
foci are relatively short-lived, we assume that this direction does
not change over the lifetime of the focus.

2.1.4. Actin-Generated Force
As in Mogilner and Oster (2003), we take the propulsive
force generated by actin polymerization to be proportional
to the number of uncapped barbed ends within each focus.
Here, such force is assumed to be acting at the center of an
actin polymerization focus Xi

c and to extend laterally to the
nearby vertices. When a branching event occurs, a new filament
extends at an angle of 70◦ from the branched filament. Here,
instead of explicitly modeling each filament, as in Bennett et al.
(2011), we assume that a continuously changing amount of
short-lived filaments with uncapped barbed ends at each focus
generates a force that distributes symmetrically. Hence, the force
contributions can be summed into a Gaussian Kernel around the

focus center, given by

W(x) = α

σ
√
2π

e
− x2

2σ2 , (2)

with an amplitude α and standard deviation σ . Then, the
resulting force vector at the vertex k (located at xk) is proportional
to the number of barbed ends in the focus and is given by

Ffil(x
k) =

∑

i∈1,2,..nf
W(||xk − Xi

c||)Bi(t)Vi,k, (3)

with nf being the number of currently active actin foci with

B barbed ends and Vi,k = xk − Xi
n

||xk − Xi
n||

the normalized direction

vector of the force from focus i. In this way, the force exerted by
actin is spatially extended proportionally to the number of barbed
ends at each focus.

2.1.5. Membrane Force
Biological lipid membranes, such as the one confining the
spine head, are composed of single molecules that self-assemble
into stable fluid films of macroscopic lateral scales with lateral
dimensions greatly exceeding their thickness (Deserno, 2015).
Therefore, modeling approaches consider themembranes as two-
dimensional elastic continuum (Guckenberger and Gekle, 2017)
(described by a manifold Ŵ) in which any deviation of the
equilibrium shape increases the membrane energy and induces
response forces that return the membrane to its equilibrium
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(Krüger, 2012). Generally, the bending contributions to this
energy are described by the Helfrich free energy (Helfrich, 1973),
for which constrains of size and total surface conservation are
often added. Hence, the membrane energy is given by

Emem = P� + τS+ 2κ

∫

Ŵ

H2ds (4)

where the membrane’s physical properties are characterized by
the difference between internal and external pressure P, the line
tension (or surface tension in 3D) τ , and the bending modulus
κ . � is the area enclosed by the membrane (or volume in 3D),
S is the boundary length (or surface area) and H is the mean
curvature. The membrane force vector Fmem(x

k) at vertex k is
given by

Fmem(x
k) = −∂Emem

∂xk
. (5)

On our discrete mesh, the geometrical properties �, S, and
H, and hence, the resulting force can be approximated for
each vertex by taking its next neighbors in the mesh into
account (see Supplementary Material). Note, however, that the
approximations of the geometrical properties are only valid when
the mesh is dense enough. Therefore, when the vertices move too
far apart from each other, we refine our mesh (remeshing, see
section 2.2).

Together with the fixed spine neck and PSD vertices, the
membrane force gives rise to a characteristic “resting shape,”
to which the spine converges in the absence of other forces
to minimize area, length and curvature (see e.g., Figure 4A for
resting shapes resulting for different PSD-sizes).

2.1.6. Membrane Movement
In the presence of both actin and membrane generated forces,
the spine shape is determined by a balance between them. If
the forces are unbalanced at one of the mesh vertices, they will
generate a movement of that vertex and deformation of the
membrane. For simplicity, we assume that the motion of the
vertex k is proportional to the net force with a proportionality
constant ζ . Thus, the displacement of vertex k in time is given by

dxk

dt
= ς

(

Fmem(x
k)+ Ffil(x

k)
)

. (6)

This equation is implemented in discrete time-steps using a
classical Runge-Kutta algorithm, in which we keep Fk

fil
constant

during the whole calculation step. However, the interaction
between neighboring membrane points can still give rise to
diverging oscillations. Therefore, if the membrane displacement
in a single time-step exceeds a certain displacement tolerance
(dtol = 0.0001µm), we split this time-step in two intervals and
calculate the displacement of all membrane vertices in each of
them until the displacement is smaller than the tolerance.

2.2. Simulation
2.2.1. Individual Foci
First, a single actin polymerization focus is simulated using
the Monte Carlo model (section 2.1.2) with fixed ||Fmem|| in

Equation (1). The focus is initialized with different numbers of
barbed ends (between 1 and 20) and simulated until all barbed
ends have vanished. Hereby, the number of barbed ends in each
time-step as well as the lifetime of the focus are tracked. In order
to compare the outcomes of these simulations with theoretical
expectations, we investigate the dynamics of the barbed ends
in a deterministic framework where we take B as a continuous
quantity. For this, we derive the rate equations assuming that
a focus has B filaments with barbed ends that classify into two
types according to the state of its minus end. Here, mc denotes
the filaments with capped andmu filaments with uncappedminus
end, and the deterministic dynamics of B in a focus is given by

dmu

dt
= γuncapmc − γsevermu − γcapmu,

dmc

dt
= γ̂branch(t)− γuncapmc − γcapmc,

B = mu +mc. (7)

As γ̂branch(t) in turn depends on B, these equations are
highly non-linear and have been solved for their stationary
state numerically. Note that the steady state of such
deterministic system should match the mean value of our
stochastic simulations.

2.2.2. 2D Model
Simulations are performed in MATLAB on a desktop computer.
Table 1 contains the parameters used in the simulations, unless
stated otherwise. We first initialize the mesh by tracing a
circle with equidistant vertices of δs, then the vertices of PSD
(neck) are fixed as described in section 2.1.1. Subsequently, we
simulate an initialization period in which the mesh points xk

move considering only the force generated by the membrane
(see Figure S1). In such simulation, the force generated by
the membrane is computed for each vertex (following to the
calculations given in the Supplementary Material). Then the
vertices move according to Equation (6), except those belonging
to the PSD or neck that we fixed when generating the initial
shape. During this initialization period the spine shape shrinks
until it reaches a stable configuration, which we refer to as the
resting shape.

As discussed above, the finite elements approximations of
the geometrical properties are only valid when the mesh is
dense enough. If the vertices move too far apart from each
other these properties are lost, and therefore, the mesh has to
be redefined. Thus, we perform remeshing at each time-step
by calculating recursively the distance between two neighboring
vertices and remove one if the distance between them is below
dmin = (3/5)δs or add a new vertex in between if the
distance is above dmax = (4/3)δs. Hence, for a mesh with

vertices {x1, . . . , xk, xk+1, . . . , xnvertices}, if
∥

∥

∥
xk, xk+1

∥

∥

∥
> dmax

then xnew = (xk + xk+1)/2 and the new mesh is given by
{x1, . . . , xk, xnew, xk+1, . . . , xnvertices}. Note that the order of the
mesh persists despite the addition or deletion of vertices that
changes the size of the mesh nvertices.

After finding the resting shape configuration of the
dendritic spine, we include actin dynamics and forces in
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the simulation (sections 2.1.2 and 2.1.4). For this, initially, nf0
actin polymerization foci are inserted as described in section
2.1.3 and the generation of new foci is enabled. Note, that the
indicated simulation times start after the initialization phase.
During the simulations (Figure 3) we track the spine shape by
saving the mesh regularly as well as the spine area, which is
recorded every time-step. To assess the influence of different
model parameters (Figures 4–10), we perform one 90 min
simulation for each parameter value and determine the mean,
standard deviation and auto-correlation function of the spine
area fluctuations. Moreover, we evaluate the distribution over the
assumed values of the number of foci and barbed ends and the
mean lifetime of polymerization foci. We then perform fifteen
15-min-simulations with different initial polymerization foci to
obtain statistics for different initial conditions, estimate their
uncertainty, and test whether values vary significantly.

2.2.3. 3D Model
Simulations in 3D are performed as in 2D, albeit with some
changes in the analytical calculations for the membrane force.
For example, the curvature calculation of a vertex in 2D only
considers that and the next adjacent vertices, whilst in 3D
this calculation is a function of the six neighbors of that
vertex (see Supplementary Material formore details). Therefore,
simulations in 3D are more complex.

In the 3D case, the mesh is initialized using the MATLAB
function icosphere.m (Ward, 2015) which generates a unit
geodesic sphere that we multiply by rs. Additionally, in 3D the
mesh has to be isotropic and conserve the number of neighbors

of each vertex at each time-step to maintain the geometrical
properties of the finite elements approximation. Thus, remeshing
is implemented using the MATLAB function remeshing.m (Helf,
2015), that is based on OpenMesh (Botsch et al., 2002; Computer
Graphics Group, 2018). The target edge length is set to δs
and three iterations are performed each time. To compare the
3D shapes with the 2D simulations we do a two-dimensional
projection of the three-dimensional mesh. For this, we project all
points to the x-z-plane and trace a boundary around the projected
points using the MATLAB function boundary.m. Likewise, we
project to the y-z-plane to compare the two 2D projections of the
same spine.

3. RESULTS

3.1. Individual Polymerization Foci Have
Finite Lifetime Depending on the
Membrane Force
In order to understand the highly non-linear interaction between
actin dynamics and membrane force, we first simulated the
model for a single actin polymerization focus with a constant
counteracting membrane force Fmem in Equation (1). We then
tracked the time course of the number of barbed ends in our
Monte-Carlo model (Figure 2A). During these simulations the
number of barbed ends changes on the scale of 100 ms, meaning
that there is a fast turnover of barbed end, which justifies our
assumption of force kernel (section 2.1.4). Moreover, the number
of barbed ends fluctuates around a mean value (dashed lines in

FIGURE 2 | Actin polymerization focus. (A) Evolution of barbed ends over time at a single actin polymerization focus. Blue solid line corresponds to ||Fmem|| = 0pN

and orange solid line to ||Fmem|| = 3pN. Dotted lines indicate theoretical mean values calculated using the deterministic model for barbed ends in Equation 7. Colors

correspond to the different values of ||Fmem||. Arrow indicates the lifetime of the focus corresponding to the blue curve. (B) Occurrence frequency (x-axis) of each

number of barbed ends (y-axis) over all time-steps (of length 1t ) in (A). Colors as in (A). (C) Mean and standard deviations of mean number of barbed ends B over 50

simulations each for different values of ||Fmem||. (D) Same for focus lifetimes. Blue and red dots mark the force values used in (A,B). (E) Mean lifetime over mean

number of barbed ends for 50 simulations varying force values.
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Figure 2A) on a timescale of seconds. This mean value depends
on the counteracting force: If Fmem increases, the mean number
of barbed ends decreases (blue and orange dashed lines in
Figures 2A–C). Importantly, the foci have non-zero probability
to transit to B = 0. At that point no barbed end can be generated
by branching anymore and the focus is dynamically dead. As a
result all foci have limited lifetime. We also tracked this lifetime
at different counteracting forces and find that it decreases when
increasing the force (see Figure 2D). We finally evaluated the
relation between the mean number of foci and the lifetime for
varying forces and find that foci with more barbed ends live
longer (Figure 2E), as expected from the above reasoning.

The dependency of the mean number of barbed ends
(Figure 2C) and the lifetime of a focus (Figure 2D) on the
membrane force can be explained by the fact that increasing
Fmem decreases the branching rate (see Equation 1). Accordingly,
the mean number of barbed ends is smaller and the distribution
is shifted toward smaller numbers of B (Figures 2B,C). This
increases the probability of being at B = 1, and, in turn, the
probability to reach zero barbed ends. Consequently, the lifetime
of these actin polymerization foci decreases when increasing the
counteracting force. This relation between membrane force and
focus lifetime indicates that the spine shape, which determines
the membrane force, influences magnitude and the temporal
properties of the shape fluctuations.

3.2. Shape-Fluctuations of the Spine
In the next step, we studied the interplay between the membrane
and actin forces. For this, we simulated the full model with
multiple actin polymerization foci distributed within a spine head
(Figures 3A,B). We initialized the model with four of such foci
that push the spine membrane outward. However, as the lifetimes
of foci (Figures 3C,G) are much shorter than the lifetime of
spines, which can persist over months (Holtmaat et al., 2005),
we introduced a focus creation mechanism (i.e., nucleation of
new actin polymerization foci, see section 2.1.3) where new foci
are created at the beginning of each time-step at a rate γf . As
it is not clear from experimental data where such nucleations
happen, we also introduced a distance parameter λ which allows
us to scale continuously between focus nucleation everywhere
within the spine and nucleation close to the PSD. The influence
of these parameters on the emerging shape fluctuations will
be investigated in detail later (see section 3.3.5). Without this
nucleation mechanism, all foci quickly reach zero barbed ends
(in <9 s in Figure 3G) and the spine returns to the resting shape
(gray line in Figure 3B). Moreover, spine area fluctuations also
cease (gray line in Figure 3D).

Figures 3A,B (blue line) show the resulting shape dynamics
of the spine in our model. The proposed nucleation mechanism
together with the short lifetimes of individual foci allows the
spine to have different asymmetric shapes over time, which
are qualitative similar to the experiments (Fischer et al., 1998).
Note that during the depicted time interval, several foci have
died out and several others have been nucleated (Figure 3E).
Moreover, the mean number of barbed ends at these foci is
continuously fluctuating (Figure 3F). In general, we observed
that spine area increases when several foci are active at the same

time or when a focus is long-lived (Figures 3D,E). Thus, shape
and area fluctuations of a spine are the result of the transiently
active foci working against the membrane. In particular, they are
generated by the stochasticity of the molecular dynamics of actin
filament assembly, which eventually leads to the die-out of foci.
Therefore, it can be expected that the molecular dynamics as well
as themechanics through which they interact with themembrane
will have a major impact on the emerging fluctuations.

3.3. Influence of Model Parameters
In order to better understand how spine size fluctuations are
affected by the dynamics of actin and the interplay between forces
generated by actin polymerization foci and spine membrane,
we investigated the effect of varying multiple model parameters.
For this, we used the parameters in Table 1 and increased or
decreased the value of one selected parameter at a time.

3.3.1. Size of the Post-synaptic Density
Experimental studies show that there is a strong correlation
between spine volume and PSD size (Arellano et al., 2007; Meyer
et al., 2014). Therefore, we tested if this correlation holds in the
presence of spontaneous fluctuations by changing the size of the
PSD (rPSD, see section 2.1.1), which affected the size, and thus,
also the area of the resting spine shape. For example, when the
radius of the PSD was enlarged to rPSD = 0.4330, the distance
between PSD and neck was also affected, which altered the resting
shape of the spine (Figures 4A,C, black line). Accordingly, the
mean spine area, evaluated over 90 min simulations of individual
spines, increased with the PSD size (Figure 4G, pale bars). To test
whether this tendency is significant, we performed a Welch-test
comparing the mean spine areas in fifteen 15 min simulations for
each PSD size (Figure 4G, full colored bars). We found that the
small PSD size (set to rPSD = 0.2179) gives rise to significantly
smaller mean areas.

Figures 4D,F shows that area fluctuations behave differently
when the PSD size varies. To quantitatively describe such
fluctuations, we used the standard deviation and autocorrelation
functions. A small standard deviation indicates that spine area
fluctuations tend to be close to the mean, whilst high values
indicate larger area fluctuations. The autocorrelation function
shows the area correlation with itself at different time points.
Therefore, if the autocorrelation function decays fast, then the
area fluctuation is correlated to itself only for a short time,
indicating that the area fluctuations occurmore rapidly. Thus, the
area standard deviation accounts for the size of area fluctuations
and the slope of the autocorrelation function for their speed.
Using these functions, we find that the medium PSD-size spine
from the 90 min simulation shows a smaller area standard
deviation than the 90 min simulations of spines with different
PSD-size (Figure 4H, pale bars), multiple simulations show that
the area standard deviations are similar. We found that the area
of spines with large PSD-size is temporally longer correlated
to itself, indicating that the fluctuations occur more slowly
(Figure 4I). One reason for this might be that the membrane
forces typically decrease for larger spines such that the decay
back to the rest shape happens more slowly. Interestingly, the
autocorrelation for spines with medium PSD size decays even
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FIGURE 3 | Shape fluctuations of the spine. (A) Snapshots of the spine head shape with (blue line) and without (gray line) nucleation of new actin polymerization focus

taken every 15 s. Asterisk correspond to the initial nucleation positions Xn and blue squares indicate nucleation positions of the active foci at the indicated time. (B)

Same as (A) but taken every 60 s. (C) Occurrence frequency of foci lifetime over all time-steps (of length 1t ) in the simulation with nucleation. (D–F) Evolution of the

spine area (D), number of foci (E), and mean number of barbed ends (F) over time. Gray and blue lines represent the simulation without and with nucleation of new

foci, respectively. (G) Evolution of the number of barbed ends in each actin focus (color-coded) in the simulation without nucleation of new foci.

faster than that for small PSD size. This may be due to the fact
that the actin polymerization foci in spines with smaller PSD
tend to last longer (Figure 4L). Taken all together, the correlation
between the spine and PSD size find in experiments hold in our
model with spontaneous shape fluctuations. Interestingly, the
size of these fluctuations was similar despite PSD size due that
the number and lifetime of the actin polymerization foci were not
significantly affected by the PSD size.

The 90 min simulation of the spine with a large PSD-
size also exhibits a period (between min 60 and 70) where
the spine area fluctuations cease (blue bar in Figure 4F, spine

shapes in Figure 4C.II). Although new foci are nucleated during
this period, changes in spine shape are minor because new
foci randomly nucleate nearby each other (locations marked
by circles in Figure 4C.II). Moreover, the curvature near these
foci is large, such that the force generated by the membrane is
higher decreasing the branching rate; and hence, the lifetime of
those foci.

3.3.2. Branching Rate Amplitude φ

The branching rate of actin polymerization foci γbranch in
Equation (1) is scaled by an amplitude φ. Three simulations with
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FIGURE 4 | Spines with varying PSD size. Spine shapes (gray lines, plotted every 15 s) over 90 min of simulation for (A) small, (B) medium, and (C) large sized PSDs.

Black line corresponds to the resting shape. (C.II) Shapes of the large PSD-size spine between min 60 and 70 (color-coded from dark to light blue). Black open circles

correspond to the nucleation points. (D–F) Evolution of the spine area over time. (G) Temporal mean over area in 90 min simulation (pale bars, errors are standard

deviations over 50 bootstraps) and average of temporal means over fifteen 15 min simulations (saturated color, errors are standard deviations of the mean) over

different PSD sizes. The p-value for significant Welch-tests is indicated. (H) Same as (G) but for standard deviation of the area fluctuations. (I) Autocorrelation

functions for the area fluctuations in the 90 min simulations. (J) Histogram of the mean number of barbed ends at the polymerization foci at each time-step of the

90 min simulation. (K) Histogram of the active actin polymerization foci. (L) Mean lifetime of a focus, color-coded as in (G).

different values of φ over 90 min, as well as the fifteen 15 min
repetitions with different initial conditions, show that an increase
of φ enlarges the mean spine head area significantly (compare
orange and blue bars in Figure 5D, p-value for significantWelch-
tests indicated). The 90 min simulations (Figures 5A,B) show
that a decrease of φ induces a small decrease in spine mean area
(light bars in Figure 5D). However, the fifteen 15 min simulation
show a larger decrease (full bars in Figure 5D). This relation
between the mean area and φ can be explained by the fact that
spines with a larger value of φ also have more barbed ends at
the actin polymerization foci (Figure 5G). Due to this increased
number of barbed ends, the polymerization foci of those spines
tend to last longer (Figure 5I). As a consequence, there are more
actin polymerization foci in spines with a larger branching rate
amplitude (Figure 5H), which push the membrane outwards and
increase the area. A similar picture emerges for the magnitude of
the fluctuations measured by the standard deviation (Figure 5E)
of the area as well as for the timescale of the autocorrelation
decay (Figure 5F). Especially for large values of φ we observe a
significantly larger standard deviation (Figure 5E) and a slower
autocorrelation decay (Figure 5F). This fits well with the idea that
the polymerization foci are more long lived; and therefore, push
the membrane outward for longer times leading to larger area
deviations. We conclude that an increase of φ enlarges the mean,

the standard deviation and the autocorrelation decay timescale
of the spine area fluctuations due to an increase of the lifetime
of actin polymerization foci. However, a decrease in φ by the
samemagnitude does not affect the spine area to the same degree,
which highlights that the underlying processes are subject to
non-linear interactions.

3.3.3. Lateral Extent of Actin Filament σ

Besides the number of barbed ends at the actin polymerization
foci, the actin generated forces and the resulting deformations
of the membrane are also determined by the lateral spatial
extent of actin filaments (σ in Equation 2). When the lateral
extent is small, the width of the bump pushing the membrane
forward generated by the focus is narrow. The shape of this bump
has a direct effect on the geometrical properties of the spine
membrane around the focus. For example, a narrow protrusion
has a greater curvature, which produces an increase in ||Fmem||
working against this deformation. This entails a decrease in
the branching rate as well as in the mean number of barbed
ends (Figure 6G) and leads to less active foci with a shorter
lifetime (Figures 6H,I). This shorter lifetime implies that foci
push the membrane for shorter time such that the variations
in the spine area become smaller (Figure 6E) and decay faster
(Figure 6F).
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FIGURE 5 | Varying the branching rate amplitude φ. (A–C) Evolution of the spine head area over time for different values of φ: (A) φ = 65, (B) φ = 75, and (C) φ = 85.

(D) Temporal mean of the spine head area. Light bars correspond to values from single 90 min simulations (standard deviations obtained from 50-fold bootstrap). Full

colored bars and errors correspond to the mean and standard deviation over fifteen 15 min simulations. The p-value for significant Welch-tests is indicated. (E)

Standard deviation of the spine head area over time. (F) Autocorrelation functions for the area fluctuations in the 90 min simulations. (G) Relative frequency of the

mean number of barbed ends per focus over all simulation time-steps from (A–C). (H) Relative frequency of the number of actin polymerization foci. (I) Mean lifetime

of a focus.

FIGURE 6 | Varying the filament lateral extent σ . (A–C) Evolution of the spine head area over time for different values of σ : (A) σ = 0.2, (B) σ = 0.3, and (C) σ = 0.4.

(D) Temporal mean of the spine head area. Light bars correspond to values from single 90 min simulations (standard deviations obtained from 50-fold bootstrap). Full

colored bars and errors correspond to the mean and standard deviation over fifteen 15 min simulations. The p-value for significant Welch-tests is indicated. (E)

Standard deviation of the spine head area over time. (F) Autocorrelation functions for the area fluctuations in the 90 min simulations. (G) Relative frequency of the mean

number of barbed ends per focus over all simulation time-steps in (A–C). (H) Relative frequency of the number of actin polymerization foci. (I) Mean lifetime of a focus.

3.3.4. Movement Speed ζ

The conversion factor between force imbalance and movement
ζ can be expected to have a strong influence on the magnitude
of spine shape change per time-step. Judging from the dynamics
shown in Figures 7A–C, the area fluctuations also seem to be
much faster when increasing ζ . However, this is mostly due to an

increase in the amplitude of the fluctuations (Figure 7E) whereas
the timescale of the autocorrelation decay remains relatively
constant. Note that an increase of ζ enhances spine fluctuation
extent, and it also affects the membrane geometrical properties,
the membrane force and, hence, the barbed end branching rate.
This leads to less barbed ends (Figure 7G) and a reduction of the
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FIGURE 7 | Varying the movement speed ζ . (A–C) Evolution of the spine head area over time for different values of ζ : (A) ζ = 0.001, (B) ζ = 0.002, and (C)

ζ = 0.003. (D) Temporal mean of the spine head area. Light bars correspond to values from single 90 min simulations (standard deviations obtained from 50-fold

bootstrap). Full colored bars and errors correspond to the mean and standard deviation over fifteen 15 min simulations. (E) Standard deviation of the spine head area

over time. The p-value for significant Welch-tests is indicated. (F) Autocorrelation functions for the area fluctuations in the 90 min simulations. (G) Relative frequency of

the mean number of barbed ends per focus over all simulation time-steps in (A–C). (H) Relative frequency of the number of actin polymerization foci. (I) Mean lifetime

of a focus.

foci lifetime (Figure 7I). Still, in sum, spines with different values
of ζ have similar mean area over time (Figure 7D).

3.3.5. Nucleation Rate γf and Location λ

Additionally to the parameters that influence force generation
and translation to movement, the parameters of the nucleation
mechanism proposed in section 3.2 can have a strong influence.
First, we vary the nucleation rate γf at an intermediate value
of the PSD distance scaling parameter λ. As expected, an
increase in γf raises the number of actin polymerization foci
and the spine area over time (Figure 8H). This leads to a
significant increase in the mean area and a trend toward
increasing standard deviations (Figures 8D,E). Although these
foci have slightly shorter lifetimes (Figure 8I), the decay of
the autocorrelation remains at the same timescale (Figure 8F).
The main reason for the reduction of foci lifetime is the
feedback between the number of barbed ends and the branching
rate in Equation (1). If B increases then γbranch decreases
ensuring a limited number of barbed ends at the actin
polymerization foci.

The location for the polymerization of new foci depends on
the distance from the PSD scaled by parameter λ, as stated in
section 2.1.3. For larger values of λ, the nucleation points are
more likely to be located far from the PSD and the spine mean
area is larger due an increase in the lifetime of the actin foci
(Figures 9E–I). We speculate that this can be explained by the
fact that for small λ all foci nucleate close to the PSD. Hence,
all foci push outward the same small fraction of the membrane,
which thereby assumes a strong curvature. This, in turn, leads
to a strong counteracting force and hence a shorter lifetime of
the foci.

In conclusion, we find that geometrical constraints as well as
parameters related to actin filament assembly, force generation
and focus nucleation have a strong influence on the emerging
fluctuation. We summarized the most prominent effects in
Table 2.

3.3.6. Influence of Parameter Variation on Spine Area
After evaluating the influence of individual parameters, we
investigated whether there are general relations between the
evaluated quantities that are preserved over all these variations.
To investigate this, we used the fifteen 15 min simulations
for each parameter variation and plotted the values of mean
area, focus lifetime and mean number of foci for each of these
individual simulations against each other. On the one hand,
we find that spines with greater mean area over time, have
larger mean foci lifetimes (Figure 10A). However, spines with
smaller mean area can also have long-lasting foci when the
force generated by the membrane is not affecting the branching
rate strongly. For example, when the focus nucleation rate γf
is high or the movement speed ζ is small. On the other hand,
there is a positive correlation between the mean number of
actin polymerization foci and spine mean area (Figure 10B),
which has also been found in experimental data from Frost
et al. (2010). These results imply that the macroscopic spine area
fluctuation is heavily relying on the stochastic dynamics of the
actin polymerization foci and filament dynamics therein.

3.4. Correlation of the Number of Foci and
Spine Area Fluctuations
Although the spine shape is determined by a complex interplay
between forces emerging from actin activity and the geometrical

Frontiers in Synaptic Neuroscience | www.frontiersin.org 12 March 2020 | Volume 12 | Article 9

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Bonilla-Quintana et al. Shape of Synaptic Spines

FIGURE 8 | Varying the focus nucleation rate γf . (A–C) Evolution of the spine head area over time for different values of γf : (A) γf = 0.075, (B) γf = 0.100, and (C)

γf = 0.125. (D) Temporal mean of the spine head area. Light bars correspond to values from single 90 min simulations (standard deviations obtained from 50-fold

bootstrap). Full colored bars and errors correspond to the mean and standard deviation over fifteen 15 min simulations. The p-value for significant Welch-tests is

indicated. (E) Standard deviation of the spine head area over time. (F) Autocorrelation functions for the area fluctuations in the 90 min simulations. (G) Relative

frequency of the mean number of barbed ends per focus over all simulation time-steps in (A–C). (H) Relative frequency of the number of actin polymerization foci.

(I) Mean lifetime of a focus.

FIGURE 9 | Varying the nucleation distance parameter λ. (A–C) Evolution of the spine head area over time for different values of λ: (A) λ = 0.005, (B) λ = 0.025, and

(C) λ = 0.125. (D) Temporal mean of the spine head area. Light bars correspond to values from single 90 min simulations (standard deviations obtained from 50-fold

bootstrap). Full colored bars and errors correspond to the mean and standard deviation over fifteen 15 min simulations. (E) Standard deviation of the spine head area

over time. The p-value for significant Welch-tests is indicated. (F) Autocorrelation functions for the area fluctuations in the 90 min simulations. (G) Relative frequency of

the mean number of barbed ends per focus over all simulation time-steps in (A–C). (H) Relative frequency of the number of actin polymerization foci. (I) Mean lifetime

of a focus.

properties of the membrane, the above described correlations
indicate that there is a strong link between spine area and
its polymerization foci. Therefore, we investigated whether the
number of polymerization foci at each time-step can be used to
predict not only the mean but also the time-course of the spine

head size, which is commonly measured in experiments. As the
expanding force in our model comes from the actin foci, we first
tested whether there is a relationship between number of actin
polymerization foci and the spine head area. To quantify this,
we tracked the area and the number of foci throughout a 90 min
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simulation of a spine (Figure 11A) and evaluated the correlation
between these quantities. We found a significant correlation,
but with a very small correlation coefficient (Figure 11B). When
examining the time courses in Figure 11A, we see that when
there is no focus the area shrinks to a state close to the resting
shape area and a slight increase in area when the number of
foci increases. Hence, we investigated the relationship between
the actin foci and spine area changes 1area (Figure 11C) and
found that there is indeed a significant correlation with a
high correlation coefficient between these quantities. Thus, we
constructed a simple model that predicts the area of a spine using
only the number of foci at a given time-step. Apart from the
area change being proportional to the number of foci, we also
included mean retrieval that drives the area back to the area of
the Helfrich resting shape As. In particular, the estimator A for
the spine area A at each time-step tj is recursively calculated by
the following model

A(tj) = A(tj−1)− 8
(

A(tj−1)− As

)

+mnf (tj)+ b, (8)

where the term mnf (tj) + b accounts for the change of area
that scales linearly with the number of actin polymerization
foci nf at time tj and 8 represents a decay rate to the resting

TABLE 2 | Summary table.

Increase in Mean area Standard deviation Foci lifetime

PSD-size ⇑ – –

Branching rate amplitude φ ⇑ ⇑ ⇑
Lateral extent of F-actin σ ⇑ ⇑ ⇑
Movement speed ζ – ⇑ ⇓
Nucleation rate γf ⇑ ↑ ↓
Nucleation location λ ⇑ ↑ –

Here ↑ (↓) denotes a tendency to increase (decrease) the mean area, standard deviation
of the area or foci lifetime whilst ⇑ (⇓) indicates a significant increase (decrease).

area As, which we extracted from our simulations. The model
parameters m, b and 8 from Equation (8) and the initial area
A(t0) were fitted using the fit.m function in MATLAB with the
non-linear least square method and the area trace of Figure 11A
from min 1 to 60 (Figure 11D, fit results: root mean square
error (RMSE) = 0.0562, A(t0) = 0.7507,m = 0.002734, b =
−0.0004135,8 = 0.002734). Hereby, the obtained values for b
andm are close to a linear fit to the relation between the number
of foci and the change of the area (orange line in Figure 11C;
1area = m′nf + b′, with m′ = 0.00197 and b′ = −0.000570).

Also, and A(t0) is close to the actual starting value A(t0) =
0.7239. Given that our area estimator is recursive and could
accumulate errors over time, A performs well, even for a time
interval that it was not fitted to (Figure 11D from min 60 to
90, RMSE = 0.0652). Moreover, it performed well when applied
to a different simulation with the same parameters (Figure 11F,
RMSE = 0.0822). Note that the estimator error increases in
periods with large areas (Figures 11E,G), which may be due
to the fact that the relation between foci and the change in
area may be non-linear (compare Figure 11C). Nevertheless, we
deduce that area fluctuations can be predicted very well from the
number of actin polymerization foci. Because the fitted model
performed well with different simulations, we can conclude that
the behavior of the spine area over time is similar regardless of
the stochasticity of the model. Thus, already such a relatively
simple model gives a good description of the area dynamics. This
again underlines a strong link between themicroscopic stochastic
dynamics at the actin polymerization foci and the macroscopic
area fluctuations. Note, however, that this simple model cannot
be used as a surrogate for the complete model proposed in this
paper, as it relies on knowledge about the number of foci, which
is, in turn, only obtainable by stimulating the full non-linear
interaction between actin and membrane geometry.

3.5. Model Extension to 3D
So far we have only considered spine shapes in 2D, but in order to
verify if the dynamics of actin polymerization foci influence spine

FIGURE 10 | Summary of the parameter variation simulations. (A) Mean focus lifetime over mean spine area for different parameter variations. Each dot represents

one simulation with a parameter variation corresponding to its color. Standard values of the parameters are reported in Table 1. For every variation of a parameter 15

simulations of 15 min were performed. cc denotes the linear correlation coefficient and pval is the p-value for testing the hypothesis of no correlation against the

alternative hypothesis of a non-zero correlation, using Pearson’s Linear correlation coefficient. (B) Same for mean number of foci over mean area.
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FIGURE 11 | Temporal evolution of spine area can be predicted by number of actin polymerization foci. (A) Evolution of number of actin polymerization foci (orange

line) and spine area (blue line). (B) Spine area over the number of actin polymerization foci for each time-step of the simulation. Color saturation indicates overlay of

data points; darker regions contain more data observations. Orange line is a linear fit to the data, cc denotes the linear correlation coefficient and pval is the p-value for

testing the hypothesis of no correlation against the alternative hypothesis of a non-zero correlation, using Pearson’s Linear Correlation Coefficient. (C) Same for the

difference in spine area over the number of actin polymerization foci. Yellow line is a linear function using the parameters fitted to Equation (8) in (D). (D) Simulated area

(blue line) and its approximation by estimator A (green line, Equation 8) over time. Red shaded zone depicts the training data set for fitting the estimator parameters.

(E) Difference between simulated and predicted area in (D). (F) Simulated area (blue line) corresponding to the plot in Figure 5B and its approximation (green line)

over time. (G) Difference between the simulated and predicted area in (F).

shape fluctuations in real three-dimensional spines in a similar
way, we extended our model to 3D. In this extended model, actin
dynamics are preserved but the membrane mesh, all positions
and forces are adapted to 3D (see Supplementary Material).
Note that the calculation of geometrical properties in 3D is
more complex, as more neighboring vertices must be considered.
Furthermore, the 3Dmesh contains far more vertices than the 2D
mesh. Thus, the 3D simulations are computationally expensive
and rigorous statistical analysis, as conducted for the 2D model
above, is not feasible.

However, we wanted to check whether the qualitative behavior
of the 3D and the 2D simulation are comparable. For this, we
assumed that the 3D spine shape is observed as in a microscope
and projected to a two-dimensional plane. Hereby, we performed
projections from multiple sides, in particular to the y-z- and the
x-z-plane (Figures 12B–C,G–H, respectively). Deformations in
the 3D model where the acting forces are not in the projection
plane will appear to be effectively slowed down in 2D projections.
To compensate for this, the movement speed of the 2D model
has been slowed down by adjusting the movement speed ζ .
Moreover, multiple foci in the 3D model may be projected
onto the same 2D bump such that it appears as if the foci
are more long-lived. To compensate for this, an adjustment in
the branching rate amplitude φ allows the 2D model to have

more barbed ends such that the foci last longer. After adjusting
the parameters for these geometrical properties, 3D simulations
exhibit qualitatively similar fluctuations to 2D simulations.
Hence, we assume that the parameter dependencies and relations
between molecular and geometric dynamics discussed above
apply similarly to the three-dimensional model.

4. DISCUSSION

We proposed a model for dendritic spine shape fluctuations
based on actin polymerization foci. We used the model to
simulate the dynamics of a single focus as well as the interaction
of multiple foci within a spine in 2D and 3D and analyzed
the resulting fluctuations of the spine head size. We find that
the fluctuations from the projected 3D model are similar to
the area fluctuations from the 2D model. Variations of the
model parameters revealed that the properties of the molecular
processes and mechanics have strong influence on the emergent
shape fluctuations. Along these lines, we showed that the changes
of the spine head size could be very well-predicted from only
knowing how many foci were active over time. Importantly,
we showed that the lifetime and hence, the number of foci
result from the highly non-linear interactions between actin
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FIGURE 12 | Comparison between 3D and 2D model. (A) 3D simulation snapshots at different time points. Yellow dots indicate the PSD. (B,C) Projection of the 3D

simulation to two 2D views. Black dots are the corresponding 3D vertices and lines are a fitted boundary around these points. (D) Time evolution of volume (3D

simulation) and area (2D simulation and 2D projections). (E) Number of actin foci during the 2D/3D simulation. (F) Mean number of barbed ends. (G,H) Spine shapes

emerging from the 2D projections of the 3D model in time intervals of 10 s. Black lines represent the initial shape and green and purple lines correspond to the

snapshots in (B,C), respectively. (I) Spine shapes emerging from 2D simulation of the model. Parameters for 3D and 2D simulations are in Table 1 except that in 3D

δs = 0.06, ζ = 0.004, and φ = 30, and in 2D ζ = 0.0015.

and membrane forces revealing the importance of embedding
actin dynamics on a realistic membrane. Thus, our model
provides a platform to study the relation between molecular and
morphological properties of the spine.

The proposed model is, to our knowledge, the first to
reproduce the rapid asymmetric shape fluctuations observed in
experiments. Although the functional role of these fluctuations
is an open question, there is the hypothesis that the dynamic
actin pool generating the fluctuations is necessary to maintain

the spine volume by a dynamic equilibrium (Honkura et al.,
2008), and that the dynamic F-actin distribution in the discrete
polymerization foci optimizes the spine reaction to plasticity-
related events (Frost et al., 2010). In the future, the here presented
model can be extended to test this hypothesis.

In our model the asymmetric shape fluctuations result from
local imbalances between forces generated by membrane
deformation and forces generated by the active actin
polymerization foci. Strikingly, these foci have a limited
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lifetime due to the stochastic nature of the actin filament
dynamics. Thereby, the stochasticity of actin dynamics is also
transferred onto the spine shape and size, which is evidenced
by the fact that the number of active foci can predict the spine
area (Figures 10, 11). Our model shows that the focus lifetime
is inversely proportional to the force generated by the spine
membrane (Figure 2), which is caused by a feedback between
this force and the branching rate. This mechanism, thus, couples
geometric properties and molecular dynamics, and links the
dynamics of multiple foci via the membrane. Moreover, it
exhibits that spine size can be maintained by the dynamic actin
pool, as proposed by Honkura et al. (2008), while allowing large
shape changes seen in Fischer et al. (1998).

Due to the limited lifetime of the actin polymerization foci, we
proposed a nucleation that mechanism stochastically generates
foci at different locations in the spine. The generation rate and
the initial location of these new foci have a great impact on the
evolution of spine area over time. For example, an increase of
the nucleation rate causes increases of the mean spine area and
its standard deviation (Figure 8). Interestingly, foci generated
with fast nucleation rate also tend to have a shorter lifetime
evidencing a saturating mechanism or self-regulation (compare
Statman et al., 2014). Moreover, we used our model to test the
influence of the nucleation location of these foci. Experimentally,
it has been observed that actin foci are mainly located at the
tip of the spine (Honkura et al., 2008; Frost et al., 2010) and
the branching protein Arp2/3 is mainly located in a doughnut-
shaped zone around the PSD (Rácz and Weinberg, 2008). Such a
constraint on the nucleation location of polymerization foci has
a strong impact on the shape fluctuations of our model-spines
(Figure 9): When foci nucleate closer to the PSD, they tend to
last for shorter time intervals such that the mean number of foci
is smaller which, in turn, reduces the mean area of the spine.
This demonstrates that changes in the polymerization activity can
be caused only by differences in geometry without changing any
reaction rates.

Furthermore, we observed that, despite the change of shape,
the spine area always fluctuates around a mean value, in
agreement with experimentally observed spine fluctuations on
short timescales (Fischer et al., 1998). This mean value, as
well as the magnitude and timescale of the fluctuations are
affected by various model parameters. For example, there is
a strong influence of the PSD-size on the mean spine area
(Figure 4) which is in line with the experimentally observed
correlation between these quantities (Boyer et al., 1998; Arellano
et al., 2007). Similarly, reducing the branching rate in our
model by decreasing φ leads to a decrease in the mean and
standard deviation of spine area (Figure 5), which is in line
with findings that the branching factor Arp2/3 is necessary for
spine enlargement and maintenance of spine morphology (Kim
et al., 2013). Furthermore, an increase of the movement speed
parameter ζ leads to a increase in spine area standard deviation
(Figure 7), which has been similarly observed experiments that
artificially decreased the density of the extra-cellular matrix in
visual cortex (De Vivo et al., 2013). Overall, these results indicate
that the mean spine size as well as the magnitude and timescale
of spine shape fluctuations are regulated by the properties of
the underlying molecular processes (e.g., reaction rates, force

generation). Therefore, our model can represent a broad variety
of different fluctuation characteristics as observed in experiments
through different parameterizations. Moreover, our model agrees
with experimental observations that spine size changes, which are
not just fluctuations but, instead, affect the mean spine size over
longer periods of time or lead to spine loss, result from processes
different from actin polymerization (Fischer et al., 1998). Such
processes have a longer timescale than that used in this study
and may involve the induction of LTP or LTD that can affect the
dynamics of actin polymerization. For example, alterations that
affect actin-binding proteins change the mean spine size and the
spine density (Fortin et al., 2012). Interestingly, this can lead to
spine abnormalities that are present in brain-related disorders,
such as Alzheimer’s disease (Lin and Webb, 2009; Bellot et al.,
2014), where memory storage is heavily affected. Thus, it appears
that processes that alter the production or function of actin-
related proteins, which lead to prominent changes of the spines,
can interfere with memory, while spontaneous shape fluctuations
presented in this study may aid memory storage by maintaining
the spines’s typical characteristics.

In conclusion, our model can serve as a basis to investigate
the relation between microscopic properties like molecular
dynamics, membrane geometry and emerging properties as spine
volume fluctuations. As such, it can be extended into various
directions: On the one hand, the shape fluctuationsmay influence
the model parameters, such as PSD size, molecule concentrations
and reaction rates on longer timescales. Hence, the mean area
around which the spine fluctuates as well as other fluctuation
characteristics could be continuously adapted giving rise to
a slower feedback-loop (compare Yasumatsu et al., 2008 and
Statman et al., 2014). On the other hand, so far, the proposed
model only considers spines at basal neuronal activity. However,
in the future, it can be extended to include induction of activity-
dependent plasticity (LTP/LTD) bymodeling the changes in actin
treadmilling process during plasticity (compare Bennett et al.,
2011).
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