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For roughly the last 30 years, the notion that striatal dopamine (DA) depletion
was the critical determinant of network pathophysiology underlying the motor
symptoms of Parkinson’s disease (PD) has dominated the field. While the basal
ganglia circuit model underpinning this hypothesis has been of great heuristic
value, the hypothesis itself has never been directly tested. Moreover, studies in
the last couple of decades have made it clear that the network model underlying
this hypothesis fails to incorporate key features of the basal ganglia, including
the fact that DA acts throughout the basal ganglia, not just in the striatum.
Underscoring this point, recent work using a progressive mouse model of PD has
shown that striatal DA depletion alone is not sufficient to induce parkinsonism
and that restoration of extra-striatal DA signaling attenuates parkinsonian motor
deficits once they appear. Given the broad array of discoveries in the field, it is
time for a new model of the network determinants of motor disability in PD.

dopamine, basal ganglia, circuit, Parkinson’s disease, plasticity, neuromodulation

Classical model of network dysfunction in PD

In the late 1980s, neuroscientists and clinicians embraced a new model of how the
circuitry of the basal ganglia worked and how it went awry in Parkinson’s disease (PD)
(Albin et al., 1989; DeLong, 1990; Gerfen, 1992). A key feature of the model was that
there were two opposing projection systems in the striatum. The so-called “direct” pathway
was anchored by striatal GABAergic spiny projection neurons (SPNs) that innervated
substantia nigra pars reticulata (SNr) and globus pallidus interna (GPi) GABAergic neurons
at the interface of the basal ganglia with the rest of the brain. The “indirect” pathway
was anchored by a distinct group of striatal GABAergic SPNs that innervated the globus
pallidus externa (GPe); the GPe GABAergic neurons in turn innervated the same interface
nuclei and a neighboring glutamatergic nucleus, the subthalamic nucleus (STN). In this
circuit, activation of direct pathway SPNs (dSPNs) by cortical pyramidal neurons led to
inhibition of basal ganglia output through SNr and GPi, enhancing the excitability of
thalamic motor nuclei and promoting movement. In contrast, activation of indirect pathway
SPNs (iSPNs) suppressed GPe activity, enhancing basal ganglia GABAergic outflow both by
disinhibiting the interface nuclei directly and by enhancing excitatory STN input to them -
thus, suppressing movement.

This opponent process system was modulated by striatal dopamine (DA) release from
axons of substantia nigra pars compacta (SNc) neurons. Work around this time suggested
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that DA stimulation of D1 DA receptors (D1Rs) expressed by
dSPNs enhanced their excitability and responsiveness to cortical
input, whereas DA stimulation of D2 DA receptors (D2Rs)
expressed by iSPNs did the opposite (Gerfen and Surmeier, 2011).
Through this modulatory network, bursts of action potentials
in SNc DAergic neurons and transient elevations in striatal DA
release would promote activation of dSPNs and suppress activation
of iSPNs, resulting in movement. Conversely, inhibition of SNc¢
DAergic neuron activity and a transient reduction in striatal DA
release would do the opposite and suppress movement. Thus, in
PD, the loss of striatal DA release biased the striatal circuitry toward
the indirect pathway and the suppression of movement (Albin et al.,
1989; DeLong, 1990).

This simple model has been of enormous heuristic value. It
created a framework for exploration and discovery. In recent
years, technical advances have accelerated the pace of basal ganglia
research and have increased our ability to rigorously test key
features of the model. For example, the development of bacterial
artificial chromosome (BAC) transgenic mice in which dSPNs
or iSPNs expressed fluorescent proteins or Cre recombinase, the
emergence of optogenetics and chemogenetics, and the ability
to monitor the activity of genetically defined neurons in awake,
behaving animals have allowed key features of the model to be put
to the test. This growing body of literature has made it clear that the
now “classical” model is in need of significant revision.

Problems with the classical model

There have been a number of excellent reviews detailing how
work in the last several decades has confirmed some aspects of the
classical model, but also how these discoveries have revealed its
shortcomings (Levy et al., 1997; Nambu, 2008; Obeso and Lanciego,
2011; Quiroga-Varela et al., 2013; Wichmann, 2019; Zhai et al,
2019). Among these shortcomings are (1) the failure to consider
the complexity of the basal ganglia circuitry and that iSPNs and
dSPNs do not simply act as opposing agents in movement control,
(2) the failure to consider the role of SPN ensembles or networks
(as opposed to individual neurons) in coding movement, (3) the
failure to consider the intrastriatal circuitry, (4) the failure to
consider that DA not only modulates the moment-to-moment
excitability of neurons, but also long-term plasticity, (5) the failure
to consider alternative signaling linkages of the G protein-coupled
receptors (GPCRs) mediating the effects of DA (Fuxe et al., 2010;
Gomes et al., 2016), (6) the failure to consider that DA modulates
essentially all of the basal ganglia, not just the striatum, (7) the
failure to consider that DA depletion triggers a broad array of
alterations in the basal ganglia circuitry, and (8) the failure to
consider the role of rhythmicity and synchrony of spiking — rather
than just mean rate in the emergence of movement deficits.

Reviewing all these issues is beyond the scope of this short
review. Rather, the focus here will be on two topics raised by our
recent study of a progressive model of PD (Gonzailez-Rodriguez
et al, 2021). The first topic will be how DA depletion alters
the striatal circuitry. The second topic will be how the release
of DA outside the striatum, specifically dendritic release in the
mesencephalon, might regulate the ability of the basal ganglia to
influence motor circuits.
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The striatal circuitry — beyond a
simple opponent process

In the original model proposed by Albin et al., iSPNs and dSPNs
were envisioned to work in opposition to one another to either
initiate or suppress movement. A watershed discovery in the field
was the recognition that in fact iSPNs and dSPNs work together to
control purposeful movement and are co-activated at movement
initiation (Cui et al, 2013; Jin et al., 2014; Tecuapetla et al,
2016). How this coordinated activity is orchestrated, its dependence
upon DA and its relationship to movement control remain to be
resolved - but it is now widely accepted that iSPNs and dSPNs do
not simply work in opposition to one another (Sheng et al., 2019;
Lopez-Huerta et al., 2021). From the standpoint of the classical
model, a particularly problematic observation is that movement
initiation is accompanied by a transient elevation in striatal DA
release (Howe and Dombeck, 2016; Howard et al., 2017). In the
classical model, this elevation in DA release should result in the
activation of dSPNs and suppression of iSPNs, not co-activation.
Clearly, there are other factors in play.

One of these other factors is the network of striatal interneurons
that regulate the activity of SPNs. Recent studies have started to
link specific types of striatal interneurons to different aspects of
motor function and learning (Bradfield et al., 2013; Burguiere et al.,
2013; Owen et al., 2018; Holly et al., 2019; Kaminer et al., 2019).
A key node in this intrastriatal circuitry is the “giant,” aspiny
cholinergic interneuron (ChI). Chls are autonomously active (like
SNc DA neurons) (Bennett and Wilson, 1999); this autonomous
activity is modulated by glutamatergic neurons in the thalamic
parafascicular nucleus (PFN) and cortical regions, like the cingulate
cortex, involved in monitoring internal state (Bradfield et al., 2013;
Doig et al., 2014; Gonzales and Smith, 2015; Kosillo et al., 2016;
Melendez-Zaidi et al., 2019; Tanimura et al., 2019). Consistent with
this extrinsic connectivity, Chls have been implicated in shifting
action selection (state transitions) with changing environmental
contingencies and sequencing movement (Bradfield et al., 2013;
Matamales et al., 2016; Howe et al., 2019).

The impact of Chls on the striatal circuitry and SPNs is
largely mediated by acetylcholine (ACh) release from highly
arborized axons (but see Dautan et al., 2014; Figure 1). The
dimensions of these axons are similar to those of mesostriatal
dopaminergic neurons and may have several hundred thousand
release sites (Zhou et al., 2002; Matsuda et al., 2009). Although
spatially diffuse, ACh signaling is temporally constrained by
robust expression of acetylcholinesterase (AChE) in the striatum
(Graybiel and Ragsdale, 1978). This allows for both rapid
ACh signaling through ionotropic nicotinic ACh receptors
(nAChRs) and slow signaling through metabotropic muscarinic
ACh receptors (mAChRs). Although our understanding of ChI
connectivity is still emerging, a burst of ChI activity engages
nAChRs to rapidly drive glutamate release from pyramidal tract
(PT) terminals and to activate both tyrosine hydroxylase-positive
GABAergic interneurons (THINs) and neurogliaform GABAergic
interneurons (NGFIs) - all of which target SPN dendrites (Tepper
et al, 2018; Kocaturk et al, 2022; Morgenstern et al, 2022;
Figures 1, 2). In parallel, ACh inhibits glutamate release from M4
mAChR-expressing intratelencephalic (IT) glutamatergic terminals
(Figure 2) and enhances the excitability of M1 mAChR-expressing
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FIGURE 1

Diagram depicting the modulation of SPNs and striatal interneurons
by ACh. ACh, mostly released by Chls, influences all these striatal
neurons through the muscarinic receptors and/or nicotinic
receptors they express. FSI, fast-spiking interneuron; LTSI,
low-threshold spiking interneuron; NGFI, neurogliaform
interneuron; THIN, tyrosine hydroxylase-expressing interneuron.

iSPNs (Shen et al,, 2005, 2007; Day et al., 2008; Crittenden et al.,
2021; Pancani et al., 2023). These actions are consistent with
a “disruptive,” set-shifting role of Chls. Precisely how Chls are
modulating dSPNs is less clear-cut. In contrast to iSPNs, dSPNs
express both M4 and M1 mAChRs (Yan et al, 2001). While
dendritic M4 mAChRs clearly blunt the impact of DIR signaling
that enhances the response to depolarizing glutamatergic input
(Shen et al., 2015), whether they modulate excitability in the
absence of DA signaling is unclear. Somewhat paradoxically, in the
peri-somatic region, M4 mAChRs appear to enhance excitability
(Hernandez-Flores et al., 2015). In contrast, M1 mAChRs enhance
spike generation when dSPNs are near spike threshold possibly
by targeting several ion channels (Perez-Rosello et al., 2005; Shen
et al,, 2005; Perez-Burgos et al., 2008). Sorting out these seemingly
disparate effects on dSPN excitability remains a challenge.

Interestingly, ChI activity rises rapidly at the onset of
spontaneous movements and movement transitions (Howe et al.,
2019). In the dorsolateral striatum, this initial burst of activity
is likely to be driven by activity in the PFN and by glutamate
release from DA terminals (Schulz et al., 2009; Cai and Ford, 2018;
Tanimura et al., 2019). Given that ACh significantly enhances the
excitability of iSPNs, their co-activation with dSPNs during the
onset of movement could be dependent upon Chl activity. In fact,
transient elevation in striatal DA release at movement onset may
be driven in part by Chls and activation of presynaptic nAChRs
on DA terminals (Figure 2; Zhou et al., 2001; Ding et al., 2010;
Threlfell et al., 2012; Berke, 2018; Kramer et al., 2022; Liu et al.,
2022). Subsequent work has challenged this idea though, showing
there is a correlation between striatal DA release and the spiking of
cell bodies in the mesencephalon (Azcorra et al., 2022).

Other players are likely to participate in the initial elevation in
the probability of iSPN spiking. In addition to both cortical and
thalamic excitatory input to iSPNs (Ding et al., 2010; Tanimura
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etal., 2016), extracellular adenosine levels in the striatum rise at the
onset of spontaneous movements, leading to increased activation
of A2aRs and protein kinase A (PKA) signaling in iSPNs (Ma et al.,
2022). As PKA signaling should enhance postsynaptic excitability,
this could contribute to the pattern of iSPN activity. That said, the
kinetics and sub-cellular (dendritic) distribution of this modulatory
pathway needs to be worked out. Nevertheless, it has also been
found that iSPN D2Rs were only capable of inhibiting baseline
A2aR signaling, but not that produced by the movement-related
elevation in adenosine; this suggests that D2R coupling to adenylyl
cyclase (AC) might be saturated by ambient DA levels in the
striatum, making the transient elevation in DA levels associated
with movement essentially irrelevant to DA modulation of iSPNG,
contrary to the classical model.

In addition to ChIs, the striatum has a variety of other striatal
GABAergic interneurons (defined by their synaptic connectome,
physiology, protein co-expression and axonal fields) (Figure 1;
Tepper et al., 2018). Essentially all of these interneurons express
DA and ACh receptors, further complicating the model of how the
timing and magnitude of SPN activity is controlled.

Striatal adaptations in PD — the
striatum is not static

A central tenet of the classical model is that the motor disability
in PD is a consequence of an imbalance in the moment-to-moment
excitability of iSPNs and dSPNs following striatal DA depletion
(Albin et al., 1989). As noted above, deficits in striatal DA release
are now known to induce a broad array of alterations in intrastriatal
circuitry beyond those originally envisioned.

In the healthy striatum, DA has at least two major functions
(Klaus et al., 2016; Berke, 2018; Coddington and Dudman, 2019;
Markowitz et al., 2023). One is to facilitate the activity of neuronal
ensembles associated with movement. This function is in alignment
with the classical model. The other is to link action outcomes (either
explicit or implicit) to the probability that the striatal ensembles
associated with those actions will be engaged in the future.
This function is critical to exploratory behaviors, reinforcement
learning, goal-directed action, and habit. To this end, DA promotes
lasting changes in striatal circuitry. The best characterized of these
changes are in the strength of corticostriatal glutamatergic synapses
formed on dendritic spines of SPNs (Gerfen and Surmeier, 2011;
Lerner and Kreitzer, 2011). A transient elevation in DA release
associated with explicit or implicit reward is thought to increase the
strength of recently active glutamatergic synapses on dSPNs and
to decrease the strength of those on iSPNs. In this way, the next
time the associated cortical and thalamic circuits become active,
it becomes more likely that dSPNs associated with the rewarded
action become active, and less likely that iSPNs associated with
that action are engaged - leading to striatal endorsement of the
rewarded action. Conversely, when an action leads to a negative
outcome, striatal DA levels transiently fall, decreasing the strength
of recently active glutamatergic synapses on dSPNs and increasing
the strength of those on iSPNs - leading to striatal vetoing of the
un-rewarded or punished action.
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FIGURE 2

Schematic depicting differential modulation of presynaptic glutamate release at IT versus PT terminals and postsynaptic signaling pathways by DA
and ACh. Moreover, DA axons and Chls interact with each other. Note that Chl is preferentially activated by PT input compared to IT input and in
turn ACh activates nAChRs on PT terminals to elicit a delayed second phase of excitation (Morgenstern et al., 2022). A2aR, adenosine receptor 23;
ACS5, adenylyl cyclase 5; AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; BDNF, brain-derived neurotrophic factor;
CaMKII, Ca?*/calmodulin-dependent protein kinase Il: CB1R, cannabinoid receptor type 1; D1R, dopamine D1 receptor; D2R, dopamine D2
receptor; DARPP, dopamine- and cAMP-regulated phosphoprotein of Mr 32,000; eCb, endocannabinoid; ERK, extracellular signal-regulated kinase;
M1R, muscarinic ACh receptor 1; M2/4R, muscarinic ACh receptor 2 or 4, MAPK, mitogen-activated protein kinase; mGluR5, metabotropic
glutamate receptor 5; NMDAR, N-methyl-D-aspartate receptor; PKA, protein kinase A; PLC, phospholipase C; PLD, phospholipase D; PP1, protein
phosphatase 1; RGS4, regulator of G-protein signaling 4; TrkBR, tropomyosin related kinase B receptor.

Although there remain a broad range of unanswered questions
about precisely how this is played out, this model of cell-
specific, bidirectional regulation of synaptic strength by DA
has considerable experimental support (Zhai et al, 2019). In
dSPNs, increased DI1R signaling promotes the induction of long-
term potentiation (LTP) of corticostriatal glutamatergic synapses,
whereas a drop in D1R signaling and concomitant elevation in M4
mAChR signaling promotes the induction of long-term depression
(LTD) at nominally the same synapses (Figure 2; Shen et al.,
2008, 2015; Yagishita et al., 2014). In iSPNs, a transient drop
in D2R signaling and concomitant elevation in A2aR signaling
promotes the induction of LTP at corticostriatal synapses, whereas
an elevation in D2R signaling promotes the induction of LTD
(Figure 2; Shen et al., 2008, 2015; Iino et al., 2020). In both cell
types, there are other determinants of the induction and expression
oflong-term synaptic plasticity, but the basic framework aligns with
the reinforcement learning model and the role of DA as a “teacher”.
Complementing these homosynaptic forms of plasticity, DA also
influences a heterosynaptic form of LTD at glutamatergic synapses
on SPNs that is induced by nitric oxide (NO) release by a subtype
of striatal interneurons (Park and West, 2009; Rafalovich et al.,
2015). The key point here is that striatal DA, as a learning signal,
allows action outcomes to shape future motor behavior through
DA-dependent forms of synaptic plasticity in SPN.

In the parkinsonian state, the linkage between action outcome
and striatal DA release is broken. The striatal circuitry very likely
“interprets” the persistent deficit in DA release as a negative
outcome for any and all actions. This has several consequences for
striatal plasticity. One is that there should be a standing bias toward
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strengthening of corticostriatal synapses on iSPNs and weakening
of those on dSPNs. The experimental data is largely consistent
with this conjecture. Following near-complete lesions of the striatal
DA innervation, there is a significant increase in the number of
large, “perforated” axospinous synapses on iSPNs and a shift in
the distribution of unitary synaptic strengths toward larger values
(Peterson et al., 2012; Zhang et al., 2013; Fieblinger et al., 2014).
This is what would be predicted from a drop in D2R signaling,
which disinhibits A2aR coupling to AC, and a rise in M1 mAChR
signaling (resulting from disinhibition of Chls).

But there is an interesting twist to this story. In parallel with
the appearance of potentiated synapses, the total number of iSPN
axospinous synapses of both cortical and thalamic origin falls
by roughly a third (McNeill et al., 1988; Stephens et al., 2005;
Zaja-Milatovic et al.,, 2005; Day et al., 2006; Schuster et al., 2009;
Villalba et al.,, 2009; Nishijima et al., 2014; Suarez et al., 2014;
Gagnon et al, 2017; Shen et al., 2022; Tanimura et al., 2022),
leaving total synaptic strength constant (Fieblinger et al., 2014).
There are two potential explanations for this synaptic remodeling.
One is that the loss of inhibitory D2R signaling, elevation in M1
mAChR signaling and potentiation of glutamatergic synapses push
the average spiking rate of iSPNs above a “set-point” and engage
homeostatic mechanisms aimed at normalizing spiking rate. In
other cell types it is clear that sustained deviations in spiking rate
from a certain set-point are capable of inducing alterations in
intrinsic excitability and synaptic strength that normalize activity
(Marder and Goaillard, 2006; Turrigiano, 2012). In models of late-
stage PD, the intrinsic excitability of iSPNs, as judged by spiking
in response to intra-somatic current injection, falls in parallel with
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the pruning of dendritic synapses, consistent with the attribution
of these adaptations to a homeostatic mechanism (Fieblinger et al.,
2014). However, in the prodromal stage of the MCI-Park model
of PD where there is a loss of striatal DA release in advance
of parkinsonian motor disability, there is pruning of dendritic
synapses without a clear change in somatic intrinsic excitability -
arguing that somatic spiking has not changed significantly (Zhai
et al.,, unpublished observations). One possible explanation for
this dichotomy is that in the prodromal state, local dendritic
mechanisms are capable of compensating for the regional loss
of DA signaling, but as basal ganglia pathophysiology begins to
disrupt extrinsic activity (in the cerebral cortex, thalamus, and
brainstem), the synaptic drive on iSPNs overwhelms the dendritic
adaptations leading to the engagement of intrinsic homeostatic
plasticity in the somatic region.

It is also possible that the iSPN synaptic pruning is driven
by aberrant plasticity mechanisms and is not homeostatic. In
most models, with the loss of DA signaling, Chls become more
responsive to thalamic glutamatergic input and ACh release is
disinhibited (MacKenzie et al., 1989; DeBoer et al., 1996; Ding et al.,
2006; Sanchez et al., 2011; Chuhma et al., 2014; Straub et al., 2014;
Tanimura et al., 2019; Padilla-Orozco et al., 2022; c.f., McKinley
et al.,, 2019; Choi et al., 2020). These adaptations are consistent
with a disruptive, set-shifting role for Chls as striatal DA levels fall
(described above). Elevated ACh signaling will not only enhance
the postsynaptic mechanisms underlying the induction of LTP in
iSPNs (Crittenden et al., 2021), but it will have presynaptic effects
(Figure 2). Both iSPNs and dSPNs are innervated by two classes of
corticostriatal axons: those arising from ipsilateral and contralateral
IT neurons and those from ipsilateral PT neurons (Ballion et al.,
2008; Kress et al, 2013; Shepherd, 2013; Deng et al., 2015).
IT presynaptic terminals are invested with M2/4 mAChRs (and
D1Rs), whereas PT terminals have nAChRs (and D2Rs) (Figure 2;
Morgenstern et al., 2022; Pancani et al., 2023). Thus, with a drop
in striatal DA and an elevation in ACh, IT terminals should be
persistently inhibited whereas PT terminals should be persistently
facilitated. As pre- and post-synaptic functions are often scaled in a
coordinated fashion (Murthy et al., 2001), a persistent presynaptic
depression of glutamate release by IT terminals is likely to be
followed by a down-sizing of spine size that could ultimately result
in frank synapse elimination. If this were the case, then iSPNs in
the PD brain should become dominated by ipsilateral PT cortical
input, disrupting the normally distributed interaction between IT
and PT pathways in controlling striatal circuitry (Park et al., 2022).
This conjecture is consistent with contralateral sensory neglect
observed in unilateral PD models (Ketzef et al., 2017), as well as
the more robust response to ipsilateral motor cortex stimulation
(Mallet et al., 2006).

The experimental evidence in support of aberrant weakening
of corticostriatal synapses on dSPNs is less compelling, but largely
consistent. The initial descriptions of striatal spine and synapse
reorganization following lesioning of DA neurons found little
evidence of significant changes in dSPNs, despite later evidence
that the somatic excitability of dSPNs rose in a homeostatic
manner (Day et al, 2006; Fieblinger et al., 2014). Subsequent
functional analyses found a significant reduction in the strength
of axospinous glutamatergic synapses on dSPNs following DA
depletion (Fieblinger et al., 2014), consistent with the notion that
elevated M4 mAChR and loss of DIR signaling biased dSPNs
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toward LTD. About this time, work from other groups using
intrastriatal 6-OHDA lesioning approaches (rather than medial
forebrain bundle injection) claimed that there was a loss of
axospinous synapses on both iSPNs and dSPNs (Suarez et al,
2014, 2016). This assertion aligned with work in primates following
MPTP lesioning of DA neurons where there was spine loss in
both SPN cell types (Villalba and Smith, 2013). The reasons for
the apparent discrepancy appear to be largely methodological.
One issue was when the connectivity assay was performed after
lesioning. In the primate work, the assays were run months
after the initial insult, whereas in mice they were done about
a month afterward. If the post-lesion survival time in rodents
was extended to 2 months, then there was a clear reduction
in dSPN spine density (Graves and Surmeier, 2019). How then
to explain the rodent work claiming early spine loss in dSPNs?
Conventional optical methods for visualizing SPN spines can
significantly underestimate the spine density estimates because
so many SPN spines are long and thin (Wilson et al., 1983;
Wilson, 1994). In our hands, by rendering z-stacks derived from
two-photon laser scanning microscopy of SPNs in ex vivo brain
slices, spine density estimates typically are around 1-1.5 spines/pm
(Fieblinger et al., 2014; Graves and Surmeier, 2019), slightly below
those estimated by Wilson et al., suggesting that some thin spines
were being missed. With the attenuation of synaptic strength at
axospinous synapses on dSPNs (Fieblinger et al., 2014), making this
error becomes even more likely, potentially accounting for some of
the discrepancy (Alberquilla et al., 2020). Another key difference
between the rodent studies was the site of 6-OHDA injection.
In those studies reporting early dSPN spine loss, 6-OHDA was
administered intrastriatally. This approach results in robust striatal
inflammation (Pabon et al,, 2011), which may drive spine loss
through microglial activation (Spangenberg et al., 2016).

The take-home point is that the synaptic architecture of SPNs
which is critical to ensemble organization and the chaining together
of meaningful movement syllables is disrupted in PD. In the healthy
brain, this synaptic architecture is continuously tuned or taught by
time-varying DAergic signals related to both explicit and implicit
reinforcement. This teaching enables appropriate goal-directed
actions, spontaneous exploration and habit. With the lesioning of
DA neurons, the striatal teacher goes on strike, leading to synaptic
changes that are unrelated to outcomes or events in the world.
Although levodopa may alleviate the motor disability in PD in part
by “re-balancing” the excitability of iSPNs and dSPNs, it does not
restore the normal synaptic architecture of SPNs, it does not restore
the temporal pattern of DA release, and it does not normalize SPN
ensembles during behavior (Parker et al., 2018; Serrano-Reyes et al.,
2022). Rather, as outlined below, the ability of levodopa to alleviate
motor deficits in PD may be largely a consequence of suppressing
pathological activity patterns in the basal ganglia output nuclei,
allowing other brain regions to take over motor control.

Beyond the striatum - the
contribution of extra-striatal DA
signaling to PD motor symptoms

In the last few decades, it has become apparent that the basal
ganglia circuitry downstream of the striatum is more complex than
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originally thought. Moreover, each of the nuclei processing striatal
output — the GPe, the GPi (entopeduncular nucleus in rodents), and
the SNr is directly modulated by local DA release. This is also true
for the STN, which links GPe, GPi, and SNr (Rommelfanger and
Wichmann, 2010). Although there are many unanswered questions
about how DA is acting in this part of the brain, the simple view
at this point is that it is acting to enhance the coupling of dSPNs
to the GPi/SNr and to diminish that of iSPNs through the indirect
pathway. The uncoupling of the indirect pathway appears to be
accomplished largely through presynaptic D2-class receptors that
inhibit transmitter release (Hadipour-Niktarash et al., 2012). Thus,
as in the striatum, DA release in the rest of the basal ganglia seems
to be promoting movement.

But the functional importance of DA in this part of the basal
ganglia has been easy to dismiss and difficult to rigorously assess. It
has been easy to dismiss because the usual markers of DA signaling
(e.g., tyrosine hydroxylase immunoreactivity) in these regions is
much lower than that in the striatum, where the terminal arbors of
DA axons reside. However, what is commonly ignored is that while
there may be many fewer DA release sites in this part of the basal
ganglia, there are far fewer DA uptake sites (i.e., DA transporter or
DAT) (Rice et al., 2011). This allows DA released from en passant
synapses to diffuse farther and act for a longer duration, much
like a paracrine hormone - in contrast to the striatum, where the
actions of released DA are rapidly terminated by DAT uptake of
extracellular DA (Rice et al., 2011).

Losing the DA modulation of synaptic coupling in the extra-
striatal basal ganglia is very likely to be an important factor
in the emergence of synchronous, oscillatory phenomena in PD
(Bergman et al., 1998; Raz et al., 2000; Bevan et al., 2002; Levy
et al., 2002). Neurons in each one of the nuclei downstream of
the striatum spike autonomously at relatively high rates. This
autonomous spiking allows for rapid, bidirectional regulation of
signals conveyed to motor circuits in the thalamus, mesencephalon
and brainstem. But it also creates a network mechanism for
synchronous oscillation given the robust synaptic coupling between
the GPe - a GABAergic nucleus - and the STN - a glutamatergic
nucleus. On the face of it, the reciprocal connectivity between an
excitatory and inhibitory nucleus should create a Wilson-Cowan
oscillator (Wilson and Cowan, 1972). This does not happen in
healthy animals, presumably because DA dampens the strength of
the connections between the nuclei and allows external synaptic
input to drive transient changes in spiking rate and disrupt
oscillation. In PD, when DA levels fall, the natural tendency for
this part of the circuit to oscillate appears to be unleashed. Indeed,
sustained, synchronous oscillatory activity in this part of the basal
ganglia circuitry is a hallmark of PD motor deficits (Hammond
et al., 2007).

Another region where DA signaling is undoubtedly crucial to
normal basal ganglia function is the SNr. In the late 1970s, it was
discovered that SNc DA neurons release DA from their dendrites
(Geffen et al., 1976; Korf et al., 1976; Cheramy et al., 1981). Ventral
tier DA neurons sitting at the border of SNr send their dendrites
into the neuropil of the SN, often forming beautiful “bouquets”
(Crittenden et al., 2016). Although a number of studies have shown
that somatodendritic DA signaling has a significant impact on SNr
circuitry (Rice and Patel, 2015; Caceres-Chavez et al., 2018) and
plays a key role in the ability of levodopa-derived DA to alleviate
PD symptoms (Robertson and Robertson, 1988; Robertson, 1992),
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the focus of the field has remained on the striatum. There are many
reasons for this turn of events, including a number of studies that
are nominally consistent with the classical model (Kravitz et al.,
20105 Alcacer et al., 2017). Aside from the experimental advantages
of the striatum (it is large and accessible), it has been difficult to
isolate the contributions of extra-striatal DA release to behavior
and PD motor deficits in animal models. Toxin models, like the 6-
OHDA model, which have dominated the field for decades, induce
rapid axonal and somatodendritic degeneration of DA neurons and
do not provide an opportunity to dissect the roles of regional DA
release.

Recently introduced PD models that have a more progressive
pattern of pathology have begun to provide some insight into this
question. For example, our group has used intersectional genetics
to selectively disrupt mitochondrial complex I function in DA
neurons (Gonzalez-Rodriguez et al., 2021). In this model, there
is an early loss of DA signaling in the dorsolateral striatum that
progresses medially and then ventrally, much like that envisioned
for human PD patients (Kordower and Burke, 2018). Surprisingly,
in this model, striatal DA depletion is not accompanied by
parkinsonian motor deficits. Rather, mice with selective loss of
striatal DA signaling have motor learning and sequencing deficits,
as well as deficits in sensory-guided movement — just as one might
predict from the literature described above. Levodopa-responsive
parkinsonism only appears in this model when DA release in
the SNr falls. This SNr signaling deficit is causally linked to
parkinsonian disability, as preferentially elevating DA signaling
in the SNr restores motor function. This behavioral outcome
was also achieved by boosting DA signaling preferentially in the
striatum, suggesting that frank parkinsonism requires a deficit in
DA signaling that spans the basal ganglia. Precisely why this is the
case remains to be rigorously elucidated. But one possibility is that
while an imbalance between direct and indirect pathway excitability
is necessary for the emergence of the disruptive synchronous,
rhythmic bursting in STN and GPe, in the prodromal stages of
PD, extra-striatal DA signaling blunts the propagation of this
pathophysiology to other brain motor centers, enabling them to
compensate for striatal dysfunction. The regional “cutoft” could
be accomplished by presynaptic mechanisms (described above)
that inhibit coupling of the indirect pathway to SNr/GPi neurons,
while enhancing that of the direct pathway (Chuhma et al., 2011;
Hadipour-Niktarash et al., 2012; Borgkvist et al., 2015; Ding et al,,
2015). Thus, the loss of extra-striatal DA signaling appears to be a
critical event in the onset of clinical PD.

Moving on — a new model of basal
ganglia function

Thomas Kuhn argued that science does not evolve gradually
toward truth. Rather, science relies upon a paradigm which
remains constant until it cannot explain a significant body of the
experimental literature and is supplanted by a new paradigm that
provides a unified accounting of the available data (Kuhn and
Hacking, 2012). While the classical model cannot explain a large
body of the experimental literature and needs to be replaced, a new
paradigm remains to be developed. It might be argued that the
complexity of the basal ganglia circuitry makes this an extremely
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difficult task. Certainly, a simple, two-dimensional representation
of the detailed circuitry of the basal ganglia that is readily accessible
to a broad audience (that includes students and clinicians — not just
experts in the field) is becoming less tractable as more connections
are revealed. Another limitation of these types of “models” is that
they do not effectively capture cellular and circuit dynamics -
they are static representations. For example, as noted above, basal
ganglia neurons differ dramatically in their physiology - ranging
from “wall-flower” SPNs that are designed to be quiescent under
most circumstances to SNr neurons that are buzzing along at high
spike rates in the absence of any synaptic input. These neurons
should not be treated as equivalent nodes in a neural network.

One way forward is to create a more abstract, conceptual model
of the basal ganglia based upon general principles of connectivity
and population dynamics. It will be critical for this type of model to
capture the behavior of neuronal populations in each region of the
basal ganglia and the impact of the dimensionality reduction as one
passes from the cortex to striatum to GPe to the SNr/GPi (Bar-Gad
et al,, 2003; Barack and Krakauer, 2021; Serrano-Reyes et al., 2022).
In networks, like the one formed by the cortex and striatum, the
computations being performed may be very difficult to reconstruct
from the spiking of individual neurons (Hopfield and Tank, 1986;
Beyeler et al., 2019). As a consequence, population-based models
could help us see the forest for the trees. Certainly, the capacity
to sample the activity of large neuronal populations in animals
performing complex, “naturalistic” tasks — which is critical to this
type of endeavor - has grown dramatically in recent years (Lopez-
Huerta et al., 2021; Steinmetz et al., 2021). The computational tools
available for this type of approach also have grown (Hjorth et al.,
2020; Humphries and Gurney, 2021; Codol et al., 2022; Scott and
Frank, 2022). However, it is also important not to lose sight of the
fact that the computations being performed by neural networks
depend upon the details and a concerted effort should be made
to bridge between levels of abstraction (DePasquale et al., 2023).
Why? Aside from the scientific merits of this kind of effort, a
major goal of studying the basal ganglia is to develop strategies
for correcting disorders that prevent it from working properly.
The number of neurological disorders inextricably tied to the
basal ganglia is staggering (e.g., PD, drug abuse, schizophrenia,
Huntington’s disease, etc.). The interventions available to us at
this point in time to correct these disorders are invariably at the
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