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Semaphorins, originally discovered as guidance cues for developing axons, are involved
in many processes that shape the nervous system during development, from neuronal
proliferation and migration to neuritogenesis and synapse formation. Interestingly, the
expression of many Semaphorins persists after development. For instance, Semaphorin
3A is a component of perineuronal nets, the extracellular matrix structures enwrapping
certain types of neurons in the adult CNS, which contribute to the closure of the
critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control
of adult hippocampal connectivity and memory processes, and Semaphorin 5A and
7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the
regulation of adult neuronal plasticity. In this review, we address the distribution of
Semaphorins in the adult nervous system and we discuss their function in physiological
and pathological processes.

Keywords: semaphorins, plasticity, perineuronal net, schizophrenia, epilepsy, Alzheimer’s disease, multiple
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INTRODUCTION

The development of complex tissues depends on proliferation, differentiation and migration of
cells. Cell guidance cues regulate these events and continue to be essential throughout life to
maintain tissue homeostasis. Semaphorins constitute a large family of cell guidance cues, which
are present in some viruses and conserved across animal species, from worms and flies to humans.
Thirty Semaphorin proteins have been identified so far. They can be divided into eight classes
(Sema1-7 and the viral Semaphorins, SemaV) on the basis of phylogenetic relationships and
structural features. Sema1, Sema2, and Sema5C are found in invertebrates, whereas all the other
Semaphorin classes are found in vertebrates (Bamberg et al., 1999; Pasterkamp, 2012; Alto and
Terman, 2017; Figure 1). Semaphorins can be secreted (Sema2, Sema3, and SemaV), membrane-
spanning (Sema1, Sema4, Sema5, and Sema6) or glycosylphosphatidylinositol-anchored (Sema7A).
The structural hallmark of the Semaphorin protein family is an extracellular domain at the
N-terminal region, important for dimerization and interaction specificity, called Sema domain,
which is followed by a Plxn–Semaphorin–integrin domain and by distinct protein domains that
further define Semaphorins (Zhou et al., 2008; Figure 1).

First characterized by their ability to act as repulsive cues for growing neurites (Kolodkin
et al., 1992, 1993; Luo et al., 1993), Semaphorins are now known to be crucial molecules
also for the development and functioning of the musculoskeletal, cardiovascular, respiratory,
immune, endocrine, reproductive, hepatic, and renal system. In addition, Semaphorin signaling
has been linked to diseases affecting these systems, as well as to cancer (Roth et al., 2009;
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FIGURE 1 | Semaphorins and their receptors. Semaphorins can be categorized into eight classes. Viral Sema is found in the genomes of certain DNA viruses;
Sema1, Sema2, and Sema5c comprise the invertebrate Semaphorins; the other Semaphorin classes are found in vertebrates. Semaphorins are secreted (viral
Sema, Sema2, and Sema3), membrane-spanning (Sema1, Sema4, Sema5, and Sema6) or glycosylphosphatidylinositol-anchored proteins (Sema7A). Semaphorins
bind to Plxn receptors (PlxnA1–PlxnA4, PlxnB1–PlxnB3, PlxnC1, and PlxnD1) – see arrows for specific interactions. Sema3 require Npn for binding to PlxnA.

Neufeld et al., 2012; Pasterkamp, 2012; Tamagnone, 2012;
Giacobini and Prevot, 2013; Kang and Kumanogoh, 2013;
Kumanogoh and Kikutani, 2013).

The effects of Semaphorins occur through binding to their
receptors, the neuropilin (Npn) and plexin (Plxn) protein families
(Figure 1). Plxns are grouped in four classes, from A to D,
with four A-type, three B-type, one C-type and one D-type.
The Plxn extracellular region contains several sema domains,
which are important for binding to Semaphorins, whereas the
intracellular region contains GTPase-activating protein domains
(Takahashi et al., 1999; Tamagnone et al., 1999). In general,
Semaphorins exist as homodimers, both in an unbound state
and when interacting with Plxns. Semaphorin homodimers
bring together two Plxn monomers or disrupt existing Plxn
homodimers, relieving Plxn autoinhibition, which might be
caused by an interaction between the sema domain of Plxn
and the rest of the Plxn extracellular domain (Takahashi and
Strittmatter, 2001; Kong et al., 2016). Once activated, Plxn
signals through downstream molecules, including GTPases of
the Rho family, protein kinases such as MAPK, and enzymes
such as MICAL (molecule interacting with casL), which induce
the phosphorylation of intracellular proteins of the collapsin
responsive mediator protein (CRMP) family (Vikis et al., 2000;
Hu et al., 2001; Liu and Strittmatter, 2001; Terman et al., 2002;
Pasterkamp et al., 2003; Hota and Buck, 2012). CRMPs, in turn,
affect actin and microtubule dynamics (Hung et al., 2010, 2011;
Alto and Terman, 2017). Membrane-associated Semaphorins can
also act as receptors or co-receptors for Semaphorins located

on other cells, a phenomenon known as reverse signaling
(Battistini and Tamagnone, 2016).

Class 3 Semaphorins require Npn as co-receptors (Npn-
1 and -2). Npn-1 homodimers function as ligand-binding
receptors for Sema3A and Sema3D; Npn-2 homodimers as
receptors for Sema3F; and Npn-1 and Npn-2 heterodimers
as receptors for Sema3B, 3C, 3E, and 3G (He et al., 2019;
Toledano et al., 2019). Npn are transmembrane proteins with
short intracellular domains that lack intrinsic enzymatic or
signaling activity. They do not seem to act as a direct
bridge between Plxn and Semaphorins but may function in
the presentation of Semaphorin to Plxn. In addition, Npn
can bind vascular endothelial growth factor (VEGF) in co-
receptor complexes with VEGF receptors (Kruger et al., 2005;
Pasterkamp, 2012), regulating blood and lymphatic vessel growth
(Tammela et al., 2005).

Additional receptors can directly bind Semaphorins, including
CD72 (Kumanogoh et al., 2000), Tim2 (Kumanogoh et al., 2002),
and integrins (Pasterkamp et al., 2003). Moreover, co-receptors
that associate with Sema binding receptors affect the signaling
outcome of Sema-receptor interactions (Sharma et al., 2012).
Cell adhesion molecules, such as Nr-CAM and L1 CAM can
associate with Npn receptors and can be required for transducing
class 3 Sema signals (Castellani et al., 2000, 2004; Falk et al.,
2005). In addition, a number of receptor tyrosine kinases, such
as VEGF receptor 2, Met, ErbB2 and off-track, associate with
Plxns and Npns and become transactivated upon Sema binding
(Sharma et al., 2012). Interestingly, Semaphorin function can
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be modulated by binding to proteoglycans (Kantor et al., 2004;
de Wit et al., 2005; Zimmer et al., 2010; Cho et al., 2012; Dick
et al., 2013). For example, class 5 Semaphorins demonstrate
axon repulsive properties on neurites that co-express chondroitin
sulfate proteoglycans and Plxns, while they turn into attractive
cues if neurites express heparan sulfate proteoglycans adjacent to
Plxns (Kantor et al., 2004).

Semaphorins have been discovered in the early 1990s as
repulsive axon guidance molecules, enabling axons to find their
targets and thus contributing to nervous system development
(Kolodkin et al., 1992, 1993; Luo et al., 1993). In the peripheral
nervous system, Semaphorins of several classes form molecular
boundaries to prevent axons of dorsal root ganglion neurons,
cranial nerves, spinal motoneurons or sympathetic neurons from
entering inappropriate areas (Masuda and Taniguchi, 2016).
Repulsive Semaphorin signaling is also crucial in the control of
axon pathfinding of several classes of central nervous system
(CNS) neurons during development (Sahay et al., 2003; Kolk
et al., 2009; Pignata et al., 2016; Alto and Terman, 2017; Okada
et al., 2019). The main mechanism how Semaphorins act as
guidance molecules is through activation of Plxn signaling, which
induces cytoskeletal changes in the growth cone of developing
axons, such as depolymerization of actin filaments, attenuation
of microtubule dynamics, and collapse of microtubule arrays
(Goshima et al., 1997; Fritsche et al., 1999; Hung et al., 2010).

In the last three decades, Semaphorins have been shown to be
involved in many other developmental processes that shape the
nervous system, including axon defasciculation (Kolodkin et al.,
1992; Tran et al., 2007; Claudepierre et al., 2008; Pecho-Vrieseling
et al., 2009; Imai, 2012; Assens et al., 2016), lamina-specific
patterning of synaptic connectivity (Skutella and Nitsch, 2001;
Pasterkamp, 2012; Xie et al., 2019), axon terminal branching
(Bagnard et al., 1998; Bagri et al., 2003; Dent et al., 2004;
Cioni et al., 2013; Jung et al., 2019), dendritic morphogenesis
and arborization (Polleux et al., 2000; Fenstermaker et al., 2004;
Vodrazka et al., 2009; Ng et al., 2013; Cheadle and Biederer, 2014;
Yamashita et al., 2014; Danelon et al., 2020), synapse formation
(Godenschwege et al., 2002; Morita et al., 2006; Paradis et al.,
2007; Yamashita et al., 2007; Tran et al., 2009; Kuzirian et al.,
2013; Inoue et al., 2018; McDermott et al., 2018), subcellular
target recognition by specific axons (Telley et al., 2016), pruning
(Bagri et al., 2003; Sahay et al., 2003; Faulkner et al., 2006; Low
et al., 2008; Uesaka et al., 2014), and removal of ectopic synapses
(O’Connor et al., 2009; Tran et al., 2009; Mohan et al., 2018,
2021).

Many excellent reviews have addressed the functions of
Semaphorins during nervous system development. Here, we
will provide an overview of the role of Semaphorins in
adult CNS physiology and pathology, including the role of
Sema3A in plasticity processes through its interaction with the
extracellular matrix (ECM).

SEMAPHORINS IN ADULT NERVOUS
SYSTEM PHYSIOLOGY

Semaphorins are found in the nervous system not only during
development but also in adulthood. Early studies showed that

Sema3A mRNA expression persists in several discrete areas of
the adult CNS and PNS (Luo et al., 1993; Giger et al., 1996, 1998;
Pasterkamp et al., 1998; de Wit and Verhaagen, 2003). Since then,
the role of Sema3A and other Semaphorins in the physiology
of the adult nervous system has been progressively unveiled,
pointing to a role of these axon guidance cues in the regulation
of neuroplasticity.

Class 3 Semaphorins in Perineuronal
Nets
Transcripts for Sema3A are found in distinct neuronal
populations throughout the rostro-caudal axis of the adult CNS,
as well as in meninges, pituitary gland and pineal gland, in rats
as well in humans (Giger et al., 1998). Immunohistochemistry
for Sema3A confirmed the expression of Sema3A in several
regions of the adult rat and mouse CNS (Carulli et al., 2013;
Vo et al., 2013; Giacobini et al., 2014; de Winter et al., 2016).
Interestingly, Sema3A protein distribution can display different
expression patterns. First, Sema3A can be diffusely localized in
the neuropil. Secondly, Sema3A can be observed in or around
myelinated axons. Thirdly, one of the more striking features
of the anatomical distribution of Sema3A in the CNS is its
accumulation in perineuronal nets (PNNs; Vo et al., 2013;
Figure 2). PNNs are lattice-like aggregates of extracellular matrix
molecules enwrapping the cell body and proximal dendrites
of many types of CNS neuron. They form during postnatal
development, contributing to the closure of critical periods
for plasticity. The main scaffold of the PNN is composed by
chondroitin sulfate proteoglycans (CSPGs), hyaluronan, link
proteins and tenascin-R. Hyaluronan is a long unbranched
polysaccharide, to which several CSPGs bind through their
N-terminal domains, and this binding is strengthened by
link proteins. CSPGs are cross-linked by Tenascin-R, which
is a trimeric molecule which binds the CSPG C-terminal
domain (Fawcett et al., 2019). The interaction of Sema3A with
the PNN occurs through its binding to CSPG sugar chains
(i.e., chondroitin sulfate glycosaminoglycans – CS-GAGs).
The first indication of Sema3A interacting with CS-GAGs
comes from the work by de Wit et al. (2005). Addition of
CS-GAGs to the culture medium of Neuro2a cells (a murine
neuroblastoma cell line) displaces cell surface bound Sema3A.
Moreover, enzymatic removal of CS-GAGs using chondroitinase
ABC releases Sema3A into the culture medium. Interestingly,
injection of chondroitinase ABC in vivo abolishes Sema3A-
labeling of PNNs which indicates that Sema3A is released
from PNN following digestion of CSPGs (Vo et al., 2013).
CS-GAGs consist of repeated disaccharide units made of
glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc),
and can present sulfate groups at various locations, resulting
in extensive molecular heterogeneity. The most common CS-
GAG isoform in the adult brain are: CS-A (C-4 sulfation on
GalNAc), CS-C (C-6 sulfation on GalNAc), CS-D (C-2 sulfation
on GlcA and a C-6 sulfation on GalNAc), and CS–E (C-4 and
C-6 sulfation on GalNAc; Sugahara and Kitagawa, 2000). The
interaction between Sema3A and PNNs is sulfation-dependent,
with Sema3A interacting preferentially to CS-E extracted
from adult brain PNNs (Dick et al., 2013) via two specific
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FIGURE 2 | Sema3A in perineuronal nets in the adult mouse brain. Panel (A) shows a parasagittal section of the adult mouse brain in which Sema3A immunostaining
(brown) is apparent throughout the whole rostro-caudal axis. In blue, thionin counterstaining. Reprinted with permission from Vo et al. (2013). (B) Sema3A (green)
displays a lattice-like pattern, which is typical of perineuronal nets, around a parvalbumin (PV)+ neuron of the rat visual cortex. Scale bar: 2 mm (A), 5 µm (B).

peptidic sequences located in the Sema3A C-terminal domain
(Djerbal et al., 2019). Interestingly, one of these sequences is
very similar to a sequence found in orthodenticle homeobox 2
(Otx2), which is involved in PNN formation and modulation
of plasticity (Bernard and Prochiantz, 2016). This sequence
mediates accumulation of Otx2 into PNNs, through binding
to CS-GAGs (Beurdeley et al., 2012), raising the possibility
that Sema3A and Otx2 could compete with one another for
PNN binding. Interestingly, the lack of binding of Sema3A to
CS-D (which is a disulfated CS-GAG structure, similar to CS-E,
bearing two highly negatively charged sulfate groups) suggests
that the interaction with CS-E is specific and is not due to a
non-specific charge interaction (Dick et al., 2013). Recent data
in vivo, however, show that the main CS types binding Sema3A
are non-sulfated GalNAc residues at the non-reducing termini
of CS-GAG chains (Nadanaka et al., 2020). Binding of Sema3A
(and possibly other secreted Semaphorins) to CS-GAGs may be
crucial for the presentation of Semaphorin to their receptors,
and thus for the activation of Semaphorin signaling in specific
brain locations.

The presence of Sema3A-positive PNN around neurons that
do not express Sema3A mRNA (such as cortical interneurons)
suggests that Sema3A is not necessarily produced by neurons
endowed with a PNN, but it might be derived from nearby
neurons or afferent ones. Indeed, in embryonic rat cortical
neurons, Sema3A is actively transported in vesicles through
the axon and dendrites of the cell. In axons, Sema3A is
almost exclusively transported in an anterograde direction, and
this transport is activity-dependent. Blocking action potentials
results in an acceleration of Sema3A transport, whereas cell
depolarization induces a transport arrest, which is accompanied
by release of Sema3A at the cell surface (de Wit et al., 2006).
Therefore, presynaptic neurons may produce Sema3A, transport
it to their terminals, and subsequently deposit it in the PNN
in an activity-dependent manner. In addition, Sema3A is highly
expressed by meningeal cells (Giger et al., 1998; Niclou et al.,
2003), suggesting that Sema3A is released by those cells into the
cerebrospinal fluid and the parenchyma, traveling through the
extracellular space from where it might be captured by PNNs.
This is indeed what occurs to another PNN component, Otx2,
in the adult brain. Otx2 is secreted from the choroid plexus

and transported through the cerebrospinal fluid into the brain
parenchyma. Here, it is captured by PNNs and then internalized
in PNN-bearing neurons, where it acts as a transcription factor
(Spatazza et al., 2013).

What is the function of Sema3A in PNNs? Sema3A in PNNs
contributes to the end of the critical period in the visual cortex.
Critical periods are time windows of intense brain development
in which neuronal connections are highly plastic and shaped
under the influence of environmental stimuli (Reh et al., 2020).
Accumulation of Sema3A in PNNs in the rat visual cortex
begins between postnatal day 28 and postnatal day 45, in
coincidence with the closure of the critical period for ocular
dominance plasticity. When rats are raised in darkness, plasticity
persists into adulthood, and this is correlated with reduced levels
of Sema3A-positive PNN structures. Notably, interfering with
Sema3A signaling enhances ocular dominance plasticity in adult
rats (Boggio et al., 2019). Overall, those data point to a role
of perineuronal-Sema3A in closure of the critical period and
repression of juvenile plasticity in the adult brain.

Another function of Sema3A may be related to restriction
of structural plasticity, with Sema3A acting as an inhibitory
cue for rewiring of existing connections or formation of new
connections on PNN-bearing neurons. Indeed, when adult mice
are reared in an enriched environment, a condition known to
promote neuronal plasticity (Sale et al., 2014), a strong reduction
in PNN CS-GAGs as well as Sema3A expression in PNN is
observed in the cerebellar nuclei, in parallel with substantial
remodeling of synaptic terminals (Foscarin et al., 2011; Carulli
et al., 2013). Moreover, changes in Sema3A expression have been
found during compensatory sprouting occurring after injury.
Partial deprivation of cerebellar nuclei neurons of their main
inputs, the Purkinje cells, results in a strong decrease of PNN
and Sema3A labeling around denervated neurons, in association
with structural reorganization of the local connectivity (Carulli
et al., 2013). Overall, these studies suggest that Sema3A in PNNs
is actively modulated to facilitate or restrict plasticity according
to specific functional requirements.

In addition, Sema3A in PNN may affect molecular processes
in the cell body of PNN-bearing neurons, as Sema3A receptors
PlexinAs are detected on the soma of PNN+/PV+ neurons
(Vo et al., 2013), and PV+ neurons in the visual cortex also
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express CRMP4 (Cnops et al., 2006). Here, we can speculate that
Sema3A signaling may cause cytoskeletal changes, which may
affect the distribution of post-synaptic channels and/or receptors,
and thus synaptic plasticity and/or connectivity. Finally, Sema3A
has been found to rigidify CS-E based matrices. Therefore, it
may cross-link PNN-GAGs and thus contribute to PNN stability
(Djerbal et al., 2019).

Another class 3 Semaphorin, Sema3B, shows a perineuronal
net-like pattern (Vo et al., 2013), but its expression throughout
the brain is more restricted than that of Sema3A. For example,
whereas Sema3A in the hippocampal system is detected in
the subiculum, CA1, CA2, CA3, and dentate gyrus, Sema3B-
labeled PNNs are only observed in the subiculum. In the
thalamic area, Sema3A labeling is associated with PNNs in
the medial septal nucleus and the reticular thalamic nucleus,
whereas Sema3B immunoreactivity is only found in the reticular
thalamic nucleus (Vo et al., 2013). In the adult brain Sema3B
mRNA is apparent in the choroid plexus (Kaiser and Bryja,
2020). It may thus be released into the cerebral spinal fluid
and travel in the parenchyma extracellular space from where
it could be incorporated into PNNs. Because Sema3B does not
contain the PNN-binding peptide sequence shared by Sema3A
and Otx2, it may interact with PNNs through differentially
sulfated CS-GAGs, which may be found only on a small
sub-population of PNNs.

Homeostatic Synaptic Plasticity
Homeostatic plasticity is referred to all biological processes
that neurons and neuronal circuits use to stabilize their activity
around some set-point value in the face of perturbations, such
as changes in cell size, synapse number or synapse strength,
which would alter excitability (Turrigiano, 2008). An example
of homeostatic plasticity is the increase in neurotransmitter
release that follows an impairment in postsynaptic receptor
function. Homeostatic plasticity is conserved from fly to humans
(Davis, 2006). Recent evidence points to a role of Semaphorins
in the control of homeostatic plasticity in the adult nervous
system. For instance, at the neuromuscular junction (NMJ)
in Drosophila, Semaphorin 2b is a muscle-derived, secreted
signal that mediates the homeostatic control of presynaptic
neurotransmitter release. After decreasing the amplitude of
miniature excitatory postsynaptic potentials (by applying
a glutamate-receptor antagonist), a significant increase in
presynaptic neurotransmitter release occurs, which compensates
for the postsynaptic perturbation and restores normal muscle
excitation. This presynaptic homeostatic plasticity does not occur
in Drosophila larvae containing a null mutation in the sema2b
gene or the plxnB gene. Regulation of presynaptic homeostatic
plasticity by Sema2b–PlxnB signaling occurs through the
cytoplasmic protein Mical, which is present presynaptically and
mediates actin depolymerization, which is necessary to release
synaptic vesicles from the reserve pool and, thus, expand the
readily releasable pool (Orr et al., 2017).

Another form of homeostatic plasticity is homeostatic
scaling, which allows neurons to maintain their firing rates
in the presence of changes in neuronal activity. For instance,
blocking neuronal activity leads to increased synaptic strength,

or upscaling, whereas increasing neuronal activity leads to
decreased synaptic strength, or downscaling. Modulation of
synaptic strength is largely dependent on distribution and
function of postsynaptic receptors, such as AMPA receptors
(Turrigiano, 2012). In cultured rat cortical neurons, elevating
neuronal activity by bicuculline promotes Sema3F secretion,
which contributes to a reduction in AMPA receptor number on
the cell post-synaptic membrane. Indeed, no change in AMPA
receptor has been found in Sema3F KO neurons. Thus, Sema3F,
possibly by disrupting the interaction that exists between Npn-
2 and AMPA receptors, mediates AMPA receptor downscaling
following increased neuronal activity (Wang et al., 2017).

In conclusion, secreted semaphorins affect homeostatic
plasticity by causing cytoskeleton modifications leading to
increased release of pre-synaptic vesicles, or by attenuating
the binding between Semaphorin receptors and post-
synaptic neurotransmitter receptors, thereby affecting channel
localization, trafficking, or biophysical properties.

Hippocampal Plasticity, Learning and
Memory
The adult hippocampus shows a remarkable capacity for
changes in synaptic activity and structural reorganization during
learning and memory. Modifications in synaptic strength,
dendritic complexity and synapse number have been proposed
to underlie memory processes (Leuner and Gould, 2010).
Secreted Semaphorins, and particularly Sema3A, Sema3F, and
Sema3G, are important players in the control of synaptic
and structural plasticity in the adult hippocampus. In the
work by Bouzioukh et al. (2006), exogenous application of
Sema3A in hippocampal acute slices induces a striking reduction
of pre- and post-synaptic excitatory puncta, and a strong
depression of excitatory synaptic transmission in CA1 neurons,
which are mediated by extracellular signal-regulated kinase
(ERK) activation. Because Npn-1 is shown to be present in
presynaptic terminals, Sema3A-induced depression of synaptic
transmission could be the consequence of initial structural
changes in presynaptic elements, which may then change the
size of the synaptic cleft, reducing transmitter concentrations
at postsynaptic receptors. Alternatively, Sema3A may destabilize
the presynaptic membrane, causing then the retraction of the
postsynaptic membrane (Bouzioukh et al., 2006).

Sema3A mRNA in vivo is shown to be expressed by stellate
cells of the entorhinal cortex. They project to dendrites of granule
cells, which are located in the molecular layer of the dentate
gyrus and express Npn-1, but not Sema3A, transcripts (Giger
et al., 1998). Induction of epileptic seizures in rats leads to
a downregulation of Sema3A expression, which is correlated
with aberrant sprouting of granule cell axons into the molecular
layer of the dentate gyrus, resulting in the formation of a
recurrent excitatory network (de Wit and Verhaagen, 2003;
Holtmaat et al., 2003). These results suggest that Sema3A
may be involved in constraining structural changes in the
adult hippocampus.

Sema3F modulates the morphology and function of synapses
in the adult hippocampus, but it has opposite effects from
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Sema3A. Sema3F mRNA is abundantly expressed in adult granule
cells of the dentate gyrus and pyramidal neurons of CA1 and CA3
regions (Giger et al., 1998; Hirsch et al., 1999; Holtmaat et al.,
2002; Bagri et al., 2003; Barnes et al., 2003). Sema3F has been
shown to play a crucial role in modulating hippocampal basal
synaptic transmission. Incubation of acute hippocampal slices
with recombinant Sema3F induces an increase in the frequency
and amplitude of miniature EPSCs in granule cells and CA1
pyramidal neurons. These effects may occur through binding of
Sema3F to Npn-1, which is present in granule cells axons (mossy
fibers) and infrapyramidal tract axons and terminals (Sahay et al.,
2005). Furthermore, mice lacking Sema3F are prone to seizures
(Sahay et al., 2005), suggesting that Sema3F is essential for the
normal functioning of hippocampal circuits.

Sema3G is secreted by the vascular system in the CNS
and has been shown to be essential for maintenance of fear
memories. Mice lacking Sema3G in vascular endothelial cells
display a significant impairment in retrieval of fear memories,
and this is accompanied by a strong decrease in hippocampal
LTP, in frequency of miniature excitatory postsynaptic currents
in CA1 pyramidal neurons, and in number of spines on
pyramidal neurons. Sema3G effects are mediated by Npn-
2/PlxnA4 signaling and Rac1 activation in the postsynaptic
compartment (Tan et al., 2019). These data indicate that Sema3G
is essential for the control of neural circuit stability and cognitive
functions exerted by endothelial cells through intercellular
communication with neurons in the hippocampus.

Another Semaphorin, Sema4C, plays an important role in
hippocampal plasticity and memory. Sema4C and its receptor
PlxnB2 are expressed in the dentate gyrus, CA1 and CA3
regions of the adult mouse and are upregulated upon fear
conditioning. When Sema4C signaling is disturbed in adult
forebrain excitatory neurons, mice show a dramatic impairment
in their ability to retain both recent and remote fear memories,
pointing to a role of Sema4C-PlxnB2 signaling in the process of
consolidation of this type of memory (Simonetti et al., 2019).
Moreover, while normally fear conditioning is accompanied
by an increase in dendritic complexity and spine number
on CA1 pyramidal neurons (Trabalza et al., 2012; Abate
et al., 2018), no anatomical changes are observed in the
absence of functional Sema4C-PlxnB2 signaling (Simonetti et al.,
2019). In addition, both inducible PlxnB2 knock-out mice
and mice expressing a PlxnB2 loss-of-function mutant for the
RhoA pathway display a reduced number of glutamatergic
synapses and an increased number of GABAergic synapses
in the hippocampus in naïve conditions. Overall, Sema4C-
PlxnB2, via RhoA signaling, is involved in the maintenance
of a stable synaptic connectivity in the adult hippocampus
(Simonetti et al., 2019).

Neurogenesis
Replacement of neurons by generation of new neurons
(neurogenesis) does not occur in the adult mammalian brain
with the exception of two regions: the subgranular zone
(SGZ) of the hippocampal dentate gyrus and the subventricular
zone (SVZ) of the lateral ventricles. These neurogenic regions
contain neural stem cells (NSCs), which continuously provide

newborn neurons to replace those in existing circuits. In the
SGZ, NSCs give rise to intermediate progenitor cells, which
generate neuroblasts. Neuroblasts will develop into dentate
granule neurons. NSCs in the SVZ give rise to transient
amplifying progenitors, which become neuroblasts. Neuroblasts
will form a chain and migrate into the olfactory bulb, where
they differentiate into interneurons (Obernier and Alvarez-
Buylla, 2019). Semaphorins control different aspects of adult
NSC development. In the hippocampus, Sema7A has been
shown to suppress NSC proliferation at early stages, and to
regulate dendrite growth and spine development of granule
cells at later stages. Interestingly, control of NSC proliferation
is mediated by PlxnC1, whereas dendritic regulation relies on
integrin receptors (Jongbloets et al., 2017). Another Semaphorin
involved in morphological maturation of adult born granule cells
is Sema5A. Sema5A-PlxnA2 signaling prevents the formation
of supernumerary dendritic spines on adult-born granule cells
(Duan et al., 2014).

In the adult SVZ, Sema3A is expressed in both migratory
neuroblasts and NeuN−positive mature neurons, where it
inhibits the proliferation of NSCs and enhances neuronal
differentiation (Sun et al., 2016).

In addition, it has been shown that PlxnB2 is expressed
by neuroblasts in the adult SVZ. Knock-out mice for PlxnB2
show reduced neuroblast proliferation, faster migration and
accelerated transition from tangential to radial migration
(Saha et al., 2012). Because Sema4C is expressed in the
olfactory bulb and along the rostral migratory stream (Wu
et al., 2009), a classic Semaphorin/PlxnB2 repulsive mechanism
may prevent neuroblasts from prematurely leaving the rostral
migratory stream.

Target Re-innervation in the Taste
System
In the adult taste system, Semaphorins maintain their role
of guidance molecules to ensure specific target innervation of
adult nerve fibers. Taste receptor cells turn over continuously
throughout life and, as a consequence, functional connections
between existing ganglion axons (fibers of the VII, IX and
X cranial nerves) and newly born taste receptor cells need
to be continuously established. Each taste quality (sweet,
bitter, sour, salty and umami) is encoded by a unique
population of taste receptor cells, which is innervated by a
matching set of ganglion neurons. Therefore, when new taste
receptor cells are produced, they must express instructive
cues to establish proper connectivity. Interestingly, among
these cues are Sema3A and Sema7A, which are expressed by
bitter and sweet taste receptor cells, respectively. Experiments
employing conditional loss-of-function or gain-of-function
approaches demonstrated that Sema3A or Sema7A mediate
the connectivity between receptor cells coding a specific
taste modality and their partner ganglion neurons, which
are endowed with specific Sema receptors (Lee et al., 2017).
Therefore, Semaphorins play a crucial role in allowing the
taste system to maintain fidelity of signaling despite turnover
of receptor cells.
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Target Re-innervation in the Olfactory
System
The olfactory epithelium contains olfactory sensory neurons
(OSNs) and supporting sustentacular cells (Farbman, 1994). OSN
axons form the olfactory nerve and project to the olfactory bulb
(OB), where they contact the dendrites of mitral, tufted and
juxtaglomerular neurons in globular structures called glomeruli
(Mombaerts, 1996). In most animals, the olfactory epithelium
is a site of continual adult neurogenesis. Olfactory neurogenesis
occurs throughout life in response to normal turnover, as mature
OSNs have a limited lifespan of approximately 30–90 days
(Graziadei et al., 1979). New OSNs derive from a population
of precursor cells in the olfactory epithelium and are able to
re-innervate their target, establishing functional synaptic contacts
(Oley et al., 1975; Jane Roskams et al., 1994). During development
Sema3A mRNA is expressed by OSNs and olfactory ensheathing
cells in the nerve layer of the ventral OB (Giger et al., 1996;
Schwarting et al., 2000; Williams-Hogarth et al., 2000). Sema3A
may be secreted by OSNs into the local epithelial environment,
where it may inhibit their own axons from reentering the
epithelium and autosynapsing (Williams-Hogarth et al., 2000).
In the ventral midline of the OB, Sema3A acts as a repulsive
guidance cue for Npn-1+ axons, which avoid the ventral OB
and instead project to either medial or lateral targets. Indeed,
in Sema3A knock-out mice, many Npn-1+ axons are misrouted
(Schwarting et al., 2000, 2004). Sema3F is secreted by early
arriving OSN axons and is deposited in the dorsal OB, where
it repels late-arriving OSN axons that express Npn-2 (Takeuchi
et al., 2010). The expression of Sema3A in OSNs is gradually
down-regulated during development. However, in the adult,
Sema3A is up-regulated after unilateral lesioning of the OB,
a manipulation that induces increased OSN neurogenesis, and
there is a temporal correlation between Sema3A expression and
the generation of new OSNs. Interestingly, Sema3A levels decline
when the axons of regenerating neurons reach the region of
their ablated target (Williams-Hogarth et al., 2000). These results
suggest that Sema3A plays a role in guiding OSN axons out of
the epithelium and to the OB not only during development but
also during adult regeneration. It would be interesting to interfere
with the expression/signaling of Sema3A to elucidate its role in
the process of reinnervation of existing targets.

Control of Gonadotropin Release
In recent years it has been discovered that Semaphorins,
particularly Sema3A and Sema7A, play a pivotal role in
orchestrating the control of reproduction in the hypothalamus.
The reproductive cycle of mammals is regulated by hypothalamic
gonadotropin-releasing hormone (GnRH) neurons. In females,
GnRH neurons periodically extend their axons in the median
eminence toward the pituitary portal circulation, into which they
release GnRH. GnRH is then carried into the anterior pituitary,
where it stimulates the release of gonadotropins (luteinizing
hormone and follicle stimulating hormone), which in turn act
on peripheral reproductive organs to regulate the estrous cycle.
When GnRH-secreting axon terminals are distant from the
pericapillary space of the median eminence, the access of the

neurohormone to the pituitary portal circulation is impeded, and
gonadotropin levels in the bloodstream are low. However, at the
onset of the preovulatory surge, when GnRH has to be released
to trigger ovulation, GnRH-secreting axon terminals undergo
extensive axonal growth toward the vascular wall. Specialized
ependymal cells called tanycytes enwrap the terminals of GnRH
neurons, insulating the pericapillary space of pituitary portal
vessels from GnRH nerve terminals. Interestingly, tanycytes
show fluctuating expression of Sema7A during the estrous cycle.
Sema7A induces the retraction of GnRH nerve terminals as well
as the expansion of tanycytic processes, therefore hampering
the access of GnRH axons to the portal vasculature (Parkash
et al., 2015). In addition, vascular endothelial cells of the
pituitary portal system express Sema3A. In contrast to Sema7A,
Sema3A, released by endothelial cells during proestrus, promotes
the growth of GnRH axons toward the vascular plexus
(Giacobini et al., 2014).

Semaphorin Expression in Adult Retina,
Striatum and Cortex
A bulk of evidence revealed important roles for Semaphorins
in retina lamination and circuit assembly during development
(Matsuoka et al., 2011a,b, 2012). However, the function of
Semaphorins in the adult retina is still poorly characterized.
The expression of mRNAs for all class-3 Semaphorins and
their receptor components is apparent in the rat retina during
postnatal development and persists well into adulthood. The
highest expression is found in retinal ganglion cells, whereas
lower transcript levels are detected in different cell types in the
inner nuclear layer (de Winter et al., 2004), which contains
the cell bodies of horizontal, bipolar, amacrine cells, and
Muller glia cells. Based on evidence from other CNS regions,
it can be hypothesized that, once secreted within the retina
or from retinal ganglion cells into retino-recipient areas in
the brain, Semaphorins may contribute to the maintenance of
established connections.

The striatum of the adult mouse shows high levels of
expression of Npn-2, which is localized in the soma and dendrites
of spiny projection neurons, as well as in axon terminals of
cortical pyramidal neurons. Inducible deletion of Npn-2 in
cortical pyramidal neurons in adult mice leads to increased
spine numbers on those neurons, alteration of corticostriatal
short-term plasticity, and impairment of striatum-dependent
motor skill learning (Assous et al., 2019). This suggests that
Npn-2 signaling, likely mediated by Sema3F, is essential for the
maintenance and function of the adult corticostriatal circuitry.

While many studies unveiled the role of Semaphorins in
cortical development during both embryonic and postnatal
life (Polleux et al., 1998; Canty and Murphy, 2008; Chen
et al., 2008; Bribián et al., 2014; Carcea et al., 2014), the
function of Semaphorins in the adult neocortex has only
been partially studied. As mentioned above, Sema3A in PNNs
around PV+ neurons of the visual cortex restricts visual
cortex plasticity (Boggio et al., 2019). In addition, Sema3E
is reported in adult excitatory and inhibitory neurons of
layers V and VI, but in monkeys it is found only in a
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subpopulation of excitatory layer VI neurons. In both species,
the mRNA for PlxnD1, the receptor for Sema3E, exhibits a
complementary lamina pattern (Watakabe et al., 2006). However,
no functional data are available for a role of Sema3E-PlxnD1
signaling in adult cortical functions, but we can speculate that
it may control the maintenance of lamina-specific synaptic
connectivity in the cortex.

Semaphorins and Myelin
In addition to the plethora of roles played in neuron development
and formation of neuronal connections, class 3 Semaphorins, as
well other classes of Semaphorins, control oligodendrogenesis.
Oligodendrocytes develop from NSC−derived oligodendrocyte
precursor cells (OPCs), which are generated in the ventricular
zones of the embryonic neural tube and then migrate
throughout the CNS. During rodent CNS development, OPCs
are mostly generated during the first few postnatal weeks.
After reaching their final destination, OPCs differentiate into
mature oligodendrocytes. They wrap around neighboring axons,
forming myelin sheaths, which are essential for the rapid and
efficient conduction of electrical impulses along axons, as well
as for preserving axonal integrity (Richardson et al., 2006; Butt
et al., 2019). In vitro work by Cohen et al. (2003) shows that
OPCs isolated from postnatal rat brainstem express several
secreted and membrane-bound Semaphorins as well as Npn
receptors. By using a stripe assay, they demonstrate that class
3 Semaphorins (Sema3A, B, C, F) inhibit the migration of
OPCs, redirect OPC process outgrowth and cause OPC growth
cone collapse, suggesting that Sema3s are repulsive guidance
cues for OPCs during their migration through the CNS. The
role of Sema3A as repulsive cue for OPCs has been confirmed
in vivo in the optic nerve. The embryonic optic nerve is
colonized by OPCs (Raff et al., 1983; Skoff, 1990), which migrate
in a chiasmal-to-retinal direction (Small et al., 1988; Spassky
et al., 2002). In a functional migration assay, Sema3A acts as
a repulsive signal for OPCs migrating into the optic nerve,
whereas Sema3F acts as an OPC attractive signal. Consistently
with those observations, Sema3A is found to be produced by
cells of the perineural mesenchyme, which surrounds the nerve,
while Sema3F is expressed by retinal cells (Spassky et al., 2002).
OPCs express Npn-1 and -2, as well as PlxnAs (Spassky et al.,
2002; Okada et al., 2007; Piaton et al., 2011). Interestingly,
expression of Npn and Plxn receptors, with the exception of
PlxnA4, persists in adult OPCs throughout the CNS (Okada
et al., 2007; Piaton et al., 2011), but their role in adult OPC
physiology is not known.

Axon myelination relies onto an exact matching between
the number of oligodendrocytes and the number and lengths
of axons (Barres and Raff, 1999). During normal development,
many more oligodendrocytes than needed are produced.
Subsequently, a selection occurs, which results in the deprivation
of excess oligodendrocytes by apoptosis (Barres et al., 1992;
Trapp et al., 1997). Sema4D is part of a regulatory mechanism
underlying the maintenance of the appropriate number of
mature oligodendrocytes and myelin sheaths. In the mouse
CNS, Sema4D is expressed in oligodendrocytes in all major
fiber tracts, from the olfactory bulb and the corpus callosum

to the spinal cord, at the time when they start colonizing the
prospective white matter to form myelin (Moreau-Fauvarque
et al., 2003). In Sema4D deficient mice, the number of
mature oligodendrocytes is significantly increased, while the
number of OPCs is not affected (Taniguchi et al., 2009;
Yamaguchi et al., 2012), suggesting that Sema4D may act as an
intrinsic inhibitory regulator of oligodendrocyte differentiation
by promoting apoptosis. Although Sema4D expression in the
CNS is generally decreased after 1 month of age, it is still
apparent in adult oligodendrocytes (Moreau-Fauvarque et al.,
2003). The receptor for Sema4D, PlxnB1, is highly expressed
in axons of mature neurons (Worzfeld et al., 2004; Fazzari
et al., 2007; Foscarin et al., 2009), pointing to a role of Sema4D
signaling in stabilizing myelin-axon interaction. Indeed, during
axonal sprouting of adult mouse Purkinje cells, PlxnB1 receptors
are withdrawn from the membrane of neuritic segments where
sprouting occurs, in concomitance with retraction of myelin
sheath (Gianola and Rossi, 2004; Foscarin et al., 2009). These
data suggest that Sema4D signaling may help stabilize myelin-
axon interaction in adult Purkinje cells, which in turn may be
important for restricting aberrant axon growth.

Another class 4 Semaphorin implicated in OPC migration
and differentiation is Sema4F (Armendáriz et al., 2012). Both
OPCs and oligodendrocytes express Sema4F. Incubation of optic
nerve explants with conditioned media from Sema4F-transfected
293T cells reduces the outward migration of OPCs, without
affecting proliferation. Conversely, incubation with the anti-
Sema4F antibodies results in increased OPC migration. These
data suggest that Sema4F contributes to the correct migration
of OPCs along the optic nerve, ensuring no dispersion of
cells or intermingling between them. In addition, when OPCs
derived from neonatal rat brain are exposed to Sema4F, OPC
differentiation is increased, as shown by the increased percentage
of myelin basic protein expressing cells (Armendáriz et al., 2012).
Thus, Sema4F would control not only the migration of precursors
but also their differentiation into myelinating oligodendrocytes.

The timing of oligodendrocyte differentiation and myelination
is regulated by Sema6A (Bernard et al., 2012). Oligodendrocytes
express increasing levels of Sema6A mRNA between P0 and P15.
Later on, the number of Sema6A+ oligodendrocytes decrease,
although a few cells still express Sema6A mRNA in the adult
white matter. In Sema6A-deficient mice, the differentiation of
oligodendrocytes is delayed, but in the adult age the expression
of myelin genes and the number and appearance of the nodes
of Ranvier are similar to controls. This suggests that the lack
of Sema6A is compensated by other molecular cues, such as
Sema6B (Cohen et al., 2003; Bernard et al., 2012).

Although most of our knowledge on Semaphorins still comes
from development, recent evidence point to an involvement
of Semaphorins in many physiological functions of the adult
brain, from control of plasticity and memory to regulation of
adult NSC proliferation and migration (Table 1). The importance
of Semaphorins for brain physiology is also corroborated by
the evidence that several brain diseases are associated with
alterations in Semaphorin expression or Semaphorin signaling,
which, depending on the disease, may impact brain function
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TABLE 1 | Overview of the main known functions of Semaphorins in
the adult brain.

Semaphorin Function References

Sema3A Restriction of visual cortex plasticity
Inhibition of SVZ neurogenesis
Specific re-innervation of bitter
taste receptor cells
Control of axon growth of GnRH
neurons
Affecting the rigidity of PNN

Boggio et al. (2019)
Sun et al. (2016)
Lee et al. (2017)
Giacobini et al. (2014)
Djerbal et al. (2019)

Sema3F Homeostatic synaptic plasticity
Hippocampal synaptic transmission
Npn-2: maintenance and function
of corticostriatal circuitry

Wang et al. (2017)
Sahay et al. (2005)
Assous et al. (2019)

Sema3G Maintenance of hippocampal
synaptic connectivity and retention
of fear memories

Tan et al. (2019)

Sema4C Maintenance of hippocampal
synaptic connectivity and retention
of fear memories

Simonetti et al. (2019)

Sema5A Control of maturation of adult-born
hippocampal granule cells

Duan et al. (2014)

Sema7A Inhibition of hippocampal
neurogenesis
Specific re-innervation of sweet
taste receptor cells
Control of GnRH release in the
pituitary circulation

Jongbloets et al. (2017)
Lee et al. (2017)
Parkash et al. (2015)

GnRH, gonadotropin releasing hormone; SVZ, subventricular zone.

during development or in adulthood. This topic is discussed in
the following section.

SEMAPHORINS IN CNS DISEASE

Given the variety of functions that Semaphorins have during
formation and maintenance of neuronal connections, it
is not unexpected that they have been implicated in
neurodevelopmental or psychiatric disorders characterized
by dysfunctional neuronal networks. In the following sections
we will highlight recent evidence of the involvement of
Semaphorins in CNS disease.

Schizophrenia
Schizophrenia is a psychiatric disease characterized by
hallucinations, delusions, disorganized or catatonic behavior, and
confused speech. Most patients experience cognitive symptoms,
such as deficits in working memory, executive functioning and
attention. A genetic component is recognized as a central factor
in the development of the disease. A number of genes, as well
as the possibility of complex gene-gene interactions, have been
implicated (Insel, 2010). Abnormalities of brain development
are increasingly recognized as culprits in the insurgence
of schizophrenia. In post-mortem studies of patients with
schizophrenia, several brain abnormalities are found, including
alterations in cortical thickness, reduced hippocampal volume
and hippocampal neurogenesis, neuronal misalignment in cortex
and hippocampus, and decreased density of dendritic spines in

the prefrontal cortex (Garey et al., 1998; Glantz and Lewis, 2000;
Wong and Van Tol, 2003; van Swam et al., 2012; Weissleder
et al., 2019). These observations suggest that schizophrenia
may arise from defects in neuronal migration and synaptic
connectivity (Conrad and Scheibel, 1987; Weinberger, 1987;
Murray, 1994; Waddington et al., 1998), including excessive
synaptic pruning, particularly during adolescence, when usually
the first symptoms appear (Feinberg, 1982; Keshavan et al., 1994).
Changes in the expression of Semaphorins or their downstream
effectors were hypothesized to be involved in the pathogenesis
of schizophrenia. Sema3A expression is highly increased in the
cerebellum (namely in the Purkinje cell layer) and prefrontal
cortex of schizophrenia patients compared to control subjects
(Eastwood et al., 2003; Gilabert-Juan et al., 2015). Moreover,
transcripts for the Sema3A receptor PlxnA1 are downregulated
(Gilabert-Juan et al., 2015). However, it is not clear whether
there is also increased expression of Sema3A in PNNs. CSPGs in
PNNs are reported to be diminished in the brain of subjects with
schizophrenia, including the prefrontal cortex (Pantazopoulos
et al., 2010, 2015). An altered expression is also found for
other Semaphorins and plexins in the prefrontal cortex of
schizophrenic patients, with transcripts for PlxnB1 and Sema4D
being upregulated, and transcripts for Sema3D downregulated
(Gilabert-Juan et al., 2015). Two studies reported an alteration in
Sema6C levels in schizophrenic prefrontal cortex, although with
contrasting results (Arion et al., 2010; Gilabert-Juan et al., 2015).
The expression of members of the CRMP family has also been
found to be altered in animal models of schizophrenia as well as
in the human brain (Quach et al., 2015).

Genome-wide association studies found a significant
association between single nucleotide polymorphisms (SNPs)
in PlxnA2 gene and schizophrenia in patients with European,
European-American, or Latin-American descent (Mah et al.,
2006). Follow-up studies expanded these findings to a Japanese
population (Takeshita et al., 2008). However, other studies
found no significant association between SNPs in PlxnA2
and schizophrenia in Japanese or Chinese populations (Fujii
et al., 2007; Budel et al., 2008). This suggests that, in different
populations, PlxnA2 may confer varying genetic risk to
schizophrenia. SNPs in PlxnA2 may induce changes in PlxnA2
conformations, which in turn may influence its cellular
localization, function, or affinity for its ligands [Sema3B,
Sema5A, Sema6A (Renaud et al., 2008; Sabag et al., 2014;
Zhao et al., 2018)]. Interestingly, mice deficient for PlxnA2
show defective hippocampal neurogenesis and impairments
in sociability, associative learning and sensorimotor gating,
which are traits commonly observed in schizophrenia patients
(Zhao et al., 2018).

It is not clear whether changes in the expression levels of
Semaphorins or molecules of their signaling pathway play a
causal role in schizophrenia onset/progression or are simply a
consequence of the disease. However, a link between PlxnA2
mutation and schizophrenia has been found in both humans
and mouse models, pointing to an involvement of PlxnA2
signaling in the etiology of schizophrenia. We can speculate
that impaired PlxnA2 signaling may be responsible for circuits
defects that are typically found in the schizophrenic brain.
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However, further studies in which the expression of PlxnA2
or its ligands is modulated spatio-temporally, for instance by
employing inducible conditional knock-out mice, may help
elucidate this issue.

Anxiety and Depression
Anxiety and depression are among the major causes of disability
worldwide. Defective hippocampal neurogenesis is suggested to
facilitate the development of anxiety and depression (Jacobs et al.,
2000), and recent data indicate that the effect of antidepressants
depends on their ability to induce hippocampal neurogenesis
(Kong et al., 2009; Mateus-Pinheiro et al., 2013). As seen in
the previous section, PlxnA2 deficiency in mice leads to altered
hippocampal neurogenesis, as well as schizophrenia-like traits
(Zhao et al., 2018). When testing the hypothesis that PlxnA2
might be associated with other psychiatric conditions, Wray
et al. (2007) found evidence of an association between a SNP
in plxnA2 gene and anxiety, as well as depression, neuroticism,
and psychological distress, particularly in individuals who were
comorbid for anxiety. This suggests that variants of PlxnA2 may
play a causal role in anxiety disorders.

An additional indication that semaphorin signaling may be
implicated in the development of anxiety comes from the study
by Matsuda et al. (2016) on mice deficient for Sema3F. These
mice show anxiety-related behaviors in novel environments, as
demonstrated by increased latency to enter the light chamber in
the light/dark transition test, reduced time spent in the center
area in the open field, and decreased locomotor activity in
the elevated plus maze, when compared to wild-type mice. In
addition, in the social interaction test, which has also been used to
assess anxiety (File and Seth, 2003), Sema3F knock-out mice show
reduced duration of active social contact with a stranger mouse
compared with controls (Matsuda et al., 2016).

Alcohol dependence and depression are frequently comorbid,
although causal links between the two disorders are unknown
(Grant and Harford, 1995). Interestingly, genome-wide
association studies identified a risk variant in the sema3A
gene in African American participants. No association was
detected in this gene in European American participants,
indicating a population-specific genetic risk (Zhou et al., 2017).
Sema3A risk locus was not identified in genome-wide association
analysis of either disease separately, maybe due to the small
sample size used. The specific contribution of Sema3A mutations
to the possible causes of alcohol dependence and depression
remains to be elucidated.

Overall, only a few studies have implicated semaphorin
signaling in psychiatric disorders such as anxiety and
depression. Although a role of PlxnA2 has been demonstrated
in anxiety, from association results it is not possible to
determine whether the putative functional role of PlxnA2
takes place during development or in the adult brain (possibly
acting on mechanisms regulating neurogenesis). Further
research on mutant mice may help clarify the involvement of
Semaphorins/plexins in psychiatric diseases.

Depression is often associated with structural abnormalities
within specific neuronal networks (Ressler and Mayberg,
2007; Price and Drevets, 2010), raising the possibility that

changes in information processing, rather than a deficiency
in monoaminergic neuromodulators, are a key component of
this condition. Indeed, despite fast drug-induced elevations
of monoamine levels, symptom improvement requires weeks
of antidepressant treatment. Recent evidence suggests that
recovery from depression is based on structural and functional
changes in critical neuronal networks (Castrén and Hen, 2013).
The antidepressant fluoxetine has been shown to restore juvenile-
like plasticity in the adult brain (Maya-Vetencourt et al., 2008;
Karpova et al., 2011). Therefore, antidepressants may promote
reorganization of neuronal networks (Lesnikova et al., 2021),
which, guided by activity, would allow them to better adapt to
environmental conditions. In this framework, Sema3A or other
plasticity inhibitors of the Semaphorin family may be interesting
targets to treat depression.

Epilepsy
Epilepsy is a chronic neurological disease characterized by
spontaneous recurrent seizures. Seizures are due to synchronous
firing of neurons in the CNS, which results from an imbalance
between GABAergic and glutamatergic neurotransmission.
Seizures can be focal, affecting only a discrete part of the
brain, or generalized, encompassing larger brain regions in both
hemispheres. Mesial temporal lobe epilepsy (TLE), one of the
most common forms of epilepsy, is characterized by deficits
in memory, language, attention, and executive functions. The
main causes of epilepsy are genetic variants in neural genes,
brain insults, infections, and developmental malformations.
Inherited forms of epilepsy account for 20% of all epilepsies
(Shin and McNamara, 1994). Nonetheless, following brain injury,
the genetic background of an individual is likely to affect the
probability of insurgence of epilepsy. A genetic predisposition for
injury-induced epilepsy is evident in mice. While the FVB/NJ
mouse strain develops permanent epilepsy following neuronal
injury induced by kainic acid, the C57Bl/6J mouse strain does not
(Copping et al., 2019).

A sequela of molecular and cellular alterations (e.g.,
changes in ion channel activity, post-translational changes to
neurotransmitter receptors, induction of immediate early genes)
underlie epileptogenesis. These alterations are followed by
chronic anatomical changes, including mossy fiber sprouting,
network reorganization, and gliosis in the hippocampus
(Rakhade and Jensen, 2009). Because Semaphorins are involved
in many steps of neuronal networks development, they have
been studied as potential candidates in the etiology of epilepsy.
Sema3F was identified as a gene that is downregulated in
hippocampal pyramidal cells of FVB/NJ mice (which are
epileptogenic sensitive) but not in C57Bl/6J mice (which
are epileptogenic resistant) following kainic acid induction
(Yang et al., 2005). The expression of other members of the
Semaphorin family (e.g., Sema3A, Sema4C) remains unchanged,
demonstrating that kainic acid does not generally effect the
expression of Semaphorins in the brain (Yang et al., 2005). In
addition, Sema3F knockout mice are more prone to seizures than
wild-type animals, even in the absence of neuronal injury (Sahay
et al., 2005). Anatomic and electrophysiologic studies have
demonstrated the presence of anomalous recurrent excitatory
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synapses among dentate granule cells as well as CA1 pyramidal
cells in models of TLE (Perez, 1996; Wuarin and Dudek, 1996;
Esclapez et al., 1999). Because secretion of Sema3F by CA1
pyramidal cells may constrain axonal sprouting, reduced levels
of Sema3F after induced status epilepticus may favor axonal
remodeling and synapse reorganization, which are likely to
provoke seizures. Similarly, the expression of Sema3F protein in
the dentate gyrus is decreased in a lithium-pilocarpine-induced
status epilepticus mouse model, in parallel to mossy fiber
sprouting occurring in that region, suggesting that reduced
expression of Sema3F may facilitate anomalous growth of
mossy fibers (Cai et al., 2016). Experiments in rats confirmed a
reduction in the expression of Sema3F mRNA in the CA1 and
CA3 regions of the hippocampus following kainic acid injection
(Barnes et al., 2003).

The aberrant development of GABAergic circuitry is a
possible risk factor in epilepsy. Interestingly, a knockout of
the Sema3F gene specifically in interneurons results in a
reduced number of interneurons, decreased interneuron neurite
outgrowth, and increased excitability, which are accompanied
by spontaneous seizures. Elevated levels of antigens of oxidative
stress, inflammation, and microglia activation are also found in
Sema3F knock-out mice, suggesting that Sema3F signaling in
the immune system may affect the developing brain (Li et al.,
2019). Notably, decreased numbers of interneurons have been
found in the temporal lobe of patients with epilepsy and animal
models of epilepsy (Spreafico et al., 2000; André et al., 2001;
Sundstrom et al., 2001). In accordance with the abovementioned
evidence, mutant mice for Npn-2 (which is a Sema3F receptor)
show hippocampal wiring defects and develop seizures (Giger
et al., 2000), and a deficit in Npn-2 during development induces a
reduction in dendritic length and complexity and spine numbers
on CA1 pyramidal neurons, as well as decreased survival of
many types of interneuron, which result in spontaneous recurrent
seizure activity after chemical challenge (Gant et al., 2009).

Although dysregulation of Semaphorins in epileptic humans
has not yet been reported, the mRNA encoding Sema3F is a
target of the fragile X mental retardation protein (FMRP) and
is decreased in polysomes from fragile X syndrome patients’
cells, suggesting that Sema3F is downregulated in these patients
(Darnell et al., 2001). The knockout mouse of Fmr1, the gene
that encodes for FMRP, demonstrates defects in the mossy
fiber infrapyramidal tract that are similar to those observed in
the Sema3F, Npn-2, and PlxnA3 knockout animals, suggesting
that regulation of Sema3F by FMRP may be important for the
correct wiring of the hippocampus (Ivanco and Greenough,
2002). Interestingly, 10–20% of individuals with the fragile X
syndrome also develop epilepsy (Berry-Kravis, 2002), raising the
possibility that dysregulation of Sema3F predisposes humans to
epilepsy as well.

Changes in expression levels of other Semaphorins have been
also documented in animal models of epilepsy (Barnes et al.,
2003; Holtmaat et al., 2003). Neurons of layer II of the adult
entorhinal cortex (stellate cells) express Sema3A mRNA (Giger
et al., 1998). Stellate cells project to the molecular layer of the
dentate gyrus, where they may secrete Sema3A. After induction
of status epilepticus, a downregulation of Sema3A mRNA in

the entorhinal cortex has been observed concomitantly with an
upregulation of mRNA for the growth-associated protein GAP-
43 in granule cells. At later time points, mossy fibers vigorously
sprout into the dentate gyrus molecular layer (Gorter et al., 2001,
2002). These results suggest that a reduction of Sema3A protein
in the molecular layer would allow the growth of mossy fibers
during epilepsy.

Sema3A is abundantly expressed in PNNs. Interestingly, PNNs
are decreased in the hippocampus of animal models of epilepsy,
possibly due to altered expression of PNN degrading enzymes
(Mcrae et al., 2012; Rankin-Gee et al., 2015). As a consequence,
Sema3A protein may be displaced from the synapses and this
may favor aberrant neurite outgrowth and synapse formation on
PNN-bearing neurons.

Recent evidence shows that the expression of CRMP-1 and -
2 is strongly decreased in the temporal cortex of TLE patients
(Czech et al., 2004; Luo et al., 2012). In a rat pilocarpine-induced
epilepsy model, which is characterized by mossy fiber sprouting
and spontaneous seizure generation (Shibley and Smith, 2002),
CRMP-1 labeling in CA1 and CA3 pyramidal cells and adjacent
neocortex is decreased (Luo et al., 2012). The reduction of CRMP
proteins may contribute to the formation of recurrent excitatory
networks in TLE.

Overall, studies in knock-out mice suggest that Sema3F
signaling may be implicated in the etiology of epilepsy.
Sema3F downregulation may induce changes in neuronal wiring,
resulting in seizures. However, it is still unclear if changes in
expression of other Semaphorins, such as Sema3A, may play
a causative role in the onset of the disease or occurs as a
consequence of the disease. Nonetheless, downregulation of
Semaphorin signaling induced by seizures may cause changes in
neuronal circuitry, which may result in further seizures and, thus,
exacerbation of disease symptoms.

Autism
Autism spectrum disorder (ASD) is a neurodevelopmental
syndrome characterized by repetitive behaviors and deficits
in social skills and language. Although the etiology of ASD
is yet unclear, in the majority of the cases (50–90%) it
is thought to be genetic. A unifying model proposes that
ASD is the consequence of aberrant developmental wiring
of brain regions that are involved in higher-order functions
(Kelleher and Bear, 2008). Indeed, a growing number of ASD-
associated genes encode synaptic proteins (Peça and Feng, 2012;
Voineagu and Eapen, 2013). Interestingly, several Semaphorins
have been linked to ASD. Weiss et al. (2008) identified
microdeletions and microduplications of chromosome 16p11.2
that carry substantial susceptibility to ASD, accounting for
approximately 1% of cases. One of the genes from the affected
region encodes for TAOK2 (thousand-and-one-amino acid 2
kinase), a member of the MAP kinase family that interacts
with Npn-1. Sema3A induces TAOK2 phosphorylation, thereby
activating it. TAOK2, in turn, modulates the Sema3A–Npn-1
pathway that controls basal dendrite arborization of cortical
pyramidal neurons (Fenstermaker et al., 2004). It has been
shown that TAOK2 downregulation impairs the formation of
basal dendrites, whereas TAOK2 overexpression restores deficits
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in basal dendrite formation induced by inactivation or knock-
out of Npn-1 (de Anda et al., 2012). This suggests that loss-of-
function of TAOK2 may affect Sema3A-mediated regulation of
dendritic formation, leading to abnormal development of the
cortical network.

Semaphorins dysfunction has also been linked to Rett
syndrome (Degano et al., 2009), an autism spectrum disorder
that results from mutations in the transcriptional regulator
methyl-CpG binding protein 2 (MECP2; Ip et al., 2018).
Mouse models lacking MeCP2 or expressing a mutant form
of MeCP2 share many features of the human disorder (Chen
et al., 2001; Shahbazian et al., 2002; Pelka et al., 2006). By
employing these mice, Degano et al. (2009) observed severe
defects in axonal guidance in the developing olfactory system,
and altered expression levels of components of the Sema3F–Npn-
2–PlxnA3 and Sema3A–Npn-1–PlxnA4 pathways, suggesting
that MeCP2 controls the expression of Sema3A and Sema3F
and their receptors during development. Indeed, olfactory
axons from Mecp2 mutant mice display reduced repulsion
when co-cultured with mutant olfactory bulb explants, but
not with wild-type olfactory bulbs (Degano et al., 2009).
Thus, time and space-dependent transcriptional dysregulation
of Semaphorins and/or their receptors could account for
defects in the development of neural connectivity caused
by Mecp2 mutation.

Finally, both Sema3F and Npn-2 null mice recapitulate some
aspects of autistic behaviors (Shiflett et al., 2015; Matsuda
et al., 2016). In addition, mice in which Npn-2 is selectively
knocked-out in interneurons show neuropathological traits
similar to those found in ASD brains (Gant et al., 2009).
Similarly, interneuron-specific knockout mice of Sema3F display
reductions in sociability and increased repetitive behaviors
(Li et al., 2019).

In a genome wide association study, Sema5A has been
identified as ASD susceptibility gene (Weiss et al., 2008).
Moreover, Sema5A expression is found to be reduced in
Brodmann area 19 as well as in lymphocytes of autistic
subjects (Melin et al., 2006; Weiss et al., 2008). Sema5A−/−

mutants exhibit several alterations, from deficits in sociability,
to exuberant excitatory synapses and increased excitatory
synaptic transmission in dentate granule cells (Duan et al.,
2014). Additional studies are needed to determine the cellular
basis of the behavioral deficits observed in Sema5A−/− mice.
Studies utilizing Sema5A conditional mutants that lack Sema5A
in specific neural cell-types or specific brain structures may
help identify where Sema5A function is required for proper
neural circuit development. Additional evidence that Sema5A
dysfunction could lead to ASD comes from the study by Mosca-
Boidron et al. (2016), which reports a de novo translocation
in the Sema5A gene, associated with a partial deletion, in a
patient with ASD.

Multiple Sclerosis
Multiple sclerosis (MS) is a CNS disease characterized by
multifocal inflammation and immune-mediated damage to
myelin sheaths, which disrupts axonal signal conduction. As
demyelinated axons are prone to injury and degeneration,

various degrees of axonal damage and neurodegeneration occur
in MS patients, which contribute to MS progression and
permanent disability involving motor and cognitive functions
(Compston and Coles, 2008). OPCs are the main source of
remyelinating cells. Interestingly, in active demyelinating lesions
in human MS brains, numerous glial cells, including OPCs,
express transcripts for Sema3A and Sema3F as well as Npn,
which are normally not detected in the intact white matter
(Williams et al., 2007). Moreover, an increased number of PlxnA1
expressing oligodendrocytes is found in the white matter of
MS patients (Binamé et al., 2019). Because Semaphorins are
known inhibitors of axon regeneration (Mecollari et al., 2014),
in MS lesions they may hinder the attempts of lesioned, but also
intact neurons to reorganize their connections in response to
injury. Expression levels of Sema3A and 3F are also increased
in neurons projecting to the lesion site (Williams et al., 2007),
suggesting that Semaphorin upregulation in neurons may be
a consequence of axon demyelination or a response to axonal
insult/degeneration. On the other hand, since Sema3A and
Sema3F are expressed in OPCs during white matter development,
where they act as OPC chemorepulsive or chemoattractant cues,
respectively (Sugimoto et al., 2001; Spassky et al., 2002; Tsai
and Miller, 2002), they may influence OPC recruitment toward
demyelinated lesions. Sema3F expressing cells are particularly
abundant in MS lesions characterized by strong inflammation,
suggesting that inflammatory lesions are associated with higher
levels of OPC attractive cues to promote OPC migration and,
as a consequence, myelin repair. On the contrary, Sema3A is
more abundant in less inflammatory lesions, where myelination
is lower, suggestive of a chemorepulsive role of Sema3A on OPC
migration (Williams et al., 2007). Indeed, lentiviral-mediated
overexpression of Sema3F in demyelinated areas induces an
increase in the number of OPCs as well as remyelination.
Overexpression of Sema3A results instead in decreased OPC
recruitment, while an opposite effect is found by Sema3A loss-
of-function experiments (Piaton et al., 2011). When Sema3A
is administered to an oligodendroglial precursor cell line or
cultured NSCs, cell migration and expression of myelin basic
protein are strongly reduced, reinforcing the notion that Sema3A
inhibits both OPC differentiation and oligodendrocyte migration
(Binamé et al., 2019). Moreover, following infusion of Sema3A
into demyelinated rat cerebellar peduncle, OPC differentiation
and remyelination are strongly inhibited although the number
of OPCs in demyelinated lesions is not altered (Syed et al.,
2011). Interestingly, injection of a peptide inhibiting Sema3A
signaling (by antagonizing Npn-1-PlxnA1 dimerization) is able
to induce myelin recovery and rescue motor deficits in mouse
models of MS (Binamé et al., 2019). The combination of anti-
inflammatory drugs (which are current treatments for MS) with
therapies aiming at inhibiting Sema3A signaling in order to repair
myelin and enhancing neuronal plasticity would be an interesting
strategy toward a regenerative treatment for MS.

Other Semaphorins have been recently implicated in MS.
Sema7A has been detected in neurons close to MS lesions
as well as in reactive astrocytes and oligodendrocytes in the
damaged white matter in mice and human tissue (Costa
et al., 2015; Gutiérrez-Franco et al., 2016), suggesting it may
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have an inhibitory role in compensatory axonal remodeling
in lesioned areas. Moreover, Sema7A is upregulated in mice
in inflammatory cells infiltrating the CNS and in blood
immune cells during the inflammatory phase of experimental
autoimmune encephalomyelitis (EAE, a widely accepted model
of MS), suggestive of a role in the immune response (Gutiérrez-
Franco et al., 2016). Indeed, microglia and macrophages express
Sema7A receptors (Costa et al., 2015) and Sema7A induces
a strong activation of monocytes and macrophages as well as
production of pro-inflammatory cytokines (Holmes et al., 2002).
Moreover, in Sema7A knock-out mice with EAE, the disease
is milder than in wild-type mice, suggesting that Sema7A is
involved in peripheral immunity and inflammation during MS
(Gutiérrez-Franco et al., 2016, 2017).

Furthermore, Sema4D participates in several processes
which are compromised during MS, including migration and
differentiation of OPCs, immune cell regulation and blood brain
barrier integrity (Giraudon et al., 2004, 2005; Suzuki et al.,
2008; Yamaguchi et al., 2012). Inhibiting Sema4D activity by
anti-Sema4D antibodies that block the interaction of Sema4D
with its receptors results in improvement of clinical scores
in EAE-rodents and in enhanced myelin integrity. In vitro
experiments show that administering Sema4D to OPCs decreases
their differentiation, and this effect is reversed by anti-Sema4D
antibodies (Smith et al., 2015). At present a clinical trial is
ongoing to test the potential of the antibodies-based inhibition
of Sema4D as a novel therapeutic strategy for MS, and the phase
I has been successfully completed (LaGanke et al., 2017).

Amyotrophic Lateral Sclerosis
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative
disease. It is characterized by gradual degeneration of
motoneurons in the brain and spinal cord, leading to progressive
paralysis of skeletal muscles and death within 5 years of diagnosis
due to respiratory failure. The vast majority of ALS cases (90%)
are considered sporadic, with various genetic or environmental
factors influencing the disease. Fast-fatigable motoneurons
are the most vulnerable in ALS. The mechanisms leading to
motoneuron death are not yet completely elucidated. However,
the observation that the first pathophysiological changes
observed in patients occur at the NMJ has given rise to the
theory that ALS is a distal axonopathy, caused by alterations
in skeletal muscles, muscle satellite cells or terminal Schwann
cells, before motoneuron degeneration occurs (Moloney et al.,
2014). Interestingly, aberrant expression or function of axon
guidance cues, including Semaphorins and ephrins, have been
recently proposed to be linked to the pathogenic mechanism
of ALS. Sema3A is upregulated in terminal Schwann cells at
the NMJ in type IIb muscle fibers (which are innervated by
fast-fatigable motoneurons) in pre-symptomatic ALS mice,
suggesting that it may induce the retraction of these terminals
from the neuromuscular synapse (de Winter et al., 2006).
Moreover, increased Sema3A expression has been found in
cortical motoneurons of ALS patients, where it may cause axonal
degeneration or prevent regeneration of motor axons (Korner
et al., 2016). Notably, interfering with Sema3A-Npn-1 binding
in adult motoneurons leads to improved motor functions and

survival of ALS mice (Moloney et al., 2014; Venkova et al., 2014).
In contrast, in ALS mice with chronically diminished Sema3A
signaling, the decline in motor functions is not improved
(Moloney et al., 2017). However, in the latter case, processes
compensating the chronic defect in Sema3A signaling may
mask the role of Sema3A in ALS. In presymptomatic ALS
mice, CRMP4a is upregulated in a subset of lumbar motor
neurons, and overexpression of CRMP4a leads to degeneration
of 30% of spinal motoneurons (Duplan et al., 2010). In human
patients, a missense mutation within the CRMP4a gene has
been found in a French population, and overexpression of
CRMP4a protein bearing such mutation in motoneurons in vitro
accelerates cell death through a detrimental effect on axonal
growth (Blasco et al., 2013). CRMP4 may mediate Sema3A effects
on ALS pathology, as Sema3A may signal through CRMP4
(Niisato et al., 2012).

Furthermore, Birger et al. (2018) demonstrated the ability
of Sema3A to reduce cell survival of human cortical neurons
and, in contrast, to stimulate neuronal survival of human
spinal motoneurons. These observations are consistent with the
upregulation of Sema3A in the cortex of ALS patients (Korner
et al., 2016), suggesting that this protein may be a contributing
factor in the loss of neurons in the cortex of ALS patients.

Interestingly, astrocytes are involved in ALS progression in
mice (Yamanaka et al., 2008), and patient-derived astrocytes are
toxic toward wild-type motoneurons in vitro (Haidet-Phillips
et al., 2011; Meyer et al., 2014). Astrocytes regulate many
neuronal functions including axon maintenance, and part of
this communication is regulated through secreted extracellular
vesicles (EVs; Frühbeis et al., 2013). Specifically, EV miRNA
cargo can modulate neuronal and astrocytic function in health
and disease (Chaudhuri et al., 2018). Varcianna et al. (2019)
showed that induced astrocytes derived from human fibroblasts
secrete miRNAs regulating transcripts for proteins involved
in axonal growth and maintenance. Notably, EVs isolated
from the conditioned medium of induced astrocytes derived from
fibroblasts of ALS patients are sufficient to cause motoneuron
death even in presence of trophic factors, demonstrating that
EVs carry toxic factors. Moreover, conditioned medium from
ALS astrocytes causes axonal suffering before motor neuron
cell body loss. In conditioned medium derived from ALS
astrocytes, there is a significant downregulation of a miRNA
(miR-494-3p) involved in the regulation of several genes,
including the inhibition of Sema3A expression. Treatment
of cultured mouse motoneurons with conditioned medium
from ALS astrocytes supplemented with miR-494-3p reduces
Sema3A levels, rescues neurite length and motor neuron survival
(Varcianna et al., 2019).

Additionally, Sema3A may be involved in the myogenic
program necessary for muscle regeneration after muscle injury.
Namely, Sema3A, which is expressed by satellite cells after muscle
injury or denervation (Do et al., 2011), may be beneficial for
skeletal muscle regeneration by delaying neuronal sprouting
and re-attachment of nerve terminals until damaged muscle
fibers have been repaired. Thus, it is possible that, upon ALS-
related denervation, satellite cells begin to produce Sema3A.
The myogenic pathway is indeed active in presymptomatic ALS
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mice, but the function of satellite cells becomes impaired as
ALS progresses (Pradat et al., 2011; Manzano et al., 2013) and
levels of myogenic proteins decrease (Manzano et al., 2011). If
the myogenic process is unable to maintain muscle regeneration,
muscle fibers are not restored and Sema3A may keep on delaying
the re-attachment of terminals, contributing to the progression of
muscle weakening and paralysis.

Based on this bulk of evidence, we can conclude that
hyperactive Sema3A signaling may be the leading cause of axonal
degeneration and motoneuron death in ALS, making Sema3A a
potential therapeutic target in this disease.

Alzheimer’s Disease
Alzheimer disease (AD) is the most common age-related
dementia, characterized by progressive degeneration of neurons
in the neocortex and hippocampus (Braak and Braak, 1991; Price
et al., 1991).

Alzheimer disease is divided into familial AD and sporadic
AD (Dorszewska et al., 2016). The vast majority of AD is
sporadic, and is caused by a combination of genetic and
environmental risk factors. Only 5% of the AD cases are
familial, which might be caused by autosomal mutations in
β−amyloid precursor protein, presenilin 1 and/or presenilin
2 (Waring and Rosenberg, 2008). AD is characterized by
extraneuronal deposition of amyloid β (Aβ) protein in the
form of plaques and intraneuronal aggregation of microtubule-
associated protein tau in the form of filaments. Braak et al.
(1994) proposed that abnormal tau phosphorylation is a
crucial step leading to the formation of tau filaments, and
that, unlike Aβ accumulation, the spread of tau filaments is
associated with the clinical progression of AD. Interestingly,
immunohistochemical studies performed by Good et al. (2004)
in adult human brains reveal that Sema3A shows a punctate
pattern on the membrane of neurons (although it is not
clear if it is associated with perineuronal nets), whereas in
AD patients individual neurons display either punctate surface
labeling staining or granular intracellular labeling. Interestingly,
at the onset of neurofibrillary tangle formation the majority of
CA1 neurons labeled for Sema3A are devoid of neurofibrillary
tangles, suggesting that Sema3A accumulation may precede
tau phosphorylation during the development of AD. Later
on during the disease process, accumulation of Sema3A is
found to colocalize with phosphorylated tau and microtubule
associated protein 1B (MAP1B) in many neurons. Neurons
responding to Sema3A may activate kinases that promote
phosphorylation of tau. Although a number of kinases have
been shown to phosphorylate tau in vitro, the key players
in vivo are GSK-3b and Cdk5 (Lew et al., 1994; Lovestone
et al., 1994; Wagner et al., 1996; Patrick et al., 1999; Lau
et al., 2002), and these kinases have been suggested to mediate
the functions of Sema3A (Eickholt et al., 2002). Sustained
activation of Cdk5 and GSK-3, or inhibition of phosphatase
activities (Bennecib et al., 2000; Planel et al., 2001), may result
in pathogenic hyperphosphorylation of tau and MAP1B during
AD. Altogether, degeneration of neurons in the CA1 during the
early stages of AD may be caused by aberrant Sema3A signaling
following intracellular accumulation of Sema3A, which may

TABLE 2 | Overview of the involvement of Semaphorins or their receptors in
neuropsychiatric/neurological diseases.

Disease Human
mutation

Expression
changes in
human brain

Mutant mice that
develop the disease or
modulation of gene
expression in mice

Schizophrenia PlexinA2 ↑ Sema3A
↑ Sema4D
↑ PlxnB1
↓ PlxnA1
↓ Sema3D

PlxnA2 -/- mice

Anxiety PlexinA2 – Sema3F -/- mice

Depression
(comorbidity
with alcohol
dependence)

Sema3A – –

Epilepsy – ↓ CRMP-1
↓ CRMP-2

Sema3F -/- mice
Npn-2 -/- mice

Autism Sema5A ↓ Sema5A Sema5A -/- mice
Sema3F -/- mice
Npn-2 -/- mice

Multiple
sclerosis

– ↑ Sema3A
↑ Sema3F
↑ Sema4D
↑ Sema7A
↑ Npn
↑ PlexinA1

Milder symptoms/increased
remyelination:
- In Npn-1 -/- mice;
- In Sema7A -/- mice;
- After inhibition of Sema3A

signaling;
- After overexpression of

Sema3F;
- After infusion of

anti-Sema4D antibodies
More severe
symptoms/decreased
remyelination:
- After overexpression of

Sema3A

ALS – ↑ Sema3A –

Alzheimer’s
disease

– ↑ PlexinA4
↑ PlexinB1

–

contribute to the acceleration of tau phosphorylation, leading
to neurofibrillary tangle formation (Good et al., 2004). In this
respect, phosphorylated CRMP2 protein has been observed in
neurofibrillary tangles in the brain of AD patients, suggesting
that phosphorylation of CRMP, activated by Sema3A, may
be relevant for the pathological aggregations of microtubule-
associated proteins (Uchida et al., 2005).

In addition, since Sema3A can directly induce
neurodegeneration and apoptosis of neural progenitor cells
(Bagnard et al., 2001), sensory neurons (Gagliardini and
Fankhauser, 1999), cerebellar granule cells and sympathetic
neurons in vitro (Shirvan et al., 1999, 2000), it may play a direct
role in neurodegeneration in AD.

From a genetic perspective, two SNPs in Sema3A gene,
which lead to an amino acid substitution, were deposited in
the genome browser “Ensemble”1, but they were not detected in
an Italian population of AD patients, suggesting that Sema3A
does not act as risk factor toward the development of AD

1http://ensembl.org/Homo_sapiens
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(Villa et al., 2010). On the contrary, a significant association
between AD risk and SNPs in PlxnA4 has been recently identified,
and higher levels of PlxnA4 isoforms in cortical brain tissue
were observed in late stage AD cases compared to controls,
which were significantly correlated with the clinical dementia
rating score, plaque density, and Braak stage (Jun et al., 2014).
In addition, by using RNA sequence data from AD patients
and building a molecular network using modules of coexpressed
genes, PlxnB1 gene has been found to be strongly correlated
with β-amyloid burden as well as cognitive decline in older
individuals, and with extracellular β-amyloid levels in astrocyte
cultures (Mostafavi et al., 2018).

Based on the data showing a correlation between
Semaphorins/Plxns and AD pathology, it would be interesting
to investigate whether targeted overexpression of Semaphorins,
such as Sema3A, or Plxns, such as PlxnA4 or PlxnB1, in
the hippocampus or cortex of mice is sufficient to induce an
AD-like phenotype.

In order to overcome the progressive loss of functional
connections due to neurodegeneration in AD, new neuronal
connections may help bypass non-functional neurons, leading to
functional improvements. In order to increase axonal plasticity
to compensate for neuronal loss in AD, interfering with Sema3A
in PNNs may be an interesting path to explore. In this context,
enzymatic digestion of PNN-CSPGs in the perirhinal cortex of
AD mice with neurodegenerative tauopathy results in restoration
of normal synaptic transmission and memory improvement
(Yang et al., 2015).

DISCUSSION

Semaphorins regulate several processes during nervous system
development, from cell proliferation, differentiation and
migration to neuritogenesis and synapse formation. In recent
years it has become increasing clear that Semaphorins are also

pivotal molecules in the control of structure and function of
neural circuits throughout life. However, it is not known whether
they employ similar molecular mechanisms throughout different
stages of development and in the adulthood. It is possible
that specific Semaphorin downstream signaling pathways are
employed for the execution of specific functions, depending on
neuronal cell type, neuronal compartment (growth cone, synapse,
dendrites, etc.), and age.

Interestingly, Semaphorin expression is altered in several
disorders characterized by neuronal circuits alterations (Table 2).
However, in many instances it is difficult to discriminate between
a causal role of Semaphorins in the disease and a change
in expression occurring during the disease process. In the
latter case, however, Semaphorins may amplify the severity
of the disease. Furthermore, it is complicated to distinguish
between developmental and adult effects of Semaphorin
alterations on a disease. Employing mutant mice in which
Semaphorin expression is spatio-temporally regulated may help
elucidate those issues.

Overall, Semaphorins and their associated receptors and
signaling proteins may represent valuable biomarkers for
monitoring disease progression as well as promising therapeutic
targets for treating debilitating brain diseases.
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