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Neonatal hypoxic–ischaemic brain damage is a leading cause of child mortality and
morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of
neonatal hypoxic–ischaemic cases arise as a result of impaired cerebral perfusion
to the foetus attributed to uterine, placental, or umbilical cord compromise prior to
or during delivery. Bacterial infection is a factor contributing to the damage and
is recorded in more than half of preterm births. Exposure to infection exacerbates
neuronal hypoxic–ischaemic damage thus leading to a phenomenon called infection-
sensitised hypoxic–ischaemic brain injury. Models of neonatal hypoxia–ischaemia (HI)
have been developed in different animals. Both human and animal studies show that
the developmental stage and the severity of the HI insult affect the selective regional
vulnerability of the brain to damage, as well as the subsequent clinical manifestations.
Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI.
However, the number of HI infants needed to treat with TH for one to be saved from
death or disability at age of 18–22 months, is approximately 6–7, which highlights the
need for additional or alternative treatments to replace TH or increase its efficiency. In
this review we discuss the mechanisms of HI injury to the immature brain and the new
experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.

Keywords: hypoxia, ischaemia, neonatal encephalopathy, infection, neonatal brain damage

INTRODUCTION

The interruption of blood and oxygen supply to the foetal brain during pregnancy and at the
time of birth is a leading cause of neonatal hypoxic–ischaemic (HI) brain damage. Also known as
neonatal hypoxic–ischaemic encephalopathy (HIE), this condition affects 1–3 per 1000 live births
in developed countries, increasing to 26 per 1000 in the developing world (Rocha-Ferreira and
Hristova, 2016). Despite the advantages in neonatal health care, a quarter of all neonatal deaths
is due to HIE (Lawn et al., 2005; Rocha-Ferreira and Hristova, 2016), and 30% of the sufferers of
neonatal HI brain damage develop disabilities, including cerebral palsy, seizures, and cognitive and
memory impairment (Rocha-Ferreira and Hristova, 2016; Lundgren et al., 2018).

The pathology of HI brain injury evolves over days via three consecutive phases (primary,
secondary, and tertiary energy failure, Figure 1; Sarnat and Sarnat, 1976). Immediately after the
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HI insult, the lack of oxygen and glucose reduces mitochondrial
phosphorylation and adenosine triphosphate (ATP) availability
causing anaerobic respiration (Vannucci, 1990; Jensen et al.,
1999). The change in metabolism results in extracellular
acidosis leading to ionic pumps dysfunction, thus increasing
the intracellular calcium influx, and changing the membrane
potential. The depolarised neuronal membrane releases high
concentrations of glutamate, which are typically cleared via the
glia reuptake pumps during aerobic respiration, establishing an
excito-oxidative cascade (Rocha-Ferreira and Hristova, 2016)
causing neurotoxicity (Sanders et al., 2010) and mostly necrotic
cell death (Rocha-Ferreira and Hristova, 2016). After successful
re-oxygenation, a latent recovery phase takes place, where
respiration switches back to aerobic and homoeostasis is
recovered (Vannucci, 1990; Jensen and Berger, 1991; Gunn
et al., 1992; Jensen et al., 1999). Depending on the severity
of the HI insult, primary energy failure might not be
compensated and would lead to secondary energy failure
(Rocha-Ferreira and Hristova, 2016). This phase starts as early
as 6–12 h after the initial injury and involves continued
excitotoxicity, mitochondrial impairment, and inflammation. In
particular, there is an increased expression of pro-inflammatory
cytokines, such as interleukin-1α (IL-1α), interleukin-6 (IL-6),
and tumour necrosis factor-α (TNF-α) which enhances free
radical formation and cell death. Oligodendrocyte progenitors
supply energy to myelinated axons and have high metabolic
demand. Therefore, they are particularly sensitive to free radical
formation (Janowska and Sypecka, 2018). Hence, following
HI, oligodendrocyte degeneration and hypomyelination are
enhanced in animal models, as well as in human newborns
(Segovia et al., 2008; Janowska and Sypecka, 2018). The
mitochondrial dysfunction following HI insult boosts oxidative
stress by upregulating catalase (CAT), superoxide dismutase
(SOD), and glutathione peroxidase (GPx), and by increasing
glutathione peroxidase/creatinine ratio (GPx/Cr) (Hope et al.,
1984; Penrice et al., 1997) thus causing generation of reactive
oxygen species (ROS). The majority of cell death occurs via
necrosis, apoptosis [caspase 3 dependent, Bcl-2-associated X
protein (Bax)/B-cell lymphoma 2 (Bcl-2) pathway], autophagy,
and apoptosis–necrosis continuum leading to cellular atrophy
(Peng and Greenamyre, 1998; Puka-Sundvall et al., 2000;
Johnston et al., 2002; Northington et al., 2007). Depending
on the length and the severity of the HI insult, tertiary
energy failure can occur and persist for weeks and months,
involving remodelling and repair, astrogliosis, and late cell death
(Rocha-Ferreira and Hristova, 2016).

Several studies highlight the latent period as the therapeutic
window in neonatal HI because, although magnetic resonance
imaging (MRI) and histological assessments show no obvious
changes, cell death pathways are still active and lead to secondary
and eventually tertiary energy failures. Hence, during the latent
period, the pathogenesis of the disease can be interrupted
and the brain damage contained by fighting the onset of the
secondary energy failure (Gunn, 2000; Gunn and Thoresen, 2006;
Shankaran, 2009).

In the majority of HI cases, multiple factors contribute to
the damage. The presence of bacterial infection which increases

the risk of intraventricular haemorrhage and brain damage
(Dammann and Leviton, 2008) is recorded in 50% of preterm
births (Suff et al., 2016). The exposure of the immature brain to an
inflammatory stimulus causes an increase in pro-inflammatory
cytokine levels and neuronal death thus leading to impairment
of the natural development of the CNS (Hagberg et al., 2015).
Elevated levels of pro-inflammatory cytokines such as IL-1α, IL-
6, IL-8, and TNF-α in the cerebrospinal fluid (CSF) and blood
serum of neonates with HI sensitise the immature brain to
injury and increase the risk of development of cerebral palsy and
other disabilities (Sävman et al., 1998; Foster-Barber et al., 2001;
Hagberg et al., 2015; Martinello et al., 2019b).

Bacterial lipopolysaccharide (LPS) is the major component
of the outer membrane of most Gram-negative bacteria
and has strong immune-stimulatory proprieties (Wang et al.,
2009). In rodent studies pre-exposure to LPS enhances tissue
damage, mortality rate, and infarction volume following HI
(Wang et al., 2009; Rocha-Ferreira et al., 2015). In the
LPS-sensitised HI brain, the interaction between LPS and
Toll-like receptors (TLR) appears to be critical (Lehnardt
et al., 2003). The activation of TLR3 and TLR4 reduces
myelination while increasing glial activation (Hagberg et al.,
2015), BBB impairments, and infiltration of peripheral immune
cells (Stolp et al., 2007). Accordingly, in LPS-sensitised HI,
monocyte chemoattractant protein-1 (MCP-1), and cytokine-
induced neutrophil chemoattractant-1 (CINC-1) expression
increases to recruit peripheral monocytes (Brochu et al., 2011).
Evidence suggests that TLR4 mediates the LPS-sensitisation, via
direct binding to the receptor and activation of the myeloid
differentiation factor-88 (MyD88) pathway which leads to an
increase in NF-κB and TNF-α levels (Lehnardt et al., 2002;
Mallard Anders Elmgren et al., 2009; Wang et al., 2009) as
shown in Figure 2. Studies using TNF cluster knock-out mice
(Kendall et al., 2011), MyD88 deficient mice (Mallard Anders
Elmgren et al., 2009), or pharmacological inhibition of NF-
κB (Yang et al., 2013a) show a reduction in brain injury after
LPS-sensitised neonatal HI. The nuclear translocation of NF-
κB leads to pro-inflammatory cytokines gene expression, and
the activation of the inflammasome NLRP3, which is a caspase
1 and IL-1α activating multi-protein complex (Cunha et al.,
2016; Serdar et al., 2019). However, early-onset sepsis in term
babies is also caused by Gram-positive bacterial species in more
than 90% of the cases, thus sensitising the neonatal brain to HI
injury. The neuroinflammatory response triggered through the
Gram-negative route (TLR4) is different from the one induced
through the Gram-positive route (TLR2) (Falck et al., 2017).
Peptidoglycans and lipoteichoic acid on the wall of Gram-positive
bacteria bind to TLR2 and induce inflammatory activation via
a different pathway, which similarly to TLR4 causes an increase
of MyD88, and NF-κB and TNF-α, respectively (Takeuchi et al.,
1999; Oliveira-Nascimento et al., 2012) thus exacerbating HI-
induced neuronal tissue loss and demyelination in neonatal mice
(Mottahedin et al., 2017).

Microglia are the primary CNS immunocompetent cells and
play a central role in normal and LPS-sensitised HI. Neonatal
HI induces early pro-inflammatory microglial (M1) activation.
This triggers synthesis and secretion of pro-inflammatory
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FIGURE 1 | Pathological development of neonatal HI brain injury. The HI insult is initiated by reduction of blood flow and oxygen to the foetal brain, leading to primary
energy failure. The main events of this phase include reduction of ATP and glucose, increase of intracellular calcium, and therefore increase of extracellular glutamate.
This leads to cell death mainly via necrosis. Following re-oxygenation, a latent phase begins, where the body resumes a “normal” state. A secondary energy failure
may take place after 6–12 h post-HI insult, where a subsequent and stronger wave of cell death hits the brain, and events like inflammation, oxidative stress, and
mitochondrial damage occur. Depending on the severity of the insult, a tertiary energy failure can occur and persist for months, characterised by brain remodelling
and repair, as well as astrogliosis. Figure created with BioRender.com.

cytokines, such as IL-1 and TNF-α, thus promoting inflammation
and exacerbating damage. On the other hand, M2 activated
microglial cells produce anti-inflammatory cytokines like IL-
4 and IL-10, and in communication with other cells mediate
anti-inflammatory immune response and promote healing
(Mantovani et al., 2004).

In a rat model of infection-sensitised HI, microglial cells
display a pro-inflammatory M1 phenotype at 24 h post-insult
(Serdar et al., 2019). At the same time, the expression of genes
corresponding to an anti-inflammatory M2 microglial phenotype
was also recorded (Serdar et al., 2019) highlighting that microglia
play a dual role in normal and LPS-sensitised HI and can switch
between pro- and anti-inflammatory phenotype while at times
simultaneously expressing both M1 and M2 markers.

ANIMAL MODELS OF
HYPOXIA–ISCHAEMIA

This review aims to provide an update on the new proposed
treatments which are studied for neonatal HI and infection-
sensitised HI. To better understand this, we offer a summary
of the literature around the animal models used for these two
kinds of neonatal HI.

Rodents
Most studies investigating neonatal HI focus on using rodent
models with the most prevalent and best studied of these being
the one developed by Rice and Vannucci (Rice et al., 1981;

Rumajogee et al., 2016; Millar et al., 2017). In brief, the Rice–
Vannucci model involves unilateral ligation of the common
carotid artery, followed by exposure to 8–10% oxygen for
30 min to 3 h at 37◦C. Injury is restricted to the ipsilateral
hemisphere, thus allowing the contralateral hemisphere to be
used as a control. The Rice–Vannucci model produces an
injury profile similar to the human foetal brain, with cortex,
subcortical and periventricular white matter, striatum, thalamus,
and hippocampus being the most damaged regions due to their
high metabolic requirements (Rice et al., 1981; Martin et al.,
1997; Johnston et al., 2001; McQuillen et al., 2003; Vannucci
and Hagberg, 2004). Initially developed in the rat, this model
has also been successfully modified and extended to the mouse
(Sheldon et al., 1998).

One of the main advantages of this model is its flexibility
in replicating both preterm (rodent postnatal days 1–6)
and term (rodent postnatal days 7–10) human foetal injury
(Jisa et al., 2018).

On the other hand, a significant limitation of the Rice–
Vannucci model is the unilateral nature of the insult, inducing
focal brain injury, which is not fully representative of the
clinical observations and leading to considerable between-animal
variability in the degree of damage, ranging from mild to severe
(Vannucci and Hagberg, 2004). Moreover, there is variance in the
damage profile between different mouse strains which raises a
reproducibility issue (Sheldon et al., 1998; Rocha-Ferreira et al.,
2015; Ann Sheldon et al., 2019).

Rodent models of bilateral carotid artery occlusion have also
been developed (Uehara et al., 1999; Cai et al., 2001), involving
postnatal day 1 or 5 rats without hypoxic conditions. The
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FIGURE 2 | Lipopolysaccharide sensitisation. A bacterial infection sensitises the brain to HI insult via the interaction of LPS and TLR4. This leads to internalisation of
NF-κB, mediated by MyD88. NF-κB activates the transcription of pro-inflammatory cytokine genes. Simultaneously, the interaction of LPS with TLR4 activates the
NLRP3 inflammasome, which also promotes increase in pro-inflammatory cytokine levels and apoptosis. Figure created with BioRender.com.

neuropathological observations at 48 h post-surgery indicate
mild to severe white matter lesions in the internal capsule
and cerebral cortex as well as a 25% reduction in CSF
volume. Subsequent rodent models include bilateral carotid
artery occlusion in postnatal day 4 rats combined with 10–
15 min exposure to 8% oxygen, which causes mild to severe injury
with reduced numbers of mature oligodendrocytes, impaired
myelination, and compromised behavioural response including
locomotor activity and memory deficits (Fan et al., 2005).
A rat model of bilateral common carotid artery occlusion
with temporary ligation has been developed in postnatal day
7 pups (Jelinski et al., 1999) where both arteries were ligated
for 10 min while the animals were simultaneously exposed to
8% oxygen. The resulting injury was characterised with fewer
oligodendrocytes both 6 and 24 h post-HI with no changes
in astrocyte numbers. Despite better reflecting HI injury in
humans, these bilateral models, have limited use due to their
high mortality rate.

In addition to the postnatal rodent HI models, prenatal
ones have also been developed. In those HI is induced in
rats at E17 by clamping the uterine vasculature for 30 min.
As a result, foetal brain iNOS activity is increased (Cai
et al., 1998), and NMDA receptor expression is altered
(Cai and Rhodes, 2001).

In addition to mice and rats, guinea pigs have also been
used to model HI. Their longer gestation and similarity with
the human pattern of prenatal brain development make them
an ideal rodent in utero HI model (Hirst et al., 2018). Unilateral
uterine artery ligation at 30 days gestation models pre-term injury
and leads to a reduced number of neurons in hippocampus and
cerebellum, as well as impaired dendritic and axonal growth
(Mallard et al., 2000). In a different hypoxia-only model, guinea
pigs at 65 days of gestation (term injury) were exposed to
10.5% oxygen for 14 days (Dong et al., 2011). The brains of
the injured animals had increased iNOS activity with inducible
macrophage-type nitric oxide synthase upregulated in cerebral
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cortex, hippocampus, thalamus, and hypothalamus, including
white and grey matter.

Large Animal Models
Neuroanatomically, the rodent brain significantly differs from
the human in both size and level of cortical gyrification. This
limitation can be overcome by the use of large animal models with
gyrencephalic brains more similar in size to the human ones.

Non-human primate models of HI have been developed in
several species including rhesus monkeys (Ranck and Windle,
1959; Faro and Windle, 1969), in which detaching of the placenta
through hysterotomy near term causes total asphyxiation. As a
result, the subsequent damage is consistent with the one observed
in humans and predominantly localised to the brainstem
including sensory and motor nuclei as well as the basal ganglia,
affecting both white and grey matter. However, differently from
humans, little change is seen in the hippocampus. Further studies
developed this model in the Macaca nemestrina monkeys in
which the umbilical cord of near term foetuses is clamped for
12–15 min followed by delivery via hysterotomy (Juul et al.,
2007). The experimental animals display gliosis and behavioural
deficits such as seizures. A preterm non-primate model has also
been established in baboons delivered through hysterectomy
at 125 days gestation (Inder et al., 2005). In this case, the
injury predominantly affects the white matter. While non-human
primates are developmentally most similar to humans and
provide a better basis to study long-term behavioural changes, the
ethical issues and high experimental costs restrict their use in HI
research (Painter, 1995).

Foetal sheep models of HI are well studied amongst the large
animal models and have provided a unique insight into the
pathophysiology of HI. Intermittent umbilical cord occlusion for
1 min every 2 min over a cycle of 2 h in the sheep is used to
replicate uterine contractions and produces a term injury similar
to HI in humans (Clapp et al., 1988; De Haan et al., 1997),
with damage primarily confined to white matter. Another term
model involves common uterine artery occlusion for 30–60 min,
alone or combined with maternal hypoxia for 120 min, leading
to hypercarbia, acidosis, and initial hypertension (Williams et al.,
1992), and resulting in cortical damage.

Sheep are advantageous models for the study of HI due to
the larger brain and the neurodevelopmental similarity with the
human foetus, however, the higher experimental costs restrict
their use (Back et al., 2012).

Piglet models of HI are also well-studied thanks to the
developmental and neuroanatomical similarities between the
human and piglet neonatal brain (Koehler et al., 2018).
Severe hypoxia, without ischaemia, is induced by performing a
tracheostomy and mechanically ventilating the piglet with 6%
oxygen (Thoresen et al., 1996), thus causing injury mainly to
the cerebral cortex, subcortical white matter and hippocampus.
HI models have also been produced through bilateral carotid
occlusion paired with hypoxia in newborn piglets (Edwards
et al., 1995; Robertson et al., 2013) or through a combination
of ischaemia with complete asphyxiation in 1-week-old piglets
(Brambrink et al., 1999). Both models represent HI at term and

produce damage in the parasagittal cortex, striatum, thalamus,
and hippocampus.

Other known large animal HI models include a preterm
rabbit model and a more recently developed ferret model. In
the first one, preterm rabbit foetuses are exposed to global
hypoxia through in utero ischaemia. As a result, the animals
display hypertonia and motor control impairments resembling
motor disturbances seen in humans (Derrick et al., 2004,
2007). The ferret is born lissencephalic but postnatally develops
gyrencephaly with a white-to-grey ratio similar to the human
(Empie et al., 2015; Falck et al., 2018; Schwerin et al., 2018). Thus,
the ferret model is a promising one, because despite its smaller
size, the ferret brain is structurally more similar to the human
one compared to the rodent.

ANIMAL MODELS OF
INFECTION-SENSITISED
HYPOXIA–ISCHAEMIA

Intrauterine infection increases the vulnerability of the neonatal
brain to HI injury and amplifies the risk of death and
disability compared to HI alone (Grether and Nelson, 1997;
Wu et al., 2003; O’Callaghan et al., 2011). Eklind et al.
(2001) developed the first infection-sensitised model in 2001
with a modification of the classic Rice–Vannucci model;
a single dose of LPS was administered to 7-day old rat
pups 4 h before unilateral carotid artery occlusion. The
LPS administration induces a more severe injury profile
compared to HI alone, with larger areas of infarction and
higher microglial and astroglial activation (Yang et al., 2005;
Wang et al., 2009; Bonestroo et al., 2015a). The model has
been successfully extended to the mouse, with LPS being
administered 6–12 h prior to the HI insult (Kendall et al.,
2011). Like in the Rice–Vannucci HI model, the level of
severity caused by the LPS-sensitised HI depends on the
mouse strain (Rocha-Ferreira et al., 2015). Similarly to LPS,
Gram-positive bacterial infection sensitisation also contributes
to neonatal HI injury (Falck et al., 2017). In this case,
postnatal day 7 rats are intraperitoneally administered with
a TLR-2 agonist [N-palmitoyl-S-(2,3-bis(palmitoyloxy)-(2R,S-
propyl)-R-cysteinyl-seryl-(lysyl)-3-lysine, PAM3CSK4], 8 h prior
to HI insult (Falck et al., 2017). This causes a significant
increase in brain damage compared to the vehicle treated
animals resulting in decreased neuronal cell count and increased
hippocampal area loss.

A novel large animal model of Gram-negative infection
sensitised hypoxia has been developed in the newborn piglet
(Martinello et al., 2019b). A single dose of LPS administered
4 h prior to hypoxia increased mortality and exacerbated brain
injury compared to hypoxia alone, with an increase in microglial
and astroglial activation. This model only investigated hypoxia
without ischaemic insult, thus limiting its application.

More recently, a ferret model of LPS sensitised HI brain jury
has been developed, where postnatal day 17 ferrets receive an
intraperitoneal injection of LPS 4 h before hypoxia. This models
a late preterm human insult (Wood et al., 2019). The injured
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ferrets display variable degrees of damage in the cortical gyri and
associated sulci, as well as behavioural deficits.

However, the sensitisation effect of LPS in HI animal models
depends to a great extent on the dose and time of LPS pre-
treatment. In a neonatal rat HI model, injection of 0.3 mg/kg of
LPS 24 h prior to HI greatly increased microglial and macrophage
activation and upregulated TNF-α and iNOS expression at
12 h post treatment, causing high HI mortality. Conversely,
0.05 mg/kg of LPS elicited very low expression of the same
markers resulting in low mortality, as well as significantly better
learning and memory performance, and reduced brain damage
in adulthood (Lin et al., 2009). Administration of 0.01 mg/kg
LPS at E15 in C57BL/6 mice exacerbated brain injury after HI
at P5 and P9, whereas in adult mice (P70) LPS treatment reduced
tissue loss (Wang et al., 2007a). A low dose LPS administration in
foetal sheep induced specific TLRs with potential neuroprotective
role after acute ischaemia (Dhillon et al., 2015). Specifically,
low LPS dose administered over 5 days with the last treatment
at 24 h prior to cerebral ischaemia at E94–95 attenuated
inflammation and astroglial activation, and reduced apoptosis.
This preconditioning effect was associated with upregulation of
mRNA for TLR4, TLR7, and IFN-β, as well as a considerable
increase in plasma IFN-β levels, suggesting IFN-β as an important
mediator of endogenous neuroprotection (Dhillon et al., 2015).
The time of LPS pre-treatment is also crucial for the effect on HI
brain damage. Kendall et al. (2011) demonstrated that 0.03 mg/kg
LPS injection at the time of or 24 h before HI had no significant
effect on the level of brain injury in C57/Bl6 P7 mice, however,
the same dose administered at 4 or 12 h prior to the insult was
detrimental. Additionally, the data from Kumral et al. (2012)
revealed that 24 h pre-HI treatment with a low dose of LPS
significantly reduced apoptotic cell death and hypomyelination,
thus suggesting neuroprotection. The choice of endotoxin for
the pre-treatment is also of great importance for the outcome of
the infection-sensitised HI model. For example, administration
of lipoteichoic acid as a major immunogen from Gram-positive
bacteria which, when bound to its target interacts with circulating
antibodies and activates the complement cascade, 3 h prior to HI
reduces brain injury (Hagberg et al., 2002). This suggests a high
complexity of infection sensitised HI injury that needs to be taken
into account when choosing an animal model.

DIFFERENCES BETWEEN PRETERM
AND TERM HI

The severity of the injury developed after neonatal HI, is highly
dependent on the timing of the damage in respect of gestation.
Preterm and term animal models are in fact used to investigate
different aspects of HI brain injury.

In preterm infants (<32 weeks of gestation) HI generally has
a more complex temporal profile, with chronic nature (Laptook,
2016; Ohshima et al., 2016). It is characterised by cognitive
and sensory deficits (McQuillen et al., 2003), and the immature
immune system, potentially promotes an excessive and sustained
inflammatory response (Gilles et al., 2018).

At this stage, the periventricular white matter is highly
susceptible and particularly struck by the insult resulting in
periventricular leukomalacia (PVL) (Volpe, 2001; Johnston
et al., 2002). Pre-oligodendrocyte development is hindered, thus
leading to abnormal myelination typically seen in MRI scans
(Back et al., 2007; Volpe et al., 2011). Pre-oligodendrocytes are
in fact highly susceptible to the pro-inflammatory state and
oxidative stress generated after the HI insult resulting in a large
amount of cell death (Fern and Möller, 2000; Baud et al., 2004;
Back et al., 2007; Segovia et al., 2008; Volpe et al., 2011). Preterm
neurons are also highly vulnerable to the HI insult, as the NMDA
receptors are physiologically upregulated and more permeable to
calcium (Jantzie et al., 2013), making these cells susceptible to the
excito-toxicity cascade.

In term infants (>36 gestational age) HI insult causes
selective damage to the sensorimotor cortex, basal ganglia,
thalamus (Martin et al., 1997), and brainstem (Johnston et al.,
2001), resulting in severe motor disability, including rigidity,
impairment of mostly the upper limbs, and speech difficulties
(Menkes and Curran, 1994; Johnston et al., 2001). Cerebral white
matter is also described as selectively sensitive to term HI injury,
with abnormalities of watershed white matter and cortex present
in 40–60% of patients (Huang and Castillo, 2008).

The changes in NMDA receptor expression during
neurodevelopment could explain the different patterns of
injury seen in the preterm versus term infants. A rat HI model
using intracerebral injection of glutamate receptor agonist
caused selective white matter injury at P7 (modelling preterm)
compared to severe cortical infarction with no white matter
susceptibility at P10 (term) (McLean and Ferriero, 2004).

CURRENT TREATMENTS

Therapeutic Hypothermia
Therapeutic hypothermia (TH) is a clinical procedure where
a patient temperature is lowered from 36 to 33.5◦C, aiming
to counteract an event of energy drop by reducing cell
metabolism and energy requirements (Sisa et al., 2017). In
neonatal HI brain damage TH is the standard treatment applied
in moderate to severe injury through selective head or whole
body cooling, showing satisfactory results in 11 clinical trials.
TH reduces the possibility to develop cognitive impairments
and disabilities (Gluckman et al., 2005; Jacobs et al., 2007;
Srinivasakumar et al., 2013).

Despite the promising results, TH does not guarantee total
recovery from neonatal HI and 40% of treated infants still
develop disabilities (Ezzati et al., 2016). Obvious limitations of
TH associate with immunosuppression, slow drug metabolism
and clearance, and the increase of energy expenditure through
the physiological activation of thermoregulatory mechanisms
(Sisa et al., 2017).

Rat and piglet models of LPS-sensitised HI report increased
mortality rate and tissue damage, no matter whether the
neonates underwent treatment with TH or not (Osredkar et al.,
2014, 2015). Similarly, clinical studies on neonates exposed
to intrauterine infection, report that TH does not result in
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neuroprotection (Wintermark et al., 2010). Overall, such findings
suggest that despite that TH is the current standard treatment
for neonatal HI brain damage, it is not protective in LPS-
sensitised HI cases. Importantly, preclinical models of infection
sensitisation suggest TH to cause even more damage to the
injured brain (Martinello et al., 2019a).

The mechanism by which LPS-induced sensitisation
overcomes the neuroprotective effects of TH is still unknown.
A possible explanation relies on the inter-individual variability,
as suggested by a study where the damage from HI alone
or combined with pre-exposure to LPS were investigated in
different mouse strains (Rocha-Ferreira et al., 2015). As a result,
the genotype seemed to play a critical role in the individual
response to both infection-sensitised and HI injury alone
(Rocha-Ferreira et al., 2015). In addition, clinical studies in
neonates who underwent TH treatment after HI alone suggest
body cooling to be immunosuppressive (Nakamura et al., 2013;
Chalak et al., 2014), through a reduction of the number of
circulating leucocytes and chemokines (Jenkins et al., 2013).
Therefore, TH might be counteracting the physiological attempt
of the immune system in fighting the bacterial infection.

As previously mentioned, Gram-positive bacterial
sensitisation is also quite common, especially in the developing
world (Fjalstad et al., 2015). Falck et al. (2017) reported that
TH induced recovery in 80% of HI rats with Gram-positive
sensitisation, suggesting that the neuroprotective effects of TH
might be pathogen dependent. In line with these preclinical data,
a retrospective clinical study reports encouraging outcomes with
TH treatment in neonates following Gram-positive sensitised HI
(Hakobyan et al., 2019).

While these recent results give hope for the use of TH in
some cases of bacteria sensitised HI, this treatment still needs
further exploration. Importantly, the fact that TH is only partially
effective and completely ineffective in Gram-negative sensitised
HI highlights the need for alternative therapeutic approaches for
neonatal HI alone and combined with infection.

EXPERIMENTAL HI TREATMENTS

Cannabinoids
The endocannabinoid system (ECS) exerts a substantial
neuromodulatory role in many brain regions and is crucial
for the regulation of neuronal activity (Soltesz et al., 2015).
Cannabinoids, such as cannabidiol and N-arachidonoyl-
dopamine (NADA) have emerged as promising substances
ameliorating HI brain damage in neonates (Martínez-Orgado
et al., 2007). There are two cannabinoid receptors; CB1
receptors are expressed in the CNS but can also be found
in peripheral tissues. CB2 receptors are expressed mostly
in mid- and hindbrain and less in forebrain neurons. CB2
receptors have also been observed in activated glia (Johnston
et al., 2001). Cannabinoids bind to their receptors and provide
neuroprotective effects through reduction of glutamate release
and nitric oxide (NO) production, prevention of intracellular
calcium influx, modulation of inflammation and cytokine
release while protecting glial cells (Martínez-Orgado et al., 2007;

Pacher and Mechoulam, 2011). CB1–CB2 agonist WIN 55122
was administrated subcutaneously in a rat model of HI and
provided neuroprotection by reducing brain tissue atrophy, glial
and vasogenic oedema, and by increasing cortical cells density
as demonstrated through histological and MRI assessments
(Fernández-López et al., 2007). Cannabidiol (CBD), the major
non-psychoactive constituent of Cannabis sativa does not bind
specifically to CB1 and CB2 receptors, but modulates several
non-cannabinoid receptors and ion channels, such as GABA-A
and TRPV1 receptors (Pertwee, 2004; Mechoulam et al., 2007).
CBD demonstrates a broad spectrum of anti-inflammatory and
anti-oxidant properties in numerous pathological conditions
including ischaemic stroke and neonatal HI through inhibition
of NF-κB activation and iNOS expression (Hayakawa et al.,
2010). Pazos et al. (2013) report that CBD leads to long-term
neuroprotection after a neonatal HI insult at P7–P10 in Wistar
rats. Specifically, subcutaneous injections of CBD immediately
after the HI insult resulted in a sustained neuroprotective
effect associated with modulation of excitotoxicity, oxidative
stress and inflammation, that persisted at 30 days after HI,
with CBD-treated animals having smaller lesions and improved
neurobehavioural performance when compared with the non-
treated controls. Additionally, subcutaneous CBD administration
15 min or 1, 3, 6, 12, and 18 h after HI insult in mice reduced
astroglial activation and tissue loss (Mohammed et al., 2017).
This time point is broader than the ones reported for other
neuroprotective treatments including TH. Similar histological
results of reduced astroglial activation and tissue loss were
observed in a piglet model of HI, where CBD also improved
EEG brain activity. In this study, decrease of oxidative stress
and excitotoxicity has been reported after CBD administration,
through reduction of glutathione/creatine (GSH/Cr) ratio and
downregulated levels of IL-1 in lesioned animals (Osredkar
et al., 2014). CBD administration also has beneficial effects on
remote inflammatory lung injury following cerebral HI insult
in newborn pigs, by reducing leucocyte infiltration and IL-1
concentration in lung tissue (Arruza et al., 2017). Activation of
serotonin 5-HT1A receptors was involved in the CBD beneficial
effects on the lungs, since 5-HT1A antagonism reversed the
positive outcome of CBD treatment in functional, histological,
and biochemical studies.

However, in a piglet HI model high-dose cannabidiol
treatment can induce significant hypotension (Garberg et al.,
2017). Garberg et al. (2017) demonstrated that cannabidiol alone
did not provide neuroprotective effect in a piglet HI model as
indicated by neuropathology score and neurotrophic markers.
They showed that cannabidiol is not neuroprotective against HI
and further studies should be performed in preclinical models to
confirm its safety and efficacy for subsequent tests in clinical trials
(Garberg et al., 2017). Overall, cannabinoids administration after
HI insult provides neuroprotection, however, the data obtained in
animal models is controversial and their application in neonatal
HI requires further studies.

Quercetin
Quercetin (3,5,7,30,40-pentahydroxyflavone) is a plant
flavonoid present in many plant-based foods, such as red
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wine, onions, green tea, and berries. It is known as health
care product due to its antioxidant, anti-inflammatory
and free radical scavenger properties (Erden Inal and
Kahraman, 2000; McAnulty et al., 2008; Hwang et al., 2009;
Qu et al., 2014).

Quercetin exerts neuroprotective effects including reduction
of cortical cell apoptosis, decrease of astroglial and microglial
activation and down-regulation of IL-6, IL-1β, and TNF-α in HI
injured newborn rats, possibly through suppression of the TLR4-
mediated NF-κB pathway (Wu et al., 2019). In addition, quercetin
treatment can improve memory and spatial learning ability as
well as cognitive ability in neonatal rats with white matter HI
damage (Huang et al., 2012). Similar behavioural results were
confirmed by Qu et al. (2014), who also showed enhancement
of oligodendrocytes and oligodendrocyte progenitor cell
proliferation combined with increased re-myelination after
quercetin injection. In vitro quercetin treatment of hippocampal
cell cultures subjected to ischaemic conditions prevented cell
death through inhibition of excessive ROS formation and
neutralisation of the irreversible cytosolic Ca2+ concentration
increase in GABAergic neurons. Additionally, 24 h incubation
with quercetin further improved neuroprotection through
increased expression of antiapoptotic and antioxidant genes
such as STAT3, Bcl-2, and B-cell lymphoma extra-large (Bcl-
xL), as well as genes coding for AMPA and kainite receptor
subunits. Moreover, quercetin decreased the levels of pro-
inflammatory cytokines, such as IL-1β (Turovskaya et al., 2019).
In conclusion, although the results from the application of
quercetin in in vitro and in vivo neonatal HI models are quite
promising, further studies in large animal models, as well as
clinical trials are necessary for it to be considered as potential
treatment for HIE.

Pentoxifylline
Pentoxifylline (PTX), a methylxanthine derivative, is a
non-selective phosphodiesterase inhibitor commonly used
for the treatment of symptomatic vascular insufficiency
because of its haemorrheological activity. In recent years,
in vivo and in vitro studies have discovered that PTX
also prevents or attenuates the release of TNF-α and
other pro-inflammatory cytokines, underlying its potential
therapeutic effects in HI.

Compared to administration of high PTX doses (100 mg/kg),
intraperitoneal administration of low doses of PTX (60 mg/kg)
provides significant protection against hippocampal atrophy and
improves spatial learning and memory impairments in a rat
HI model (Halis et al., 2019), thus suggesting hormetic effects.
Such neuroprotection is believed to rely on PTX ability to
reduce caspase 3 activity, as well as IL-1β and TNF-α-gene
expression after a HI insult in P7 Wistar rats (Kalay et al.,
2013). Moreover, pre-treatment with PTX markedly attenuated
subsequent cerebral infarction and ischaemic forebrain injury
after HI in P7 rats (Eun et al., 2000). Thus, there is potential for
the use of PTX as treatment for neonatal HIE, however, further
experiments are required to determine the precise dosage in large
animal models and then in clinical trials.

Oxymatrine
Oxymatrine (OMT) is a quinolizidine alkaloid extracted from the
traditional Chinese herb Sophora flavescens. It has a tetracyclic
quinolizine structure (Cells et al., 2013) and possess extensive
pharmacological activities, including anti-inflammatory (Wang
and Jia, 2014), anti-viral, hepatoprotective (Wen et al., 2014),
anti-tumour (Liu D.-D. et al., 2014; Ying et al., 2015), immune-
modulating, anti-oxidant (Wen et al., 2014), and anti-apoptotic
features (Jiang et al., 2005; Hong-Li et al., 2008; Guo et al., 2014;
Wen et al., 2014).

Intraperitoneal post-HI treatment of neonatal rats with
OMT has provided neuroprotection by reducing the infarct
volume and percentage of cell death, ameliorating histopathology
and morphology of injured hippocampal neurons, increasing
antioxidant enzyme activity [SOD, glutathione peroxidase (GSH-
Px), and CAT], reducing lipid peroxide, as well as decreasing
caspase-3 expression and increasing Bcl-2/Bax ratio (Zhao et al.,
2015). Furthermore, OMT protects the rat brain from HI injury
by reducing cell death possibly through down activation of
NR2B and PI3K/Akt/GSK3β pathway (Liu et al., 2019). Due to
the effective, non-toxic, and neuroprotective properties, OMT is
considered to be a prospective preventive and restorative therapy
for neonatal asphyxia in the clinical practice.

Resveratrol
Resveratrol (RESV; trihydroxystilbene) is a natural non-
flavonoid polyphenolic compound belonging to the phytoalexin
superfamily, present in red wine/red grapes, soybeans, and
pomegranates (Liu et al., 2007). It has two aromatic rings with
three free hydroxyl groups which contribute to its free radical
scavenging and antioxidant properties (Yousuf et al., 2009).
RESV also exerts anti-inflammatory and anti-apoptotic effects
and has been used to treat various illnesses including diabetes,
cardiovascular and neurological diseases, and cancer (Karalis
et al., 2011; Feng et al., 2016; Sadi and Konat, 2016).

Resveratrol positively modulates heme oxygenase 1 (HO-1)
and nuclear factor erythroid 2 related factor 2 (Nrf2) protein
expression, decreases infarct volume and cerebral oedema,
elevates the levels of GPx and CAT, suppresses inflammatory
markers, such as IL-1β, IL-6, TNF-α, and NF-κB, and improves
neuronal survival after HI insult in the neonatal rat (Gao
et al., 2018). Similar results were confirmed by Pan et al.
(2016), where RESV ameliorated HI induced brain injury in
parallel with reduction of Bax anti-apoptotic levels. Arteaga et al.
(2015) showed that pre-treatment with RESV in a rat HI model
reduced astroglial response, production of ROS and significantly
decreased anxiety and neophobia (Arteaga et al., 2015). Pre-
and post-HI treatment with RESV provides neuroprotection thus
suggesting potential for its application as a therapy for HI.

Pterostilbene
Pterostilbene (PTE) (3,5-dimethoxy-4-hydroxystilbene)
is a natural compound found primarily in Pterocarpus
marsupium heart wood and blue-berries (Adrian et al.,
2000). PTE is a member of the phytoalexins family, which
is produced in plants to defend against pathogens such
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as bacteria or fungi. Accumulative data suggests that PTE
possesses various biological and pharmacological properties,
including anti−oxidative, anti−inflammatory, anticancer and
analgesic activities, and exerts neuroprotective effects under
pathological conditions, such as ageing and Alzheimer’s disease
(McCormack and McFadden, 2013).

Pterostilbene pre-treatment increases P7 rat survival,
decreases brain infarct volume and brain oedema, attenuates
the mRNA expression of TNF-α, IL-1β, IL-6, and p65 NF-κB,
reduces programmed cell death and prevents oxidative stress
by increasing SOD activity in HI-injured neonatal brain.
Furthermore, intraperitoneal PTE injection improves motor
coordination and deficit, and working memory impairment in
a Sprague–Dawley rat HI model (Li D. et al., 2016). Thus PTE
treatment could be potentially used for therapy in neonatal HIE.

Erythropoietin
Erythropoietin (EPO), a 34 kDa glycoprotein cytokine,
originally identified because of its role in promoting bone
marrow erythropoiesis, has prompted a growing interest as
neuroprotection agent in a series of neurological diseases. Its
application in neonatal HI has improved the prognosis and is
widely evaluated in experimental models and clinical trials (Villa
et al., 2003; Xiong et al., 2011). To date, the possible mechanisms
for EPO neuroprotection are associated with anti-apoptotic and
anti-inflammatory properties, neurovascular remodelling, and
promotion of neural stem cell proliferation (Xiong et al., 2011).
HI in the brain leads to an increased EPO and EPO-R expression
in neurons, astrocytes, and microglia, mediated by hypoxia-
inducible factor-1 (Bernaudin et al., 1999, 2002; Mu et al., 2005).
This upregulation represents an endogenous neuroprotective
mechanism in the brain. Therefore, newborns with HIE show
significantly elevated EPO levels in CSF, even in the absence
of exogenous EPO treatment (Juul et al., 1999). Preclinical
studies have shown that intraperitoneal EPO injection in P10 rat
pups increased synaptic proteins Synapsin 1 and PSD95, thus
improving synaptogenesis and spatial memory performance, and
decreased neurite repair after HI insult (Xiong et al., 2019). EPO
therapy can also protect P7 neonatal rat pups against HI brain
injury by inhibiting Fas or FasL induced apoptosis (Huang et al.,
2019) and by down-regulating metalloprotein kinase 2 (MMP-2),
which in the adult brain is dramatically increased after cerebral
HI (Zhang L. et al., 2017).

Phase II clinical trials of EPO administered without TH in
the first week of life of neonates with HIE were safe and showed
improvement in neurologic outcome (Zhu et al., 2009; Elmahdy
et al., 2010). However, the studies were limited due to small
sample size. In a larger randomised placebo-controlled phase III
clinical trial, EPO administration decreased the risk of death and
disability at a mean age of 19 months compared with placebo
treated groups (Malla et al., 2017). A phase II clinical trial
recruiting term neonates showed that high doses of adjunctive
EPO treatment and TH may reduce MRI-assessed brain injury
and improve motor function at 1 year post-HI (Wu et al.,
2016). However, in severe HI cases such as in SOD-1 transgenic
mice, EPO is not neuroprotective and worsens the injury as
shown by Sheldon et al. (2017) possibly, because of interference

with endogenous repair responses. Their findings suggest that
when applied immediately after the insult, EPO treatment is not
beneficial in cases of severe HI and extreme oxidative stress.

Overall, EPO is a very promising neuroprotective agent for
HIE in term and preterm neonates The different proposed
mechanisms underlying its neuroprotective effects are likely to
be responsible for its early success in clinical trials. If the ongoing
phase III trials demonstrate long-term neurodevelopmental
benefit, EPO could be the first neuroprotective agent for preterm
HIE outside of standard supportive care.

Allopurinol
Allopurinol is a xanthine oxidase inhibitor, which inhibits the
conversion of hypoxanthine into xanthine and uric acid in one
of the main pro-oxidant pathways after HI, thereby limiting
the toxic overproduction of ROS. Allopurinol’s anti-oxidant
properties are based on the chelation of unbound iron and
direct scavenging of free hydroxyl radicals. It prevents adenosine
degradation and oxygen radical formation and preserves NMDA
receptor integrity, so as a consequence it may reduce brain injury
in HIE through several mechanisms of action (Pan et al., 2016;
Gao et al., 2018).

In preclinical studies, subcutaneous allopurinol
administration 15 min after HI in the P7 rat decreases brain
oedema and selective neuronal necrosis (Gao et al., 2018). In
combination with TH, allopurinol confers great functional,
histological, and molecular neuroprotective effects (Rodríguez-
Fanjul et al., 2017). Specifically, allopurinol treatment enhances
neuropathological brain score, decreases cleaved caspase-3, and
improves functional outcome after HI.

Phase I–III clinical trials suggest that postnatal allopurinol
administration may provide neuroprotection to neonates with
moderate HI brain damage (Gunes et al., 2007; Kaandorp
et al., 2012). Antenatal administration of allopurinol to pregnant
women may also attenuate hypoxic brain damage in female
neonates with therapeutic levels detected in arterial cord
blood, indicating successful placental crossing (Kaandorp et al.,
2015). However, more trials and larger groups are needed to
demonstrate the efficacy of allopurinol in preventing brain
damage and improving outcome after neonatal HI insult.

Indomethacin
Several studies have suggested that indomethacin, a non-
selective inhibitor of prostaglandin synthesis, has a protective
effect against anoxia and hypercapnia (Leffler et al., 1993;
Ogasawara et al., 1999). Therefore, a potential therapeutic role
of indomethacin in HI has been investigated. Indomethacin
treatment in a rat HI model attenuated caspase activity and
reversed glutathione depletion, thus providing neuroprotection.
However, indomethacin also increased lipid peroxidation, which
suggests that further investigation of its application in neonatal
HI is needed (Taskin et al., 2009). To date, most of the
pre-clinical evidence does not support the routine use of
indomethacin in improving long-term neurodevelopmental
outcome in preterm neonates.
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Topiramate
Topiramate is an AMPA/kainate receptor antagonist with
multiple mechanisms of action, widely used as an anticonvulsant
agent in adults and children (Shank et al., 2000; Guerrini and
Parmeggiani, 2006).

In HI topiramate targets excitotoxicity during the secondary
energy failure. Preclinical studies have shown that intraperitoneal
topiramate injection in P7 rodent pups provides short-term
neuroprotection by affecting GABA levels and improving
learning ability after HI. However, in the long-term or when
excessively used, topiramate may cause new CNS damage and
reduce cognitive ability (Jiang et al., 2014). Interestingly, the
combination of TH or memantine, a safe non-competitive low
affinity NMDA receptor antagonist used in moderate to severe
Alzheimer’s disease, with topiramate significantly reduced infarct
volume in rodent and piglet HI models (Liu et al., 2004; Noh
et al., 2006; Landucci et al., 2018). Phase I and II clinical trials
in term neonates with HIE established the efficacy and safety
of topiramate administration with and without concurrent TH
(Filippi et al., 2010), suggesting therapeutic potential of that agent
in neonatal HIE.

Curcumin
Curcumin, a natural compound also known as diferuloylmethane
(C21H20O6), is a major active component of the food flavour
turmeric, isolated from the powdered dry rhizome of Curcuma
longa. It is most frequently consumed in South Asian diets
(Shishodia et al., 2005; Pescosolido et al., 2013). Except for
turmeric usage as a dietary pigment, modern pharmacological
studies show that curcumin provides therapeutic effects in several
pathological conditions, such as cancer (Naksuriya et al., 2014;
Ahmad et al., 2016), inflammation (Kim et al., 2003; Sandur
et al., 2007), infections, cardiovascular diseases (Nishiyama et al.,
2005; Liu and Hong, 2006), fibrosis, and neurological disorders
(Spagnuolo et al., 2016), due to its anti-inflammatory, anti-
oxidant, anti-apoptotic, anti-microbial, and ROS scavenging
properties (Daugherty et al., 2018). As a result of its small
molecular weight (368.385 g/mol) and dimensions, curcumin
crosses the BBB (Priyadarsini, 2014) and was proposed as a
possible treatment in different neurodegenerative disorders, such
as Alzheimer’s (Reddy et al., 2016), Parkinson’s diseases, and
multiple sclerosis (Wang et al., 2017).

Curcumin acts on many important pathways involved
in the pathogenesis of HI injury (Panda et al., 2017).
Specifically, it increases the levels of antioxidants such as SOD,
GSH, and catalases, which are all implicated in free radical
neutralisation (Alizadeh and Kheirouri, 2019). Also, curcumin
inhibits the expression of pro-inflammatory cytokines (IL-1, IL-
6, and TNF-α), thus mediating inflammation and inhibiting
STAT3 phosphorylation (Maheshwari et al., 2006; Alexandrow
et al., 2012). Recently, our group demonstrated that curcumin
provides dose-dependent neuroprotection through immediate
and delayed application following neonatal HI (Rocha-Ferreira
et al., 2019). Two hundred micrograms per gram BW of curcumin
reduced tissue loss, microglial and astroglial activation, and cell
death after HI injury in a P7 mouse model. Prohibitin (PHB)

is a protein considered essential in regulating mitochondrial
structure and acting as a chaperone for the respiratory chain
proteins. Curcumin administration post-HI increased PHB
protein levels and provided neuroprotection through prevention
of mitochondrial dysfunction during secondary energy failure
(Rocha-Ferreira et al., 2019). Additionally, in a study conducted
by Cui et al. (2017), curcumin was administrated to P7 rats at a
dose of 150 mg/kg per day for 3 days, 24 h after induced HI-injury
and resulted in prevention of myelin loss (Cui et al., 2017). Nrf2
provides neuroprotection (Zhang et al., 2015) and is elevated in
curcumin treated mice. Curcumin treatment also significantly
attenuates iNOS and caspase-3 expression when compared to
untreated HI controls. Reduction of these pro-inflammatory
and pro-apoptotic markers suggests that curcumin supresses
inflammation and cell death in order to confer neuroprotection
following neonatal HI. Due to its anti-inflammatory, anti-
oxidant, and free scavenger properties, curcumin is considered to
be a potential treatment for neonatal HI, but further preclinical
studies are required to provide evidence for its efficacy.

Melatonin
Melatonin is an endogenous indolamine hormone with anti-
oxidant and anti-inflammatory properties, known for regulating
the circadian rhythm (Claustrat and Leston, 2015). Preclinical
models of HI demonstrate that melatonin is neuroprotective
alone and as an adjuvant therapy with TH (Robertson et al.,
2013, 2019; Carloni et al., 2014). Specifically, in conjunction
with TH, melatonin significantly reduced cell death in a piglet
HI model (Robertson et al., 2019, 2020), and decreased tissue
loss and improved learning abilities in a rat HI model (Carloni
et al., 2014). Combined with topiramate, melatonin significantly
reduced infarction volume and number of TUNEL positive cells
in a P7 rat HI model, suggesting that these agents may be
beneficial for the treatment of infants with HIE (Ozyener et al.,
2012). In a P7 HI rat model, three injections of 10 mg/kg
melatonin within the first 25 h after injury provided only a
transient and subtle reduction of infarct volume and behavioural
impairment, but may not have been sufficient to mitigate long-
term brain injury post-HI (Berger et al., 2016). The same group
demonstrated that after HI injury in P7 rat pups melatonin
was unable to protect neuronal mitochondria as indicated
by GABA-A and lactate levels (Berger et al., 2019). Given
its safety profile in animal models and the ease of crossing
both the placenta and BBB, melatonin is a very attractive
therapeutic candidate for HI. In a small prospective randomised
trial, neonates with moderate to severe HIE were treated with
melatonin. At 2 weeks of age neonates who received adjuvant
melatonin showed fewer electrographic seizures detected by EEG
and less white matter injury on brain MRI scans, compared
to the neonates who received TH alone. At 6 months of
age, the melatonin treated group had higher survival without
neurodevelopmental abnormalities compared to the controls.
An open-label dose escalation phase 1 clinical trial examining
combined melatonin and TH treatment of term HIE is actively
recruiting (NCT02621944). Although melatonin is a promising
drug with a favourable safety profile, larger, randomised trials
with neurodevelopmental outcome measured at a minimum
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of 18–24 months of age are required to establish a definitive
therapeutic role for neonatal HIE.

Hydrogen
Hydrogen (H2) therapy has been investigated as a potential
therapeutic agent against HI injury due to its potency
as anti-oxidant, anti-inflammatory, and anti-apoptotic agent
(Htun et al., 2019).

Cai et al. (2008) demonstrated that H2 post-treatment of
P7 HI rats reduced tissue loss, cell death, and caspase-3 and
caspase-12 activity. The same study revealed that H2 treatment
significantly reduced infarct volume and morphological neuronal
damage associated with condensed cytoplasm and irregular cell
shape, as well as AIF-1 expression as a marker of microglial
inflammation. Furthermore, H2 treatment improves behaviour
and cognitive function assessed through Morris water maze test
for spatial learning and locomotor activity. Additionally, in a
P7 rat HI model, H2 significantly attenuates neuronal injury
and improves early neurological outcomes by reducing Bax and
caspase-3 expression (Wang et al., 2020). In a piglet model of HI,
H2 combined with TH, improved walking ability and decreased
TUNEL positive cell death in dorsal cortex (Htun et al., 2019).

In a clinical study conducted by Yang et al. (2016), H2 reduced
serum levels of the pro-inflammatory cytokines IL-6 and TNF-α,
and neuron specific enolase (NSE) which can be used as a marker
for nerve cell damage.

However, a study from Matchett et al. (2009) demonstrated
that in moderate and severe HI rat models, hydrogen gas
therapy did not decrease infarct volume or the concentration of
malondialdehyde (MDA), an end-product of lipid peroxidation.
In conclusion, there is no effect of H2 treatment in moderate and
severe HI models, so further studies are necessary to establish
whether H2 provides necessary neuroprotection for HIE.

Magnesium
Magnesium (MgSO4) is an ionised mineral essential for
hundreds of enzymatic processes, including hormone receptor
binding, energy metabolism, and muscle contractility (Solevåg
et al., 2019). It is also an NMDA receptor antagonist which
prevents excitotoxic calcium-induced injury through the voltage-
dependent inhibition of the NMDA receptor, thus reducing
calcium entry into the cell (Ovbiagele et al., 2003). As a result,
several injurious pathways, implicated also in HI, including
catabolic enzyme induction and increased ROS production are
prevented (Lingam et al., 2019). Magnesium also inhibits NF-κB
thus providing anti-inflammatory effects (Lingam et al., 2019).

Pre-treatment with MgSO4 6 days to 12 h prior to HI in
P7 rats reduces the neonatal brain injury and attenuates ROS
production and post-HI accumulation of chemokines and pro-
inflammatory cytokines (IL-1α, IL-1β) (Koning et al., 2019).
Additionally, MgSO4 pre-HI treatment also downregulated
metabolic pathways including mitochondrial network genes,
especially those corresponding to proteins in the electron
transport chain (complex I and II) (Koning et al., 2019).

Post-HI MgSO4 treatment in P7 rats alone or in combination
with melatonin, significantly reduced hippocampal infarct
volume and cell death, indicating that these agents may

confer a possible benefit in the treatment of infants with HI
(Cetinkaya et al., 2011). These results were confirmed in a
piglet HI model, where MgSO4 combined with TH reduced cell
death and increased oligodendrocyte survival in hippocampus
and thalamus (Lingam et al., 2019). Spandou et al. (2007)
demonstrated that magnesium treatment in a P7 rat model of
moderate HI (1 h hypoxia) reduced brain damage and increased
ATP and glutamine levels, but did not prove neuroprotective
when the animals were subjected to severe, 2 h, hypoxia. The
lack of neuroprotection following MgSO4 application has been
also demonstrated in a P7 HI rat model, where post-HI MgSO4
treatment failed to improve striatal neuronal survival (Galvin and
Oorschot, 1998). This lack of neuroprotection was also confirmed
in a piglet HI model, where MgSO4 treatment resulted in no
difference in the severity of damage in hippocampus, cerebellum,
cerebral cortex, caudate nucleus, thalamus, striatum, and white
matter tracts (Greenwood et al., 2000). Magnesium has been
also investigated in clinical trials and especially as an antenatal
strategy for preterm HI. The outcome of magnesium infusions
demonstrated a lower incidence of cerebral palsy in infants
(Doyle et al., 2009). Moreover, combined therapy of MgSO4,
erythropoietin, and TH proved to be safe in an open-label pilot
study investigating the feasibility of combining therapeutics in HI
patients (Nonomura et al., 2019).

Overall, magnesium is a promising antenatal therapeutic
strategy for preterm HI and given its low cost and availability is
considered standard care for mothers at risk for preterm delivery
(Doyle et al., 2009). However, larger clinical trials are needed to
provide evidence for its efficacy in term delivery.

Coumestrol
Coumestrol, a potent isoflavonoid with oestrogen-like structure
and actions, is present in soy beans, clover, peas, and alfalfa,
and is well-known for its multiple biological features, including
antioxidant (Koirala et al., 2018) and anti-inflammatory (You
et al., 2017) properties. In P7 rats pre-HI treatment with
coumestrol prevented mitochondrial failure, as shown by the
decrease of MitoTracker Red (MTR) and MitoTracker Green
(MTG) ratio. These markers are widely used to reveal the
mitochondrial membrane potential and mitochondrial mass,
respectively. Furthermore, both pre- and post-HI application
of coumestrol counteracted spatial orientation and working
memory impairments assessed through Morris water maze test
(Anastacio et al., 2019). Moreover, coumestrol treatment reduces
tissue loss and blocks long-term reactive astrogliosis (Anastacio
et al., 2019) suggesting potential for treatment of HIE.

Xenon
Xenon is a noble, colourless, odourless gas that is four times
heavier than oxygen. It has been used as a safe and efficient
anaesthetic since 1951 (Amer and Oorschot, 2018). Trials
in human infants show that Xenon is hemodynamically safe
(Dworschak, 2008; Faulkner et al., 2011) and that it crosses
the BBB (Dworschak, 2008). Xenon reduces hypoxic brain
injury following HIE and stroke in neonatal rat and piglet
models (Chakkarapani et al., 2010; Faulkner et al., 2011;
Sheng et al., 2012).
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In preclinical studies, Xenon up-regulates anti-apoptotic
proteins (Bcl-2) and the Bcl-xL mitochondrial membrane
molecule, modulates pro-inflammatory cytokine levels (TNF-
α) thus decreasing inflammation, and increases growth-factors
(VEGF) leading to reduced cell death and enhanced repair (Amer
and Oorschot, 2018). Xenon combined with TH in a P7 rat HI
model, improves behavioural outcome assessed through staircase
test (Osredkar et al., 2014).

Low Xenon concentration combined with mild TH,
both not showing neuroprotection alone, had a synergistic
neuroprotective effect in a moderate P7 HI rat model when
treatment with both agents was initiated at 4 h following
the insult (Ma et al., 2005). However, these results were not
confirmed (Sabir et al., 2014). Sabir et al. (2016) observed no
change in brain area loss and neuronal cell count in any of the
experimental groups, thus demonstrating lack of neuroprotection
when combining Xenon and TH in a severe HI P7 rat model.

In line with the promising preclinical studies, a small, dose
escalation feasibility study was conducted in neonates with
moderate or severe HIE receiving TH. Inhalation of 50%
Xenon/50% oxygen reduced electrographic seizures, increased
sedation, and diminished EEG background without blood
pressure reduction in all participating neonates. At 18- to 20-
month follow-up, the developmental outcomes were no worse
than TH treatment alone (Dingley et al., 2014). Subsequently, a
larger feasibility and safety trial was completed where neonates
with moderate or severe HI were treated with TH alone, or
with TH and inhaled 30% Xenon/70% oxygen for 24 h. The
combination of TH and Xenon did not provide additional
protection in respect to mortality or early brain injury assessed
through MRI, when compared to TH alone (Azzopardi et al.,
2016). The high cost and specialised delivery systems make
Xenon less likely to be widely implemented. The extent of
neuroprotection from inhaled Xenon for neonates with HIE,
as well as the optimal timing, dosing, and feasibility of broad
administration, remain to be determined.

Umbilical Cord Blood Cells, Stem Cells,
and Extracellular Vesicles
Umbilical cord blood cells (UCBCs) possess immunomodulatory
properties leading to suppression of inflammation (Pimentel-
Coelho et al., 2012) and their transplantation has proven
neuroprotective in a range of preclinical CNS injury models
(Kang et al., 2015; Li J. et al., 2016). As UCBCs are readily
available at the time of birth, they pose an especially attractive
therapeutic potential for HI. Moreover, elevated lactate levels
in umbilical cord blood (UCB) samples of infants with birth
asphyxia is a potential marker for early prediction of HI injury
(Anh et al., 2019). Therefore, in suspected cases of HI injury,
combining testing and treatment with UCB extracted from the
placenta could be a promising approach.

Umbilical cord blood mononuclear cell fractions contain
an array of cell types that individually or together could be
responsible for the therapeutic effects observed in preclinical
studies. These are haematopoietic stem/progenitor cells (HPCs),
mesenchymal stromal cells (MSCs), endothelial progenitor cells

(EPCs), regulatory T-cells (Tregs), monocytes, and lymphocytes
(Pimentel-Coelho et al., 2012).

Administration of human UBC mononuclear cells, EPCs, and
Tregs in a P7 rat HI model, reduced Iba-1 expression as a
marker of microglial activation, and provided neuroprotection.
Furthermore, only treatment with EPCs significantly reduced cell
death. Following HI injury, as a consequence of the inflammatory
response, the levels of infiltrating CD4+ T-cells in the brain
are elevated. Treatment with human UCB mononuclear cells,
Tregs, and monocytes significantly reduced the levels of CD4+
T cells (McDonald et al., 2018). In a rat P8 HI model, treatment
with human UCBC improved long-term behavioural outcomes
assessed through open field test, cylinder test, and negative
geotaxis (Penny et al., 2019).

In a recent clinical study by Tsuji et al. (2020), six
newborns with severe birth asphyxia were intravenously dosed
with autologous UCBCs alongside TH (Tsuji et al., 2020).
After 18 months, four of the treated infants displayed normal
neurodevelopment and two presented with cerebral palsy,
however, no adverse effects from the cell transplantation therapy
were observed, deeming the treatment protocol alongside TH to
be both safe and feasible.

Mesenchymal stromal cells participate in the maintenance
of homoeostasis and restoration of tissue after injury through
secretion of soluble factors and extracellular vesicles (EVs).
EVs (exosomes and microvesicles) are 30–1000 nm lipid
bilayer-enclosed structures released from parental cells and
participating in cell-to-cell signalling processes. EVs transport
various biologically active molecules such as proteins, mRNAs,
miRNAs, lncRNAs, DNA, and lipids to target cells (Inal et al.,
2012; Yeo et al., 2013; György et al., 2015; Bruno et al., 2017;
Tricarico et al., 2017; Van Niel et al., 2018). Anti-inflammatory
factors are a key group of molecules released by MSCs, and
are important in mediating repair (Drago et al., 2013; English,
2013; Madrigal et al., 2014). HI studies using MSCs as putative
treatment demonstrated neuroprotective potential for those cells
(van Velthoven et al., 2010; Kim et al., 2012; Donega et al., 2014;
Ahn et al., 2016; Corcelli et al., 2018). Moreover, the therapeutic
time window was extended when MSC application was combined
with TH (Ahn et al., 2018). Post-HI treatment with MSC-derived
EVs in P7 mice significantly reduces microglial activation, cell
death, and tissue loss and improves behavioural outcomes (Sisa
et al., 2019b). Post-HI treatment with MSC-derived EVs was
also neuroprotective in preterm ewes, since it prevented loss
of cortical function assessed through EEG, and reduced white
matter injury (Ophelders et al., 2016).

Diabetes Drugs
Over the past decade, pre-clinical, and clinical studies
have provided evidence that drugs treating diabetes are
neuroprotective in different neurological conditions, such
as Alzheimer’s disease, stroke, and epilepsy (Athauda et al.,
2017; Rotermund et al., 2018; Mousa and Ayoub, 2019). The
effectiveness of some diabetes drugs, such as metformin,
sulphonylurea, and incretin/glucagon-like peptide-1-receptor
(GLP1-R) agonists, has been investigated in neonatal HI.
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Metformin, is a biguanide widely used for the therapy of
type 2 diabetes mellitus and metabolic syndrome. Metformin
exhibits a diverse range of pharmacological characteristics, such
as anti-oxidant, anti-inflammatory, anti-apoptotic, anti-tumour
properties (Ashabi et al., 2015; Eikawa et al., 2015). Recently,
metformin was reported to exert neuroprotective effects in a
variety of animal models of CNS diseases including HI, via
regulation of the inflammatory response, neuronal apoptosis,
and oxidative stress (Liu Y. et al., 2014; Ge et al., 2017;
Zhang D. et al., 2017). Metformin treatment in a P7 HI mouse
model, significantly attenuated brain damage, by reducing pro-
inflammatory factors (TNF-α, IL-1β, and IL-18), decreasing
micro- and astro-glial activation, attenuating TUNEL positive
cell-death, and by ameliorating infarct volume and brain oedema
(Fang et al., 2017).

Sulphonylurea agents are hypoglycaemic drugs, with their
receptor, sulphonylurea receptor 1 (SUR1) being involved in
brain injury in rodent models of stroke (Hussien et al.,
2018). KATP is a microglial channel, which is overexpressed
in rodent models of stroke (Hussien et al., 2018). SUR1 is
a regulatory subunit of KATP. Drugs blocking SUR1, and
especially glibencalmide, exert neuroprotective effect. This could
be attributed to inhibition of microglia activation, which, if
initiated, will cause release of pro-inflammatory cytokines and
will start downstream signalling pathways, resulting in neuronal
cell death (Ortega et al., 2013). In a rat model of HI, glibencalmide
improved motor performance assessed through postural reflex
test (Zhou et al., 2009).

Glucagon-like peptide-1-receptor agonists, such as liraglutide
and exendin-4, are used in combination with diet and exercise for
treatment of type 2 diabetes. They also provide neuroprotection
in rodent models of epilepsy and stroke (Wen et al., 2019).
Treatment with liraglutide after HI brain injury in P7 rats,
attenuated infarct volume and cell oedema, decreased TNF-
α levels, reduced tissue and neuronal loss, enhanced axonal
repair and accelerated re-myelination (Hussien et al., 2018; Zeng
et al., 2020). Liraglutide provides neuroprotection via PI3K/Akt
pathway (Zeng et al., 2020). Application of exendin-4 alone
or in conjunction with TH in a neonatal mouse HI model
also provided neuroprotection (Rocha-Ferreira et al., 2018). In
conclusion as quite a few studies support the anti-inflammatory
and neuroprotective effects of specific diabetic drugs in neonatal
HI either independently or in combination with TH, their further
investigation as treatment for the condition is justified.

Osteopontin
Osteopontin (OPN) is a glycoprotein hormone synthesised
by various tissues and present in all body fluids (Denhardt
et al., 2001). OPN expression has both pro- and anti-
inflammatory properties, and is mediated through regulation of
various cytokines (IL-10, IL-12, IL-3, and Interferon-γ), NF-κB,
macrophages, and T cells (Icer and Gezmen-Karadag, 2018).

Evidence of the importance of OPN in neuronal protection
post-HI injury was demonstrated in an OPN knockout mouse
model, where P9 mice subjected to HI insult developed
greater loss of grey and white matter, and more pronounced
sensorimotor deficits (Van Velthoven et al., 2011). OPN-deficient

mice also displayed less cerebral cell proliferation, survival, and
oligodendrogenesis, thus supporting a pivotal role for OPN in
brain injury, particularly in white matter recovery post-HI.

Alternatively, exogenous OPN administration through
intracerebroventricular injection following HI in P7 rats
decreased infarct volume, reduced cell death, and improved
behavioural performance assessed at 7 weeks post-HI using
Morris water maze (Chen et al., 2011).

However, a study from Bonestroo et al. (2015b) demonstrated
that intravenous administration of TAT-OPN peptide in a P9
HI mouse model did not improve brain injury or sensorimotor
behavioural deficits, and caused no functional improvement
(cylinder rearing test and adhesive removal task) or decrease
of cerebral damage (Bonestroo et al., 2015b). Thus, as the
supporting evidence for the neuroprotective effects of OPN in
neonatal HI is not very strong and the data are controversial,
further pre-clinical investigations are required.

C-Jun N-Terminal Kinases
C-Jun N-Terminal Kinases (JNKs) are protein kinases
participating in stress signalling pathways. For example,
neuronal apoptosis is mediated via downstream phosphorylation
of c-Jun by JNK leading to apoptotic cell death in HI (Mielke and
Herdegen, 2000). JNKs are activated in response to inflammation
and excitotoxicity (Benakis et al., 2010).

Pirianov et al. (2007) demonstrated that deletion of JNK3
in a P9 HI mouse model substantially reduced neuronal tissue
loss, attenuated c-Jun phosphorylation and the expression of
adenovirus transcription factor-2 (ATF-2), which is involved
in apoptosis, implicating a critical role for JNK3 in neuronal
cell loss following HI insult. Similarly, Nijboer et al. (2013)
showed reduced brain damage in P7 HI rats treated with
the JNK inhibitor TAT-JBD. Likewise, D-JNKi, an inhibitor of
mitochondrial JNK phosphorylation, reduced neuronal damage
and enhanced cognitive and sensorimotor function in P7 HI rats
(Nijboer et al., 2013).

More recently, the role of JNK in cell death and HI was
further emphasised in a study showing that inhibition of
apoptosis signal-regulating kinase 1 (ASK1), involved in JNK
phosphorylation and activation, confers neuroprotection (Hao
et al., 2016). Intracerebroventricular injection of NQDI-1, a
specific inhibitor of ASK1, was applied in P7 female rats post-
HI insult. This resulted in lower expression of phosphorylated
ASK1, JNK, c-Jun, p53, and caspase 3, and reduced brain infarct
volume and cell death (Hao et al., 2016). Collectively, these
studies support the importance of JNK signalling in HI injury and
cell death, and highlight it as a novel therapeutic target.

Edaravone
Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) is a novel
synthetic free radical scavenger and has been clinically used to
treat patients with acute brain infarction since 2001 (Higashi
et al., 2006). Edaravone, as a result of its amphiphilicity, was
designed to scavenge both lipid and water soluble peroxyl
free radicals, along with other ROS species (Watanabe et al.,
2018), therefore suggesting a potential protective role in
neonatal HI injury.
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Pre-HI intraperitoneal treatment with edaravone in P7 rat
pups reduced caspase-3 levels, and therefore decreased cell
death (Yasuoka et al., 2004). These results were confirmed
by Takizawa et al. (2009), in parallel with reduced DNA
peroxidation/oxidative stress. Post-HI edaravone treatment in P7
mice reduced lipid peroxidation by-products (Noor et al., 2005a).
Furthermore, edaravone treatment significantly decreased nitric
oxide metabolites in the CSF collected before the mice were
culled. As lipid peroxidation and oxidative stress are increased
in the pathophysiology of neonatal HI injury, and edaravone
counteracts them, these results support a protective role for that
compound in neonatal HI.

A study by Li et al. (2018), demonstrated that edaravone
treatment in a P7 rat HI model, significantly downregulated the
expression of FADD, caspase 8, and DR5 apoptotic markers after
HI. In the same study edaravone treatment also reduced caspase-
3 expression, suggesting suppression of apoptosis and therefore
improving neurofunctional performance in Morris water maze
test (Li et al., 2018).

A study by Noor et al. (2005b) in a P7 Wistar rat HI
model, showed that edaravone was neuroprotective only to
the acute phase (two consecutive days of administration) after
HI by improving learning and memory capability as well as
morphological brain recovery, but was not effective after 5 or
10 consecutive days of administration. A recent study in a
piglet HI model (24 h-age piglets but they don’t specify the
day of surgeries) demonstrated that intravenous administration
of edaravone combined with TH did not improve neurological
outcomes in grey or white matter, nor attenuated hippocampal
brain damage (Yamato et al., 2020). Other methods of drug
administration are necessary to address the efficacy of combined
endaverone and TH treatment for neonatal HI brain injury.

Granulocyte-Colony Stimulating Factor
Granulocyte-colony stimulating factor (G-CSF) is an
endogenously produced haemopoietic growth factor, known
for its immunomodulating properties, primarily acting in an
anti-inflammatory way (Hartung, 1998). Preclinical studies
looking at the use of G-CSF for therapeutic benefits in neonatal
HI has shown some promise.

Yata et al. (2007) tested 1 h delayed G-CSF administration
in a P7 HI mouse model, and observed reduced tissue loss,
as well as decrease in TUNEL positive cell death and Bax and
caspase-3 proteins, indicating that G-CSF attenuated apoptosis
and neuronal loss.

Long-term neurological function including short-term
memory, motor coordination, reflexes, and exploratory
behaviour improved after G-CSF treatment in a P7 rat HI model
(Fathali et al., 2010). G-CSF treatment in a model of perinatal
hypoxia in P7 rats, also rescued long-term cognitive function,
suggesting protection against degeneration in hippocampus,
midbrain, and temporal cortex (Yang et al., 2013d).

Most recently, Dumbuya et al. (2020) demonstrated that
G-CSF treatment in P7 HI rats reduced apoptosis and promoted
the expression of IL-10. Simultaneously, G-CSF treatment also
decreased infarct volume and tissue loss, and reduced expression
of caspase-3, Bax, and Bcl-2. Moreover, the expression of the

mTOR/p70S6K pathway was downregulated in the G-CSF treated
group, in combination with reduction in the expression of TNF-
α and IL-1β, and in TUNEL positive cells. Overall, G-CSF
treatment demonstrated anti-apoptotic and anti-inflammatory
properties after HI insult and improved behavioural outcomes
making it a potential candidate for HI treatment. However,
studies on larger animal models and clinical trials are needed to
establish its efficacy.

Anti-inflammatory Cytokines
Anti-inflammatory cytokines protect neurons against HI caused
hyper-excitability and death in vitro and in vivo (Turovsky
et al., 2013; Tukhovskaya et al., 2014). In HI neuronal cultures,
IL-10 suppresses re-oxygenation triggered hyper-excitability
through inhibition of Ca2+ release from the endoplasmic
reticulum, delay of global Ca2+ increase and promotion of cell
survival (Turovskaya et al., 2012; Turovsky et al., 2017). PI3-
kinase inhibition abolishes the neuroprotective effects of IL-
10 (Turovskaya et al., 2014). This suggests that the protection
provided by IL-10 during ischaemia is mainly mediated by PI3-
kinase-dependent cell survival signalling pathways (Sharma et al.,
2011). Sip1 is a transcription factor involved in neurogenesis
regulation, and its mutation leads to suppressed expression of
genes encoding the subunits of NMDA, AMPA, and kainate
receptors; protein kinases PKA, JNK, CaMKII, as well as
transcription factor Hif1α, thus causing postnatal microcephaly
and epileptic seizures. In neuronal mouse cell cultures with the
Sip1 mutation IL-10 treatment restores neurotransmission by
increasing the expression of the above mentioned genes, although
not to the levels of wild-type controls (Turovskaya et al., 2020).
Overall, IL-10 provides neuroprotection in vitro, however, further
studies in vivo are needed to confirm its role in HI conditions.

A summary of the current neuroprotective agents for neonatal
HI brain injury used in pre-clinical studies and in clinical trials is
shown in Table 1.

EXPERIMENTAL TREATMENTS FOR
INFECTION-SENSITISED HI

Histone Deacetylase Inhibitor
Trichostatin A
Histone deacetylase (HDAC) works in synergy with
acetyltransferase to regulate protein acetylation through
post-translational modifications of histones or other proteins
thereby modulating gene expression (Adcock, 2007). Histone
deacetylase inhibitor (HDACi) treatment in adult rodent models
of ischaemic/reperfusion stroke reduced the expression of pro-
inflammatory molecules such as p53 and NF-κB (Hyeon et al.,
2007; Shein et al., 2009). Moreover, in vitro exposure to HDACis
reduces LPS-induced inflammation by repressing inflammatory
cell recruitment and cytokine expression (Brogdon et al., 2007;
Suh et al., 2010). Intraperitoneal administration of trichostatin A
(TSA), a class I/II HDACi, in P7 HI mice pre-sensitised with LPS
led to increased histone acetylation which persisted for 24 h after
injury, reduced white and grey matter injury as well as improved
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TABLE 1 | Summary of neuroprotective agents for neonatal brain injury in pre-clinical studies and in clinical trials.

Agent Preclinical evidence Clinical trials Negative results

Cannabinoids • Decreases inflammation, excitotoxicity, oxidative stress in
the rat (Pazos et al., 2013).
• In the mouse and piglet, reduced astroglia activation and

tissue loss (Martínez-Orgado et al., 2007; Mohammed
et al., 2016).

– • In a piglet model.

Quercetin • Decreases microglial, astroglial activation, apoptotic
markers in the rat (Wu et al., 2019).
• Increases oligodendrocytes proliferation. Improves spatial

and memory learning and cognitive ability in the rat (Huang
et al., 2012; Qu et al., 2014).

– –

Pentoxifylline • Decreases hippocampal atrophy, apoptotic markers,
inflammation markers in the rat (Kalay et al., 2013).
• Improves spatial learning and memory in the rat (Halis et al.,

2019).

– –

Oxymatrine • Reduces infarct volume, apoptosis, and oxidative stress in
the rat (Zhao et al., 2015; Liu et al., 2019).
• Ameliorates morphology of injured hippocampal neurons in

the rat (Zhao et al., 2015).

– –

Resveratrol • Decreases infarct volume, cerebral edoema, apoptosis,
elevates anti-oxidative enzymes activity, reduces
pro-inflammatory markers in the rat (Pan et al., 2016; Gao
et al., 2018).
• Reduces astrogliosis and improves behavioural outcomes

(anxiety and neophobia) (Arteaga et al., 2015).

– –

Pterostilbene • Decreases infarct volume, apoptosis, and pro-inflammatory
markers; improves motor coordination, working memory
deficit in the rat (Li D. et al., 2016).

– –

Erythropoietin • Improves synaptogenesis, reduces apoptosis, improves
spatial memory in the rat (Zhang L. et al., 2017; Huang
et al., 2019; Xiong et al., 2019).

• Successful phase I, II, and III clinical trials
completed as monotherapy application
(Zhu et al., 2009; Elmahdy et al., 2010;
Malla et al., 2017).
• Active phase II clinical trial as augmentation

with TH (Wu et al., 2016).
• Active phaseIII clinical trial as augmentation

with TH (Sheldon et al., 2017).

• In severe HI injury EPO
worsens the outcome because
it interferes with endogenous
repair responses (Sheldon
et al., 2017).

Allopurinol • Decreases acute brain edoema and sub-acute brain
atrophy in the rat (Palmer et al., 1993).
• Decreases caspase-3 mediated apoptosis in the rat

(Rodríguez-Fanjul et al., 2017).

• Successful postnatal clinical trials I–III as
monotherapy (Gunes et al., 2007;
Kaandorp et al., 2012).
• Active postnatal phase III trial as

augmentation with TH.
• Successful phase III trial on antenatal

administration (Kaandorp et al., 2015).

–

Indomethacin • Reduced caspase mediated apoptosis, glutathione
depletion, and lipid peroxidation in the rat (Taskin et al.,
2009).

– –

Topiramate • The acute administration reduces histopathological brain
injury and improves behavioural outcomes (Jiang et al.,
2014; Landucci et al., 2018) in rodents.
• Reduces infarct volume in augmentation with TH in the

piglet (Noh et al., 2006).

• Successful safety phase I trial as
monotherapy.
• Successful phase I and II trials as

augmentation with TH.
• Active further augmentation phase I and II

trials (Filippi et al., 2010).

–

Curcumin • Decreased microglia, astroglia activation, cell death, and
tissue loss if administered up to 2 h after HI insult in the
mouse (Rocha-Ferreira et al., 2019).
• Improved myelination and reduced iNOS levels in the

mouse (Rocha-Ferreira et al., 2019).
• Increased expression of nuclear factor erythroid-2-related

factor 2 (Nrf2), attenuation of the increased expression of
inducible NOS, and caspase-3 activity in the rat
(Cui et al., 2017).

– –

(Continued)
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TABLE 1 | Continued

Agent Preclinical evidence Clinical trials Negative results

Melatonin • If administered with TH, decreased tissue loss and
improved learning in the Morris Water-Maze test in the rat
(Carloni et al., 2014).
• Reduction of cell death if administered in augmentation with

TH in the piglet (Robertson et al., 2019, 2020).
• If administrated with topiramate reduced infarct volume and

cell death in the rat (Ozyener et al., 2012).

• Successful phase II augmentation trial
with TH.
• Active phase I augmentation trial with

TH (NCT02621944).

• Only subtle neuroprotective effect but
not long-term brain injury improvement
in the rat (Berger et al., 2019).
• No protection of neuronal mitochondria

as shown by GABA-A and lactate levels
(Berger et al., 2016).

Hydrogen • Reduces cell death via reduction of caspase-3 and 12
activity, infarct volume, inflammation via AIF-1 expression
reduction in the rat (Cai et al., 2008).
• Improves spatial learning measured via Morris Water maze

and locomotor activity in the rat (Wang et al., 2020) and
piglet (Htun et al., 2019).

• Clinical study showed reduction of IL-6
and TNF-α cytokines (Domoki, 2020).

• Not associated with decreased infarct
volume or decreased concentration of
malondialdehyde (MDA), an
end-product of lipid peroxidation in the
rat (Matchett et al., 2009).

Magnesium • If administered prior HI insult it reduces ROS production,
IL-1α and IL-1β, and overall cell metabolism in the rat
(Koning et al., 2019).
• If administered in adjunction with melatonin, it reduces

infarct volume of hippocampus and cell death in the rat
(Cetinkaya et al., 2011).
• If administered with TH reduces infarct volume of

hippocampus, cell death and increases oligodendrocytes
survival in hippocampus and thalamus in the piglet.
• Inconsistent neuroprotection in rodent models.

• Clinical study showed lower incidence
of cerebral palsy in infants (Doyle et al.,
2009).
• An open-label pilot study showed that

combination of MgSO4, erythropoietin
and TH was found to be safe
(Nonomura et al., 2019).

• Not neuroprotective when
administrated to rat after severe HI
(Galinsky et al., 2014).
• Post-injury treatment did not improve

neural survival in striatum in rat (Galvin
and Oorschot, 1998).
• Post-HI treatment did not show any

difference in the severity of damage on
hippocampus, cerebellum, cerebral
cortex, caudate nucleus, thalamus, and
striatum and the white matter tracts in
the piglet (Greenwood et al., 2000).

Coumestrol • Pre-treatment prevents mitochondrial failure, improved
spatial reference and working memory, reduced tissue loss
and long-term astrogliosis in the rat (Anastacio et al., 2019).

– –

Xenon • Upregulaition of Bcl-2 and Bcl-xL improving apoptosis,
reduction TNF-α and VEGF enhancing cell repair and
reducing inflammation in the rat (Amer and Oorschot, 2018).
• Improves motor function in the staircase test in the rat in

augmentation with TH (Osredkar et al., 2014).

• Successful augmentation trial with TH
in reducing apoptosis and cerebral
abnormalities (Dingley et al., 2014).
• Failed to show improvement compared

to TH in moderate and severe cases
(Azzopardi et al., 2013).

• Xenon combined with TH is not
neuroprotective after severe HI in a P7
rat model since brain area loss and
neuronal cell count were similar in all
experimental groups (Sabir et al., 2016).

UCBs/MSCs • Reduce iba-1, CD4+ T cells and improve locomotor activity
measured with open field test, cylinder test, and negative
geotaxis tests in the rat (Penny et al., 2019).
• Reduced microglia, cell death, tissue loss in the mouse

(Sisa et al., 2019b).
• Prevention of cortical loss and function measured via EEG

and reduced white matter injury in ewes (Ophelders et al.,
2016).

• Small open label clinical study showed
safety and feasibility as augmentation
with TH (Tsuji et al., 2020).

–

Diabetes drugs • Metformin reduced TNF-α, IL-1β, IL-18, microglia, astroglia
activation, cell death, and tissue loss in the mouse (Fang
et al., 2017).
• Glibencalmide improves neuromotor activity in the rat (Zhou

et al., 2009).
• Liraglutide attenuated the infarct volume and cell oedema,

decreased the inflammatory response at TNF-α levels,
reduced tissue, neuronal loss, enhanced axonal repair, and
accelerated remyelination (Zeng et al., 2020).

– –

Osteopontin • Increased cell proliferation, oligodendrogenesis; Decreases
infarct volume, cell death; improves behavioural outcomes
in the mouse (Van Velthoven et al., 2011),
• Decrease infarct volume, reduced cell death and improve

memory via MWM in the rat (Chen et al., 2011),

– • TAT-OPN peptide did not exert
neuroprotective effects on neonatal
HI-induced brain injury or sensorimotor
behavioural deficits in a mouse
(Bonestroo et al., 2015b).

C-Jun
N-terminal
kinases

• Reduces neuronal loss, cell death, apoptosis in the mouse
(Pirianov et al., 2007).
• Enhances cognitive and sensorimotor function, reduces

apoptosis, reduces brain infarct volume in the rat (Nijboer
et al., 2013; Hao et al., 2016).

– –

(Continued)
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TABLE 1 | Continued

Agent Preclinical evidence Clinical trials Negative results

Edaravone • Pre-treatment in the rat and the mouse down-regulates cell death,
oxidative stress, apoptosis markers, lipid-peroxidation by-products
(Yasuoka et al., 2004; Takizawa et al., 2009).

– • Post-HI treatment is neuroprotective only to the acute
phase after HI but not 5–10 days after insult in a rat
(Takizawa et al., 2009).
• Intravenous administration in combination with TH did

not improve neurological outcomes in the newborn HI
piglet as indicated by grey, white matter, and
hippocampal brain damage (Yamato et al., 2020).

Granulocyte-colony
stimulating factor

• Decreases cell death, tissue loss, apoptosis, inflammation in the
mouse and rat (Yata et al., 2007; Dumbuya et al., 2020).
• Improves long-term cognitive function and exploratory behaviour in

the rat (Yang et al., 2013d).

– –

Anti-inflammatory
cytokines

• IL-10 increases cell survival and restores neurotransmission in
neuronal cell cultures in ischaemic conditions (Tukhovskaya et al.,
2014; Turovsky et al., 2017).

long-term learning in female mice (Fleiss et al., 2012). TSA
treatment did not provide neuroprotection in male mice, which
can be attributed to the endogenously higher histone acetylation
observed in male mice, thus suggesting less unacetylated lysine
residues availability in males (Tsai et al., 2009). Whilst ample
studies have shown that class I/II HDACis are neuroprotective
in adult animal models through modulation of inflammation-
associated molecules (Chen et al., 2007; Hyeon et al., 2007; Sinn
et al., 2007; Wu et al., 2008), little is known of the mechanisms
of action of HDACis in neonates. Even though Fleiss et al.
(2012), observed neuroprotection in female mice, reduction of
pro-inflammatory cytokine expression in the LPS/HI neonatal
mouse was not registered, suggesting that the effect of HDACis
does not mediate inflammation, but rather involves caspase-3
and Heat shock proteins (Liu et al., 1989; Yakovlev et al., 2010).

Plasminogen Activator Inhibitor-1
Tissue-type plasminogen activator (tPA) is a serine protease
circulating in the blood and brain parenchyma, widely known for
its role in fibrinolysis (Gualandris et al., 1996). In the CNS, tPA
is involved in various plasminogen-independent pathways where
it potentiates ischaemia-induced excitotoxity by modulating
NMDA receptor signalling (Nicole et al., 2001) and increasing
production of nitric oxide (Parathath et al., 2006), as well as
impairing BBB integrity (Su et al., 2008). tPA affects microglial
activation (Rogove et al., 1999) through binding to the low-
density lipoprotein receptor-related protein-1 (LRP-1) which
leads to NF-κB activation – this is suppressed by preventing
tPA-LRP-1 interactions after focal ischaemia in adult animals
(Zhang et al., 2007, 2009). Earlier studies by Yang et al. (2009)
in a rat model of HI injury, show that antagonising tPA activity
with plasminogen activator inhibitor-1 (PAI-1) decreases HI-
induced tPA activation and brain damage. Given the group’s
previous work in pure HI and the involvement of tPA in
microglial activation, Yang and colleagues investigated a stable-
mutant form of PAI-1 called CPAI in LPS-sensitised P7 HI Wistar
rats. Both intracerebroventricular (ICV) (Yang et al., 2013b)
and intranasal CPAI delivery (Yang et al., 2013c), the latter
considered a more clinically favourable administration route;
showed similar efficiency in LPS-sensitised HI injury. ICV CPAI

administration to LPS-sensitised HI rats reduced BBB damage,
as well as decreased TNF-α and MCP-1 levels indicating a
suppression in microglial activation. Moreover, CPAI treatment
appeared to lower abnormal white matter development and
motor impairments. Together, these results indicate a therapeutic
role for PAI-1 in both HI alone and LPS-sensitised HI.

Cell-Penetrating Anti-NF-κB Peptides
Acute activation of NF-κB plays a critical role in LPS-sensitised
HI brain injury (Yang et al., 2013a) and its inhibition might
provide a useful therapeutic intervention. Such inhibition can be
achieved with a selective NF-κB inhibitor, anti-NF-κB peptides
(Tat-NBD), comprised of the NF-κB essential modifier-binding
domain peptide (NEMO) coupled with the HIV trans-activator
of transcription peptide (HIV-TAT) (May et al., 2000; Pizzi
et al., 2009). Yang et al. (2013a) used Tat-NBD to intranasally
treat postnatal day 7 rats at 10 min after HI, and attenuated
the brain damage with both 4 or 72 h LPS pre-HI exposure;
the latter being more reflective of intrauterine infection. Tat-
NBD treatment in both models reduced NF-κB and decreased
microglial activation. Brain atrophy in HI animals pre-exposed
to LPS for 4 h showed an 85% reduction whilst the 72 h LPS pre-
exposure led to 32% reduction suggesting that inhibition of NF-
κB activity in HI with sub-acute infection has limited efficiency.
Plasminogen activator induction, in 72 h LPS pre-exposure, was
preserved even after Tat-NBD administration highlighting the
need for multi-faceted therapeutics in LPS-sensitised HI which
will address the divergent pathological mechanisms underlying
HI injury combined with sub-acute infection. Treatment with
Tat-NBD had no therapeutic effect in pure-HI which further
reinforces NF-κB as an integral contributor to LPS-sensitised
HI brain damage.

FTY720 (Fingolimod) –
Sphingosine-1-Phosphate Receptor
Agonist
FTY720 is a sphingosine 1-phosphate (S1P) receptor modulator
approved for use in clinical care to treat multiple sclerosis
(Brinkmann et al., 2010). Through agonistic interactions with
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lymphocytic S1P receptors, FTY720 causes internalisation and
degradation of these receptors, thereby preventing the exit of
lymphocytes, particularly TH17-lymphocytes, from the lymph
nodes (Brinkmann et al., 2000, 2002; Mandala et al., 2002; Pham
et al., 2010). Elevated levels of pro-inflammatory cytokines in
LPS-sensitised HI, including IL-6 and IL-1β, are crucial for
TH17-lymphocyte differentiation (Bettelli et al., 2006; Ghoreschi
et al., 2010). Peripartum infection in neonates leads to increased
TH17 circulation compared to other CD4 positive T cell subtypes.
This bias toward TH17 cell differentiation is inversely correlated
with age; the more preterm the infant the greater the tendency
to generate TH17 cells (Black et al., 2012). Yang et al. (2014)
suggested that systemic administration of FTY720 attenuates
brain damage and behavioural deficits in P7 LPS-sensitised HI
Wistar rat pups. FTY720 treatment reduced IL-17A-positive
lymphocytes, lowered the levels of pro-inflammatory cytokines,
attenuated BBB damage and protected CNS white matter and
motor development. Moreover, FTY720 treatment had no effect
in HI alone, emphasising the critical contribution of early-stage
TH17 cells to neuroinflammation in LPS-sensitised HI (Yang
et al., 2014).

Vancomycin – Gram-Positive Bacterial
Infection
Many cases of neonatal infections are due to Gram-positive
bacterial sepsis. Although TH is neuroprotective in this instance,
there is a need for supplementary therapies addressing the Gram-
positive bacterial sepsis (Dong and Speer, 2015). Vancomycin
downregulates LPS-induced TNF-α production (Siedlar et al.,
1997) whilst upregulating anti-inflammatory (IL-10) cytokine
activation (Ziegeler et al., 2006). In a preterm P4 mouse HI model
pre-exposed to Staphylococcus epidermis, a bacterium commonly
causing Gram-positive sepsis, the antibiotic vancomycin was
neuroprotective (Lai et al., 2019). At 14 h post-injury it reduced
bacterial load in the spleen, decreased caspase-3 activity and
pro-inflammatory cytokine levels, and lowered white and grey
matter loss assessed through immunohistochemical analysis. As
well as being a promising candidate for Gram-positive bacterial
sepsis, the anti-inflammatory properties of vancomycin make it a
potential therapeutic option for Gram-negative bacterial sepsis.

Properdin
The complement system is an important component of innate
and acquired immunity with three pathways of activation:
classical, lectin, and alternative pathways (Lesher et al., 2013).
Properdin, a plasma glycoprotein, is a positive regulator of
the complement system, released in the presence of pro-
inflammatory cytokines (Lesher et al., 2013). It stabilises the
alternative pathway convertases (C3bBb) through direct binding
to C3b or through interactions with specific surfaces.

Data from patients with neonatal HI suggest decreased levels
of C3 (Grether and Nelson, 1997) and an increase in C3a and
C5a after foetal acidosis (Sonntag et al., 1998). Given the role
of properdin in complement activation, the effects of global
properdin deletion on LPS-sensitised HI injury as well as on
HI injury alone, was investigated in a Rice–Vannucci model

of neonatal HI (Sisa et al., 2019a). Global properdin deletion
in P7 mice reduced brain damage in both HI alone and LPS-
sensitised HI at 48 h post insult. In the model of HI-alone
a reduction of 20–38% in cell death was observed in the
pyriform cortex, hippocampus, striatum, and thalamus, as well
as a 21–76% reduction in microglial activation. Global properdin
deletion in LPS-sensitised HI injury reduced cell death (50–
76%), tissue volume loss (13–66%), and microglial activation
(31–66%). In both injury profiles global properdin deletion
did not affect astroglial activation, suggesting that properdin is
critical for the impaired microglial pro-inflammatory response
in HI. These observations strongly associate properdin and
complement activation with HI alone and LPS-sensitised HI
injury highlighting its importance as a therapeutic target.

Glucocorticoids
Glucocorticoids are steroids secreted by the adrenal gland
in response to stressful stimuli. They have anti-inflammatory
and immunosuppressive properties (De Bosscher et al., 2000).
Glucocorticoids mediate inflammation through repressing pro-
inflammatory cytokines such as TNF-α and IL-1β, and increasing

TABLE 2 | Summary of neuroprotective agents for infection-sensitised neonatal
brain injury

Agent Preclinical evidence

Histone deacetylase
inhibitor (HDACi)
trichostatin A (TSA)

Reduces white and grey matter injury, and cell
death improves inflammatory profile and long-term
learning in the mouse (Liu et al., 1989; Brogdon
et al., 2007; Suh et al., 2010; Yakovlev et al., 2010;
Fleiss et al., 2012).

Plasminogen activator
inhibitor-1 (PAI-1 –
CPAI)

Decreases brain damage, BBB damage, and
inflammation via reduction of microglia activation
and modulation of anti-inflammatory pathways in
the rat (Zhang et al., 2007; Yang et al., 2009).

Cell-penetrating
anti-NF-κB peptides
(Tat-NBD)

Downregulates microglial activation and NfkB in the
rat (May et al., 2000; Pizzi et al., 2009).

FTY720 (fingolimod) –
sphingosine-1-
phosphate receptor
agonist

Reduction in IL-17A-positive lymphocytes, lower
levels of pro-inflammatory cytokines, attenuated
BBB damage, and protected brain white matter
and motor development.

Vancomycin –
Gram-positive bacterial
infection

Downregulate LPS-induced TNF-α production
(Siedlar et al., 1997) whilst upregulating
anti-inflammatory, IL-10, cytokine production
(Ziegeler et al., 2006).

Properdin Reduces cell death, microglial activation (Sisa et al.,
2019a).

Glucocorticoids Prolonged administration of dexamethasone has
been implicated in increased cell death (Whitelaw
and Thoresen, 2000). Hydrocortisone administered
both decreased infarction size (Harding et al.,
2017).

N-acetylcysteine Decreases acute brain edoema and sub-acute
brain atrophy in a rodent model (Xu et al., 2005).

Downregulation of
microRNA-21 (miR-21)

Increases caspase activity and lipid peroxidation in
a rodent model injury (Wang et al., 2007b).

PTEN-induced putative
kinase 1 (PINK1)

Attenuated brain infarct volume 24 and 72 h post
insult, reduced cell death (Zhu et al., 2016).
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anti-inflammatory cytokine expression as well as inhibiting NF-
κB (Almawi and Melemedjian, 2002). Previously, it has been
shown that dexamethasone decreased glucocorticoid receptor
expression in neonatal HI injury in rats (Gonzalez-Rodriguez
et al., 2014). Harding et al. (2017) investigated dexamethasone
administration in HI alone, as well as hydrocortisone in
LPS-sensitised HI injury in P7 rats. ICV dexamethasone
administration after HI alone decreased overall brain infarction.
However, prolonged dexamethasone administration increased
cell death (Whitelaw and Thoresen, 2000). Therefore, due to
fewer side effects with prolonged usage, hydrocortisone was
investigated instead of dexamethasone (Feng et al., 2015).
Hydrocortisone administration both intranasally and ICV,
decreased infarction size after HI insult (Harding et al., 2017).
Moreover, intranasal hydrocortisone administration post LPS-
sensitised HI significantly decreased infarction size (Harding
et al., 2017). Higher hydrocortisone doses decreased this
effect which can be attributed to mediation of excitotoxic
injury. Together, these results indicate a therapeutic role for
glucocorticoids in both HI injury alone and LPS-sensitised HI.

N-Acetylcysteine
N-acetylcysteine (NAC) is a free radical scavenger with
antioxidant, anti-apoptotic (Ferrari et al., 1995), and anti-
inflammatory (Louwerse et al., 1995) properties, and supplies
cysteine which is critical for glutathione synthesis (Ghersi-Egea
et al., 2006). It may also regulate glutamate levels through
interaction with the cysteine/glutamate antiporter, thereby
reducing neuronal glutamate release (Bridges et al., 2012). NAC
reduced amniotic fluid and placental cytokine responses to LPS
infection (Beloosesky et al., 2006) and stabilised oxidative balance
(Xu et al., 2005). Due to the various therapeutic properties of
NAC and its ability to cross the BBB (Farr et al., 2003) as well
as its safe use in pregnancy (Beloosesky et al., 2006), NAC has
therapeutic potential in LPS-sensitised HI brain injury. Wang
et al. (2007b) investigated multiple NAC doses in P8 rats with
LPS-sensitised HI injury (Xu et al., 2005). NAC (200 mg/kg)
reduced infarct volume loss by 78.3% when administered both
pre- and post-LPS-sensitised HI induction. Moreover, NAC
treatment immediately after HI (0 h) led to greater reduction
in brain injury (41%) compared with melatonin (Xu et al.,
2005). Furthermore, NAC treatment reduced white matter injury,
microglial activation, and redox signalling molecules, as well
as nitrotyrosine and isoprostane production. Additionally, NAC
treatment increased endogenous antioxidant molecules such as
glutathione and thioredoxin-2 and suppressed caspase-3, calpain,
and caspase-1 activation. Thus, a therapeutic role for NAC is
feasible in LPS-sensitised HI injury.

Downregulation of MicroRNA-21
MicroRNAs are small non-coding ribonucleic acid molecules
implicated in various physiologic processes (He and Hannon,
2004). They are posttranslational regulators and act by binding
to complementary sequences in mRNA, thereby suppressing
or degrading target mRNA transcripts. MicroRNAs have
been implicated in cellular growth, inducing proliferation,
differentiation, suppressing apoptosis, and in regulation

of inflammation (Montalban et al., 2014; Zhou et al.,
2018). Given these properties, microRNAs have potential as
therapeutic targets in LPS-sensitised HI injury. Zhou et al.
(2018) investigated microRNA-21 (miR-21) downregulation
in a P3 rat model of LPS-sensitised HI injury; where the
animals were treated with antagomir-21 from the 2nd to
28th day post injury. miR-21 downregulation improved
spatial learning and memory assessed through Morris
water maze test. Moreover, miR-21 inhibition resulted in
less vacuolar degeneration, better neuronal arrangement
in the hippocampus, less neuronal oedema, and cell death
compared to non-inhibited controls following LPS-sensitised HI
injury. Therefore, mircroRNAs show therapeutic potential for
infection-sensitised HI injury.

PTEN-Induced Putative Kinase 1
PTEN-induced putative kinase 1 (PINK1) is a mitochondrial
serine/threonine kinase well known for its role in Parkinson’s
disease pathogenesis with PINK1 mutation leading to
mitochondrial dysfunction and thereby neurodegeneration
(Alexander, 2004). PINK1 has a critical role in mitochondrial
quality control through identification and targetting of damaged
mitochondria for degradation mediated via autophagy (Burchell
et al., 2010). Some studies suggest a potential role for PINK1 in
neuronal survival following HI injury (Chen et al., 2015; Li and
Hu, 2015), as well as participation in cell proliferation through
reprogramming of glucose metabolism (Requejo-Aguilar et al.,
2014). Zhu et al. (2016) investigated the deletion of PINK1
in LPS-sensitised HI injury in P3 mice. Knockout of PINK1
in LPS-sensitised HI brain injury attenuated brain infarct
volume at 24 and 72 h post insult. Additionally, at 24 h post
insult PINK1-knockout animals had reduced levels of TUNEL
positive cell death. PINK1-deletion increased α-Synuclein
(α-Syn) expression, a downstream effector of PINK1 thought
to suppress cell death (Bornhorst et al., 2014). Interestingly,
inhibition of α-Syn with small interfering RNA reversed the
neuroprotective effect observed in PINK1-knockout mice as
brain infarct size and cell death increased (Zhu et al., 2016).
Thus, PINK1 shows potential as a novel therapeutic target in
LPS-sensitised HI injury.

A summary of the current neuroprotective agents for neonatal
LPS-sensitised HI brain injury used in pre-clinical studies is
shown in Table 2.

CONCLUSION

Basic science, translational, and clinical research of HIE have
significantly expanded over the last two decades. Despite the
advances in neonatal clinical care, the worldwide burden of HIE
is substantial. TH is standard treatment for HIE, however, its
application and efficacy are quite limited. Moreover, TH is not
beneficial in infection-sensitised HI cases. Therefore, there is
an unmet need for the development of new treatments to both
complement and increase the efficacy, or to replace TH. The
investigations of neuroprotective drugs and therapies for term
and preterm HI neonates has significantly increased. Having
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in mind the pathology of HI, most approaches for both HI
alone and infection-sensitised HI target inflammation, oxidative
stress, and tissue loss in the short and long term, and aim
to improve behavioural outcomes. Many promising agents
such as resveratrol, cannabinoids, curcumin, and melatonin
have been used in pre-clinical studies for both HI alone
and infection-sensitised HI (Tables 1, 2). However, the ones
with highest likelihood for success and closest to clinical
implementation for HI alone include EPO for term and preterm
HIE, and magnesium for antenatal prevention of preterm HIE.
In the case of infection-sensitised HI the scenario is even
more complicated, having in mind that Gram-positive and
Gram-negative bacterial infections require different approach,
which makes pre-clinical HI studies even more complex. In
conclusion, given the enormous global socio-economic burden
of the consequences from HIE, the search for therapies to
prevent or treat the disease needs to continue and access

to neuroprotective strategies for HIE in low resource settings
needs to be improved.
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