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Our previous work indicated that ER-phagy level had altered in spinal nerve ligation
(SNL) rats. In this study, we investigated whether dexmedetomidine or ketamine exhibits
anti-anxiety or anti-nociceptive effects via modulation of the spinal STING/TBK pathway
to alter ER-phagy in SNL rats. We evaluated the analgesic and anti-anxiety effects of
ketamine and dexmedetomidine in SNL rats. 2’3’-cGAMP (a STING pathway agonist)
was administrated to investigate whether enhanced spinal STING pathway activation
could inhibit dexmedetomidine or ketamine treatment effects in SNL rats. Analgesic
effects were assessed with the mechanical withdrawal threshold (MWT) and anti-anxiety
effects were measured via an open field test (OFT). Protein expression levels were
evaluated by immunoblotting. Distribution and cellular localization of Grp78 (ER stress
marker) were evaluated by confocal immunofluorescence. SNL induced mechanical
hypersensitivity and anxiety in rats; dexmedetomidine and ketamine both provided
analgesia and anti-anxiety effects in SNL rats. Furthermore, the STING pathway was
involved in the modulation of ER stress and ER-phagy in SNL rats and dexmedetomidine
and ketamine alleviated ER stress by inhibiting STING pathway to enhance ER-phagy.
Thus, both ketamine and dexmedetomidine provided anti-anxiety and anti-nociceptive
effects by alleviating ER stress through the inhibition of the STING/TBK pathway to
modulate spinal ER-phagy in SNL rats.

Keywords: neuropathic pain, endoplasmic reticulum stress, autophagy, ketamine, dexmedetomidine, STING
pathway

INTRODUCTION

Neuropathic pain, which results from nervous system dysfunction caused by nervous system
damage, can be a refractory disease (Costigan et al., 2009). Neuroinflammation contributes to
neuropathic pain as a maladaptive mechanism, which originally promotes regeneration and healing
following nerve damage (Skaper et al., 2018; Sommer et al., 2018; Chen et al., 2019). Furthermore,
inflammation mediators could be promising biomarkers and treatments for neuropathic pain
(Sommer et al., 2018).
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Autophagy attenuates inflammatory signal transductions
and removes aggregated inflammationsome components,
suggesting autophagy provides a neuroprotective effect via
inhibiting neuroinflammation (Cho et al., 2020). Autophagy
has a protective effect, attenuating neuropathic pain via the
restoration of cellular homeostasis in the spinal cord (Marinelli
et al., 2014). Autophagy following ER stress primarily induced
ER-phagy, which selectively degrades excess ER via autophagy
processing (Senft and Ronai, 2015; Grumati et al., 2018; Loi et al.,
2018; Sisinni et al., 2019). Thus, ER-phagy might be a promising
treatment target for neuropathic pain. In this study, we examined
glucose-regulated protein (Grp78) as an ER stress marker. The
study demonstrated that STING (Stimulator of interferon genes)
is essential to nociception (Donnelly et al., 2021). STING, an
ER-resident protein related to neuroinflammation, has been
identified as a novel mediator of crosstalk between ER stress
and ER-phagy (Moretti et al., 2017; Gui et al., 2019; Yang et al.,
2019; Paul et al., 2021). STING serves as an ER adaptor, being
required under conditions of elevated ER stress (Petrasek et al.,
2013; Moretti et al., 2017). STING/TBK (TANK binding kinase)
pathway plays an essential role in ER stress. We evaluated
autophagy processing of microtube-associated protein 1 light
chain 3 (LC3, an autophagosome formation marker) and p62
(a marker of autophagic degradation) and evaluated formation
levels of ER-phagy using FAM134b. FAM134b is an ER-resident
receptor that binds LC3 and delivers ER to the lysosome
for degradation.

Dexmedetomidine, a selective α2 adrenergic receptor
(AR) agonist, provided analgesic potency during systemic
administration (Yeo and Park, 2018; Liu et al., 2020b), low
doses of dexmedetomidine also relieved tactile allodynia induced
in a neuropathic pain model (Lin et al., 2018). Recent studies
indicated that dexmedetomidine alleviated inflammation and
protected the immune function in animals and patients (Wang
et al., 2019; Mei et al., 2021).

Low doses of sedative ketamine, including doses at which it
is used as an anti-depressant, could be a promising treatment for
neuropathic pain (Orhurhu et al., 2019). Ketamine could provide
neuroprotective effects and ameliorate neuroinflammation
(Goncalves et al., 2021). Inhibition of spinal JNK activation

contributed to the analgesic effects of ketamine in neuropathic
pain (Mei et al., 2011).

Previous studies suggested that ketamine and
dexmedetomidine could modulate the level of autophagy
and ER stress (Chai et al., 2020; Li et al., 2020; Liu et al.,
2020a; Sun et al., 2020; Yu et al., 2021). Our previous studies
suggested that spinal ER-phagy was altered in the SNL-induced
neuropathic pain model (Liu et al., 2017, 2019b). However,
whether ketamine and dexmedetomidine could alter STING
pathway to modulate ER-phagy and ER stress in SNL rats needs
to be investigated. In this study, our aim was to investigate the
effects of dexmedetomidine and ketamine administration on
anxiety- and nociceptive-related behaviors and to investigate
whether dexmedetomidine and ketamine alter spinal ER-phagy
in SNL rats viamodulation of the STING/TBK pathway.

MATERIALS AND METHODS

Animals
Male Sprague Dawley (SD) rats (180–230 g) were obtained
from the Changsheng Biological Company and housed in the
Shengjing Hospital Benxi experimental institution. This study
was performed in accordance with China Medical University
ethical guidelines for the use of laboratory animals and was
approved by the Animal Ethics Care and Use Committee of
China Medical University’s, Shengjing Hospital (Approval No.
2016PS013 K). All surgeries were performed under 10% chloral
hydrate (0.4 ml/100 g) anesthesias. The timeline of experimental
procedures is illustrated in Figure 1. Sham group: rats received
sham SNL procedure; SNL group: rats received spinal nerve
ligation; control group: rats received a sham procedure, a vehicle
of dexmedetomidine/ketamine, and vehicle of 2’3’-cGAMP; SNL
group (in Figures 4, 5): rats received the SNL procedure,
a vehicle of dexmedetomidine/ketamine, and vehicle of 2’3’-
cGAMP; SNL + D group: rats received SNL, dexmedetomidine,
and vehicle of 2’3’-cGAMP. SNL + D + G group: rats received
SNL, dexmedetomidine, and 2’3’-cGAMP; SNL + K group: rats
received SNL, ketamine, and vehicle of 2’3’-cGAMP. SNL +K+G
group: rats received SNL, ketamine, and 2’3’-cGAMP. N = 6 per
group.

FIGURE 1 | Timeline of the experimental procedure. Abbreviations: D, dexmedetomidine administration; K, ketamine administration; G, 2’3’-cGAMP administration;
O, spinal nerve ligation operation; TC, tissue collection; M, mechanical withdrawal threshold; OF, open field test.

Frontiers in Synaptic Neuroscience | www.frontiersin.org 2 May 2022 | Volume 14 | Article 891803

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Liu et al. Dexmedetomidine and Ketamine Attenuated Pain

Spinal Nerve Ligation (SNL)
Spinal nerve ligation procedures were carried out as described
previously (Kim and Chung, 1992). Rats were placed in the prone
position under anesthesia. A 2 cm incision was made at left
lumber 5, approximately 0.5 cm from themidline. The left L5 and
L6 spinal nerves were separated and ligated tightly with a 4–0 silk
suture; the distal end of the ligation was transected.

Behavioral Assays
Mechanical Withdrawal Threshold (MWT)
To examine the mechanical hypersensitivity of rats, the
mechanical withdrawal threshold (MWT) test was conducted
using von Frey filaments (Stoelting Company, Wood Dale, IL,
USA) as described previously (Zhou et al., 2014; Ge et al., 2018).
Rats were habituated in a Plexiglas chamber for 30 min before
conducting the MWT test. The positive withdrawal threshold of
the hind paw was measured using the up and down procedure.
For eachMWT trial, the stimulation duration was approximately
5 s; the interval time was 5 min and the cut-off value was 15 g.

Open Field Test (OFT)
Anxiety and locomotor activity levels were evaluated with an
open field test as reported previously (Kontinen et al., 1999).
The open field arena consisted of an aluminum plate base
(100 cm× 100 cm) surrounded by walls 45 cm high. The interior
was painted black. The open field arena was equipped with
infrared detectors and analyzed via Noldus software. Rats were
put in the open field for 10 min. The total distance traveled, the
proportion of time spent in the center zone, travel trace, and heat
map were recorded. The field was cleaned with 75% ethanol after
each trial.

Drug Delivery
Intrathecal injections of 10µg 2’3’-cGAMP (STING agonist, Cat.
No. tlrl-nacga23, InvivoGen, USA) were performed via a 10 µl
Hamilton microsyringe during the SNL procedure and repeated
on post-operative days 2, 4, and 6. Single intrathecal injections
were administrated via percutaneous lumbar puncture between
the 5th or 6th intervertebral space. A rapid tail flick indicated that
the microsyringe had penetrated the dura mater. The injection
speed was approximately 0.5 s/µl and the microsyringe was
maintained immobile for 1 min after the injection.

Ketamine (20 mg/kg, Cat.#: 1709291, Fujian Gutian
Pharmaceutical Co., Ltd. China) was intraperitoneally (i.p.)
injected at 6 h prior to surgery and again on postoperative days
2, 4, and 6. Dexmedetomidine (20 µg/kg, Cat. No. 181017BP,
Hengrui Pharmaceutical Co., Ltd. China) was intraperitoneally
(i.p.) injected 6 h prior to surgery and again on postoperative
days 2, 4, and 6. The control (con) group received a sham
operation along with intraperitoneal and intrathecal vehicle
injections.

Western Blot
On postoperative day 7, SD rats were deeply anesthetized
and sacrificed. Spinal cords between L4 and L6 were rapidly
dissected and frozen at −80◦C. Then, tissues were homogenized
in RIPA buffer (p0013B, Beyotime, China) and phosphorylation
inhibitors (1:100, Solarbio, China) for 30 min on ice, followed by

centrifugation at 14,000 rpm for 40 min at 4◦C. The supernatant
fraction was collected; the resulting lysate wasmixed with loading
buffer (Beyotime, China) and separated with a 12% SDS/PAGE
gel and transferred to a PVDF membrane (GE, USA). Each
primary antibody was incubated with the membrane at 4◦C
overnight (<12 h)after blocking with 5% BSA with TBST (0.1%
Tween 20 in Tris-buffered saline) for 1 h at room temperature.
Blots were incubated with HRP-conjugated second antibodies for
1.5 h at room temperature. After three washes with TBST, a signal
was detected using an ECL Plus kit (Tanon, China bands), then
visualized using a chemiluminescence imaging system (GE, USA;
c300, Azure Biosystems, USA). Band intensities were quantified
with Image J software (NIH, USA).

The following antibodies were used in this study: rabbit
anti-Grp78 (1:2,000, Abcam, USA), rabbit anti-LC3 (1:1,000,
CST, USA), rabbit anti-p62 (1:2,000, CST, USA), rabbit
anti-FAM134B (1:1,000, Abcam, USA), rabbit anti-p-STING
(1:1,000, CST, USA), rabbit anti-STING (1:1,000, CST, USA),
rabbit anti-p-TBK (1:1,000, CST, USA), rabbit anti-TBK (1:1,000,
CST, USA), mouse anti-GAPDH (1:8,000, Solarbio, China), and
goat anti-rabbit/goat anti-mouse IgG horseradish peroxidase
(1:5,000, Beyotime, China).

Immunofluorescence Staining
Rats were deeply anesthetized, and underwent transcardial
perfusion with a 0.9% NaCl solution, followed by cold 4%
Paraformaldehyde in 0.1 M PBS. L5 spinal cords were removed,
fixed in fixative solution for 24 h, then dehydrated with 30%
sucrose in dd H2O at 4◦C for 24 h. Brains were embedded
with optimal cutting temperature (OCT, SAKURA, USA)
compound. Embedded L5 tissue was sectioned coronally at 10
µm thickness using a cryostat. For confocal immunostaining,
sections were incubated with anti-NeuN (neuronal marker,
1:200, MAB377, Millipore, USA)/anti-GFAP (glial cell marker,
1:200, Abcam, USA) and anti-Grp78 (ER stress marker, 1:200,
Abcam, USA)/anti-Grp78 (1:200, Abcam, USA). Cell nuclei were
counterstained with DAPI (Beyotime, China) for 5 min.

Statistical Analysis
Data are expressed as the mean ± standard error of the
mean (SEM). Analysis was conducted using IBM SPSS Statistics
22 software (SPSS Inc., Armonk, New York, USA). Western blot
and open field test results were analyzed by one-way analysis
of variance (ANOVA) following post hoc multiple comparisons;
MWT data were analyzed by two-way analysis of variance
(ANOVA) following post hoc multiple comparisons (effectors:
time and surgery). P values < 0.05 were considered significant.

RESULTS

Spinal Nerve Ligation Led to Severe
Mechanical Hypersensitivity, Anxiety, and
STING/TBK Activation
A significant decrease in MWT was observed on postoperative
days 2, 4, and 6. Since anxiety is a frequent co-morbidity of
neuropathic pain, anxiety levels were also evaluated with OFT.
Our data demonstrated that the total distance traveled and
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FIGURE 2 | Spinal nerve ligation activated the STING/TBK pathway. (A) Mechanical withdrawal threshold in sham vs. SNL groups (two-way ANOVA, P < 0.001).
(B) Trace map and heat map of the open field test in sham vs. SNL groups. (C) Quantification of the open field test (one-way ANOVA, total distance: F = 16.781,
P = 0.002; proportion of time spent in the center: F = 12.512, P = 0.005). (D) Western blotting in sham vs. SNL groups. (E) Quantification of immunoblotting in sham
vs. SNL groups (one-way ANOVA, p-STING/STING: F = 16.75, P = 0.002; p-TBK/TBK: F = 10.786, P = 0.008; FAM134b/GAPDH: F = 19.265, P = 0.001;
LC3/GAPDH: F = 10.756, P = 0.008; p62/GAPDH: F = 8.957, P = 0.014; Grp78/GAPDH: F = 10.897, P = 0.008). N = 6 rats per group, *P < 0.05 compared with
the sham group; **P < 0.01 compared with sham group; ***P < 0.001 compared with sham group. Abbreviations: SNL, spinal nerve ligation; sham, sham operation
of spinal nerve ligation; BL, baseline.

the proportion of time spent in the center zone significantly
decreased in comparison to the sham group. Representative
heat maps and travel traces are shown in Figure 2. Expressions
of related proteins were evaluated using Western blotting.
Upregulation of LC3, FAM134b, Grp78, and p62 confirmed that
SNL induced ER-phagy impairment and ER stress. Furthermore,
p-STING/STING and p-TBK/TBK ratios were increased in the
SNL group compared with the sham group, indicating that the
STING/TBK pathway was activated in rats undergoing SNL.

Distribution and Cellular Localization of
Grp78 in SNL Rats
Our data demonstrated that the ER stress marker, Grp78, was
mainly expressed in neurons of laminae I-III (Figure 3). Our data
suggest that the STING/TBK pathway is activated and that ER
stress markers are expressed mainly in neurons following SNL.

Effects on Pain Behavior Test Following
Dexmedetomidine or Ketamine
Administration
As shown in Figure 4, our data confirmed that dexmedetomidine
or ketamine did not change the MWT test of sham rats. In this
study, we administrated 2’3’-cGAMP to elevate the activity of the
STING pathway, we administrated 2’3’-cGAMP (5 µl) in sham
rats. Our data suggested that there were no significant changes
in sham+cG compared with the sham group (N = 4, two-way
ANOVA, P > 0.05).

Dexmedetomidine Neutralized SNL
Induced Nociception, Anxiety, and
STING/TBK Pathway Activation
In the SNL+D group, MWT was increased on postoperative
days 4 and 6 compared with the SNL group (Figure 5A).
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FIGURE 3 | Co-localization of Grp78 with NeuN/GFAP/Iba in the ipsilateral spinal dorsal horn of SNL rats. The laminae I-III was illustrated by the blue zone in the
ipsilateralL5 atlas. (A) Confocal immunofluorescence of Grp78 and NeuN (neuron marker) in laminae I-III of SNL rats at L5 level. (B) Confocal immunofluorescence of
Grp78 and GFAP (astrocyte marker) in laminae I-III of SNL rats at L5 level. (C) Confocal immunofluorescence of Grp78 and Iba (microglia marker) in laminae I-III of
SNL rats at L5 level. N = 6 rats per group. Scale bar = 50 µm.

FIGURE 4 | Effects on pain behavior test following dexmedetomidine or ketamine administration. (A) MWT of sham and sham+D groups, sham: sham of SNL
groups; sham+D: sham+dexmedetomidine administration group. (B) MWT of sham and sham-K groups, sham: sham of SNL groups; sham-K: sham+ketamine
administration group. There were no significant changes in sham+D/sham+K compared to the sham group. (C) MWT of the sham and sham+cG group. There were
no significant changes between the sham and sham+cG group (N = 4, two-way ANOVA, P > 0.05).
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FIGURE 5 | Dexmedetomidine provided anti-anxiety effects by inhibiting the STING/TBK pathway. (A) MWT tests of control, SNL, SNL+D, and SNL+D+G groups
(two-way ANOVA). (B) Quantification of open field of control, SNL, SNL+D, and SNL+D+G groups (one-way ANOVA, total distance: F = 13.260, P = 0.003;
proportion of time spent in the center: F = 16.520, P = 0.006). (C) Trace map and heat map of control, SNL, SNL+D, and SNL+D+G groups. (D) Western blot of
control, SNL, SNL+D, and SNL+D+G groups. (E) Western blot quantification of control, SNL, SNL+D, and SNL+D+G groups (one-way ANOVA, p-STING/GAPDH:
F = 6.092, P = 0.006; p-TBK/GAPDH: F = 3.709, P = 0.034; FAM134b/GAPDH: F = 13.979, P = 0.007; LC3/GAPDH: F = 9.265, P = 0.001; p62/GAPDH:
F = 4.268, P = 0.022; Grp78/GAPDH: F = 8.613, P = 0.001). N = 6 rats per group, *P < 0.05 compared with control; **P < 0.01 compared with control group;
***P < 0.001 compared with control group; #P < 0.05 compared with SNL; ##P < 0.01 compared with SNL group; ∆P < 0.05 compared with SNL+D; ∆∆P < 0.01
compared with SNL+D. Abbreviations: BL, baseline; Dex, dexmedetomidine; control group, rats received a sham operation and vehicle; SNL group, rats received the
SNL procedure and vehicle; SNL+D group, rats received SNL, dexmedetomidine, and vehicle; SNL+D+G group, rats received SNL, dexmedetomidine, and
2’3’-cGAMP.

Dexmedetomidine injection significantly increased the
proportion of time rats spent in the center zone compared with
the SNL group (Figure 5B). p-STING and p-TBK significantly

decreased, indicating that the STING/TBK pathway was
downregulated following dexmedetomidine administration.
Upregulation of FAM134b and downregulation of LC3, p62,
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and Grp78 suggests ER-phagy was increased while ER stress was
attenuated. Moreover, 2’3’-cGAMP administration reversed the
analgesic and anti-anxiety effects induced by dexmedetomidine
administration (Figures 5A,B). In the SNL+D+G group, p-
STING, p-TBK, FAM134b, LC3, p62, and Grp78 were increased
as compared with the SNL+D group, indicating that 2’3’-cGAMP
administration induced ER-phagy impairment and ER stress by
activating the STING/TBK pathway (Figure 5D). Representative
heat maps and travel traces of the control, SNL, SNL+D, and
SNL+D+G groups are shown in Figure 5C.

Ketamine Neutralized SNL Induced
Nociception, Anxiety, and STING/TBK
Pathway Activation
In the SNL+K group, MWT was increased on postoperative days
2, 4, and 6 compared with the SNL+V group. Ketamine injection
significantly increased the total distance traveled and the
proportion of time spent in the center zone as compared with the
SNL group. Representative heat maps and travel traces are shown
in Figure 6. Ketamine administration decreased the expression of
p-STING, p-TBK, p62, and Grp78 and increased the expression
of FAM134b and LC3 in comparison with the SNL group. These
data suggest that ketamine ameliorated ER stress by increasing
ER-phagy by inhibiting the STING/TBK pathway. Furthermore,
2’3’-cGAMP neutralized the analgesic and anti-anxiety effects
induced following ketamine administration as assayed using
MWT and OFT. Moreover, in the SNL+K+G group, the
protein expression of p-STING, p-TBK, FAM134b, p62, and
Grp78 was increased while the expression of LC3 was decreased
as compared with the SNL+K group. Data revealed that 2’3’-
cGAMP activated the STING/TBK pathway and inhibited ER-
phagy, which enhanced ER stress.

DISCUSSION

Dexmedetomidine and ketamine have been previously
reported to induce analgesic and anxiolytic effects when
given as premedication before general anesthesia (Oriby,
2019). Dexmedetomidine, a highly selective α2 agonist,
provides analgesic benefit via enhancing norepinephrine
(NE) concentration in the spinal cord of neuropathic pain
patients (Yang et al., 2018; Qian et al., 2019). Dexmedetomidine
administration resulted in anti-allodynic and anxiolytic effects in
animal neuropathic pain models (Liang et al., 2017; Fang et al.,
2019; Qian et al., 2019), suggesting that dexmedetomidine might
be a promising pharmacotherapy for neuropathic pain.

Prior studies have focused on the neurotoxicity of high-dose
ketamine administration and long-term ketamine abuse (Li
et al., 2019; Meng et al., 2020). However, ketamine is
promising if used as a proper rescue pharmacotherapy or as
an adjuvant medication for neuropathic pain (Orhurhu et al.,
2019). Sub-anesthetic dosing of ketamine provided clinical
and experimental benefits for chronic pain and depression
(Humo et al., 2020; Yang et al., 2020). Therefore, it is essential
to investigate the mechanism and efficacy of ketamine in a
neuropathic pain model.

Administrations of dexmedetomidine and ketamine have
both been shown to reverse central sensitization induced by
neuropathic pain (Orhurhu et al., 2019; Xun and Zheng,
2020). However, little is known about the underlying molecular
mechanisms by which dexmedetomidine and ketamine attenuate
neuropathic pain-induced allodynia and anxiety.

Our data demonstrated that dexmedetomidine and ketamine
reversed SNL-induced allodynia and anxiety significantly. As
shown in Figures 5 and 6, mechanical allodynia was attenuated in
the SNL+D and SNL+K groups as compared with the SNL group,
respectively. Dexmedetomidine and ketamine administration
also induced anxiolytic effects as measured via OFT. To be
specific, dexmedetomidine increased the proportion of time rats
spent in the center of the field. Similarly, ketamine increased both
the total distance traveled and the proportion of time spent in the
center of the field in SNL rats. Our data suggest that ketamine
could both improve the performance of locomotion as well as
ameliorate anxiety behaviors. In addition, dexmedetomidine and
ketamine both provided a satisfactory analgesic effect in the
SNL-induced neuropathic pain rat model.

To determine whether ER-phagy was modulated following
dexmedetomidine and ketamine administration in SNL rats,
the expression of FAM134b, LC3, and p62 were measured
with immunoblotting. ER-phagy includes induction, formation,
and degradation. The next step is to select the cargo that
is to be removed or broken down. We measured the level
of cargo selection with FAM134b, the FAM134b increase
indicates more ER (endoplasmic reticulum) were selected as
cargo. The membrane expands to completely enclose the
cargo. This step gives rise to autophagosomes. In this study,
we use LC3 to investigate the level of autophagosomes.
LC3 elevating suggested autophagosomes level increased. Then,
autophagosomes fuse with lysosomes for the degradation of
cargo. In this study, we used p62 to evaluate the level
of degradation. p62 decrease indicated the degradation step
increased. Interestingly, our data revealed that ER-phagy
processing was modulated differently by dexmedetomidine
and ketamine administration. ER-phagy levels were altered
in different ways following dexmedetomidine or ketamine
treatment. Our data suggested that LC3 was significantly
increased in parallel with FAM134b increased and p62 decreased
in SNL+K group compared with the SNL group, suggesting
that ketamine administration increased both the induction and
degradation processing of ER-phagy in the spinal of SNL
rats. On the other hand, dexmedetomidine administration
induced LC3 decreased, p62 decreased and Fam134b increased
suggesting that the degradation of ER-phagy process of
ER-phagy was significantly upregulated. Our data suggested
that both ketamine and dexmedetomidine increase the level of
ER-phagy and attenuated ER-phagy impairment SNL induced.
Ketamine enhanced ER-phagy formation and degradation, while
dexmedetomidine enhanced ER-phagy degradation.

Our previous study suggested that dexmedetomidine
administration could decrease the expression of Grp78, LC3,
and p62 while increasing the expression of FAM134 bas
compared with SNL rats (Liu et al., 2020b). We confirmed
this result in this study. The level of ER binding to
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FIGURE 6 | Ketamine provided anti-anxiety effects by inhibiting the STING/TBK pathway. (A) MWT tests of control, SNL, SNL+K, and SNL+K+G groups (two-way
ANOVA). (B) Quantification of open field of control, SNL, SNL + K, and SNL + K + G groups (one-way ANOVA, total distance: F = 16.034, P = 0.002; proportion of
time spent in the center: F = 11.637, P = 0.005). (C) Trace map and heat map of control, SNL, SNL + K, and SNL + K + G groups. (D) Western blot of control, SNL,
SNL + K, and SNL + K + G groups. (E) Western blot quantification of control, SNL, SNL + K, and SNL + K + G groups (one-way ANOVA, p-STING/GAPDH:
F = 10.419, P = 0.001; p-TBK/GAPDH: F = 12.993, P = 0.003; FAM134b/GAPDH: F = 16.606, P = 0.005; LC3/GAPDH: F = 11.014, P = 0.005; p62/GAPDH:
F = 4.047, P = 0.026; Grp78/GAPDH: F = 7.520, P = 0.002). N = 6 rats per group, *P < 0.05 compared with control; **P < 0.01 compared with control;
***P < 0.001 compared with control; #P < 0.05 compared with SNL; ##P < 0.01 compared with SNL; ∆P < 0.05 compared with SNL+K; ∆∆P < 0.01 compared
with SNL+K; ∆∆∆P < 0.001 compared with SNL+K. Abbreviations: BL, baseline; Ket, ketamine; control group, rats received a sham operation and vehicle; SNL
group, rats received the SNL procedure andvehicle; SNL+K group, rats received SNL, ketamine, and vehicle; SNL+K+G group, rats received SNL, ketamine, and
2’3’-cGAMP.

autophagosomes and ER degradation via ER-phagy was
increased; however, autophagosome levels were decreased
following dexmedetomidine administration in the spinal cord of

SNL rats. The decrease in autophagosomes might have resulted
from an imbalance in the formation and effective degradation
of them. Ketamine treatment resulted in significant increases in
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FAM134b and LC3 while p62 significantly decreased, suggesting
spinal ER-phagy formation and degradation significantly
increased. Our data suggest that more ER was selectively
removed by autophagosomes and degradation via ER-phagy
processing. Dexmedetomidine increased degradation via
ER-phagy, while ketamine induced both the formation and
degradation of autophagosomes and increased the uptake of ER
by the autophagosome. Regardless, both dexmedetomidine and
ketamine administration led to enhanced ER-phagy.

Recently, several studies demonstrated that the STING
pathway had tremendous potential for immunotherapy (Chon
et al., 2019; Su et al., 2019; Catalano et al., 2020). Its
conformational changes and phosphorylation result in its
translocation from the ER to distinct perinuclear endosomes
near the Golgi (Bai and Liu, 2019; Chon et al., 2019; Yang
et al., 2019). STING phosphorylation induces phosphorylation
of TBK1 and subsequently leads to the phosphorylation of
interferon regulatory factor 3 (IRF3; Mathur et al., 2017;
Fermaintt et al., 2019). However, whether the STING pathway
is involved in the neuropathic pain process and whether STING
can regulate ER-phagy remains unknown. In this study, our data
indicate that the STING/TBK pathway was activated in the spinal
cord of a rat neuropathic pain model system.

Activated STING signaling triggers ER stress (Wu et al.,
2019). The STING-containing endoplasmic reticulum-Golgi
intermediate compartment (ERGIC)was shown to serve as a
membrane source for the lipidation of LC3 (Dong et al.,
2015; Yang et al., 2019; Larabi et al., 2020). STING directly
interacted with LC3 and regulated autophagy (Gui et al., 2019).
Thus, STING modulates autophagy, an essential mechanism to
maintain ER homeostasis following ER stress, via localizing to
autophagosomes (Senft and Ronai, 2015; Grumati et al., 2018;
Song et al., 2018; Wilkinson, 2019). Specifically, studies have
suggested that altering the STING pathway drives ER-phagy to
resolve ER stress (Moretti et al., 2017; Kary, 2018; Moretti and
Blander, 2018).

In this study, we determined whether the STING pathway was
activated in the spinal cord of rats with SNL-induced neuropathic
pain following dexmedetomidine or ketamine injection. Our data
reveal that dexmedetomidine and ketamine both upregulated
ER-phagy by inhibiting the STING/TBK pathway. Moreover,
2’3’-cGAMP administration increased LC3 expression in the
SNL + D + G group to a greater extent than in the SNL
+ D group, indicating that ER-phagy degradation level was
decreased following 2’3’-cGAMP injection. On the other hand,
2’3’-cGAMP decreased LC3 expression in the SNL + K +
G group as compared with the SNL + K group, suggesting
STING activation led to ER-phagy induction decreased. In
this condition, cGAMP elevated the excessive activation of
the STING pathway and neutralized the anti-nociceptive and
anxiolytic effects of ketamine and dexmedetomidine via altering
different steps of ER-phagy.

We investigated the distribution and cellular localization
of spinal ER stress using immunofluorescence. Grp78 was
primarily expressed in neurons and microglial cells; these
data indicate that SNL induces spinal ER stress in neurons
by activating the STING pathway in the spinal cord. Studies

indicated that STING is an essential immune response and
nociception in neurons (Flood et al., 2019; Gui et al., 2019;
Liu et al., 2019a; McLaughlin et al., 2020; Donnelly et al.,
2021). Studies suggested that STING contributes to ER stress
and several diseases (Smith, 2020; Zhang et al., 2020; Li et al.,
2021). Our data suggested that excess and prolonged elevated
p-STING neutralized the ketamine-induced benefits in SNL
rats. Ji’s team investigated STING inducer attenuated menthol
gel-induced cold allodynia in rhesus macaques, suggesting
STING agonist (ADU-S100) induced analgesia in non-human
primates. While our data suggested that RU-521, cGAS/STING
pathway inhibitor, ameliorated SNL-induced hypersensitivity
and depression. Ji’s study elucidated that administration of 2’3’-
cGAMP (5 µl) provided an antinociceptive effect in acute pain
models (Costigan et al., 2009), while our data suggested that
repeated injecting 2’3’-cGAMP to excessively activate p-STING
could deteriorate pain behavior in chronic pain SNL rats.
The pain-related test in Ji’s team mainly collected behavior
data the hours after injection; our data collected nociceptive-
and anxiety-related behaviors days and weeks after surgery.
Furthermore, STING might provide opposite effects in cancer
therapies (Chon et al., 2019; Flood et al., 2019; Motwani
et al., 2019; Wang et al., 2021). These data might provide
opposite outcomes, it seems a paradox, but it revealed that
STING is critical in human health and diseases. In addition,
does and time effect relation could affect the outcomes of
modulating STING. Still, further study could focus on neuron
and microglial cells to investigate the mechanism underlying the
STING pathway ER-phagy and ER stress in neuropathic pain
condition.

However, this study failed to demonstrate whether
dexmedetomidine and ketamine provide dose-dependent
analgesic and anti-anxiety effects in SNL rats. Furthermore, the
STING pathway might be involved in the immune response
or crosstalk between ER-phagy and the immune response in
neurons or glial cells; this area requires further investigation.
Our data indicated that ketamine and dexmedetomidine
might provide anti-nociceptive and anti-anxiety effects
via neuroinflammation related STING pathway in SNL
rats. However, our study failed to point out the domain
dexmedetomidine and ketamine bind with STING or ER.

In this study, our data suggested that dexmedetomidine
and ketamine provide analgesic and anti-anxiety effects on
SNL rats. The STING/TBK signaling pathway was activated in
SNL rats. Both dexmedetomidine and ketamine can increase
ER-phagy via inhibiting the STING pathway, thus attenuating
ER stress in SNL rats, though dexmedetomidine and ketamine
increased ER-phagy in the spinal cord of SNL rats differently.
Furthermore, we would like to discuss the roles of STING
and ER-phagy in the pain matrix of a neuropathic pain model
and investigate the behaviors and molecular changes in further
study.
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