
TYPE Editorial

PUBLISHED 03 May 2023

DOI 10.3389/fnsyn.2023.1204605

OPEN ACCESS

EDITED AND REVIEWED BY

P. Jesper Sjöström,

McGill University, Canada

*CORRESPONDENCE

Fereshteh S. Nugent

fereshteh.nugent@usuhs.edu

Ka Wan Li

k.w.li@vu.nl

Lu Chen

luchen1@stanford.edu

RECEIVED 12 April 2023

ACCEPTED 17 April 2023

PUBLISHED 03 May 2023

CITATION

Nugent FS, Li KW and Chen L (2023) Editorial:

Synaptic plasticity and dysfunction, friend or

foe? Front. Synaptic Neurosci. 15:1204605.

doi: 10.3389/fnsyn.2023.1204605

COPYRIGHT

© 2023 Nugent, Li and Chen. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Editorial: Synaptic plasticity and
dysfunction, friend or foe?

Fereshteh S. Nugent1*, Ka Wan Li2* and Lu Chen3*

1F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, United States,
2Department of Molecular and Cellular Neurobiology, Vrije Universiteit Amsterdam, Amsterdam,

Netherlands, 3Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford

University School of Medicine, Palo Alto, CA, United States

KEYWORDS

synaptic transmission, synaptic plasticity, early life adversity, long-term potentiation,

long-term depression, metaplasticity, behavioral learning, Alzheimer’s disease

Editorial on the Research Topic

Synaptic plasticity and dysfunction, friend or foe?

Introduction

Synaptic plasticity defined as the ability of neurons to modify their synaptic

strength and connectivity as a function of activity, has long been postulated to mediate

experience-dependent remodeling of neural circuits that ultimately underlies memory

formation at various timescales. Since the discovery of hippocampal long-term potentiation

(LTP), considerable progress has been made in our understanding of structural and

mechanistic bases of different forms of synaptic plasticity that drive behavioral adaptation

to the changing environment but also may confer our vulnerability or resilience to brain

and behavioral pathology in response to adverse environmental factors, aging, and different

types of trauma and insult across development (Südhof and Malenka, 2008; Nicoll, 2017; Li

et al., 2019; Simmons et al., 2022). In this Research Topic, we highlight several conceptual

advances in the field of synaptic plasticity that bridge the gaps between synaptic mechanisms

underlying information processing in neuronal circuits of the healthy brain for normal

behaviors. These articles provide insights into novel aspects of synaptic plasticity by

linking newly identified molecular, synaptic and circuit correlates of synaptic structure,

function, and behavioral learning.We also present two examples of dysregulation of synaptic

plasticity as synaptic pathophysiological links to maladaptive circuit function that could

underlie cognitive deficits and behavioral impairments related to psychiatric disorders using

preclinical models of early life adversity and Alzheimer’s disease.

Papers in this collection

Molecular signaling in synaptic structure and function

Our ability to adapt to the changing world replies largely on experience-dependent

learning and memory formation, a process that requires synaptic plasticity. Synaptic

plasticity is initiated by cascades of signal transduction, leading to synaptic structural

reorganization and rearrangement of protein nano-machineries that changes synaptic

efficacy and connectivity.
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One of the main cellular mechanisms that control

synaptic efficacy is the dynamic regulation of synaptic protein

phosphorylation status by kinases and phosphatases (Feng and

Zhang, 2009). Protein phosphatase-1 (PP1) is implicated in the

changes of glutamatergic synapse activity and actin reorganization

in dendritic spines, both of which are linked to the processes of

neuroplasticity. The action of PP1 is regulated by a number of

interactors, including neurabin (Munton et al., 2004). Foley et al.

described an interesting finding that Inhibitor-2 positively regulates

PP1 function in synaptic transmission, which is dictated by the

threonine-72 phosphorylation on Inhibitor-2. Furthermore, using

Förster resonance energy transfer /Fluorescence lifetime imaging

microscopy studies, it was demonstrated that Inhibitor-2 enhances

PP1γ interaction with its major synaptic scaffold, neurabin.

Structural plasticity of synapses correlates with changes in

synaptic strength. For example, activation of NMDA receptors

results in long-term enhancement of both dendritic spine size

and synaptic strength (Herring and Nicoll, 2016). McLeod

et al. here provide interesting evidence demonstrating that Wnt

signaling promotes multi-innervated spines formation through

neuronal nitric oxide synthase (nNOS)/NO/ soluble guanylate

cyclase (sGC) signaling, leading to enhanced frequency and

amplitude of excitatory postsynaptic currents. This finding

provides an additional structural plasticity mechanism underlying

LTP expression.

Dysfunction in synaptic proteins may lead to impairments

in synaptic transmission or plasticity, thus impacting cognitive

functions through altered neuronal circuit functions. Fragile X

Syndrome (FXS) is a form of inherited intellectual disability caused

by the loss-of-function mutations in the FMR1 gene. Key synaptic

phenotypes in the FXS include exaggerated long-term synaptic

depression (LTD) and impaired homeostatic synaptic plasticity,

as well as altered spine density and morphology (Huber et al.,

2002; Klemmer et al., 2011; Zhang et al., 2018). Gredell et al.

showed that selective deletion of FMRP in a sparse subset of cortical

layer 5 pyramidal neurons leads to altered structural dynamics of

dendritic spines. Interestingly, although FMRP may operate cell-

autonomously in this context during adolescence, additional non-

cell-autonomous factors might also be involved in the regulation of

synaptic phenotype in adults.

Synaptic and circuit mechanisms
underlying behavioral learning

The study by Romero-Barragán et al., examined the

development of long-term synaptic plasticity at multiple

hippocampal synaptic loci in response to high-frequency

perforated path (PP) stimulation in the intact brain of behaving

animals. They made the interesting observation that LTP can be

induced not only at the ipsilateral PP-CA3 synapses where the

presynaptic input received direct stimulation, but also at secondary

downstream synapses such as CA3 to contralateral CA1 synapses,

thus corroborating previous reports demonstrating polysynaptic

“propagation” of LTP at synapses directly downstream of the

stimulated ones (Buzsaki, 1988; Krug et al., 2001; Stepan et al.,

2012; Taylor et al., 2016). Although the exact mechanism driving

polysynaptic LTP induction is yet to be worked out, these studies

provide an interesting perspective for studies investigating memory

engram formation during behavioral learning.

In addition to LTP of excitatory synapses, inhibitory synaptic

connections and their modification are known to be an integral

component of circuit remodeling during behavioral learning. For

example, in this collection of papers, Chen et al. showed that the

inhibitory projections from the hippocampus to the medial septum

bidirectionally control the speed of locomotion in mice, thus

directly impacting exploratory behavior in mice. This unexpected

role of hippocampal inhibitory output adds to the complexity of

the hippocampus in cognitive functions.

Beyond the hippocampus, fear conditioning has been shown

to induce long-term synaptic changes at both excitatory and

inhibitory synapses in multiple brain regions, including the

cerebellar cortex (Sacchetti et al., 2004; Scelfo et al., 2008). The

study by Dubois and Liu investigated the inhibitory synapse

function in the cerebellar cortex in the context of fear memory

extinction. They showed that the enhanced spontaneous GABA

release from cerebellar molecular layer interneurons after fear

condition can be reversed by fear extinction, and that this reversal

of learning-induced inhibitory synapse plasticity requires the

GluN2D NMDA receptors. It is of note that the fear learning-

induced enhancement of GABA release is not affected by GluN2D

deletion, suggesting that different signaling pathways are at play

in the induction and reversal processes of this form of synaptic

plasticity. Reversal of long-term changes at excitatory synapse

that occur during fear memory formation has been attributed

to fear extinction [e.g., spine elimination and regrowth in the

frontal association cortex during fear learning and extinction (Lai

et al., 2012)]. Results from the study by Dubois and Liu further

demonstrates the significance of inhibitory synapses plasticity in

behavioral learning.

The developing and adult primary cortical areas are able to

exhibit a form of widespread plasticity; i.e., cross-modal plasticity,

that is triggered by the deprivation of input in one sensory modality

(for example, deafness or blindness). The cross-modal plasticity

increases the capabilities and performance of spared modalities in

the affected individual that is dependent on the remaining senses in

their everyday life (Bavelier and Neville, 2002; Ewall et al., 2021). In

a mini review appearing in this collection, Lee describes the two

components of adult cross-modal plasticity when a sensory loss

results in cross-modal recruitment of the deprived primary sensory

area for processing of the remaining senses as well as inducing a

compensatory plasticity within the spared primary sensory cortices

to enhance and refine the spared senses. She proposes the sliding

threshold metaplasticity model as the mechanism that can account

for synaptic plasticity related to both cross-modal recruitment and

compensatory plasticity.

Developmental-and aging-related synaptic
dysfunction

Converging evidence from human and preclinical studies of

early life stress/adversity (ELS/ELA) suggest that exposure to severe

stress and adverse experiences during sensitive early developmental
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periods confer considerable risk for vulnerability to substance use

disorder, depressive and anxiety phenotypes by triggering/altering

synaptic plasticity in brain regions and neural circuits that are

critical for cognitive functioning, mood regulation and motivated

behavior (Lippard and Nemeroff, 2020; Simmons et al., 2022;

Spadoni et al., 2022). In this collection, de Carvalho et al. used

the limited bedding and nesting (LBN) model of ELA, which

causes fragmented and unpredictable maternal care and neglect

of pups (Molet et al., 2016). They found that LBN induced

behavioral inflexibility in a reversal learning paradigm in both

sexes, whereas LBN impaired goal-directed action strategies inmale

but not female mice. They also found sex-specific differences in

the effects of LBN on synaptic transmission from cortical inputs

to the dorsomedial or dorsolateral striatum ((DMS/DLS) where

glutamatergic transmission was reduced in both DMS and DLS of

male LBNmice while corticostriatal synaptic transmission was only

affected in DMS of female LBN mice. Overall, this study provides

sexually dimorphic synaptic and circuit mechanisms within the

dorsal striatum with implications in ELA-induced impairments in

goal directed behaviors.

Hippocampal LTP and LTD at Schaffer collateral-CA1 synapses

can be elicited by activation of either NMDA or metabotropic

glutamate (mGluR5) receptor activation (Palmer et al., 1997;

Popkirov and Manahan-Vaughan, 2011; Wang et al., 2016). While

the role of NMDA receptor-dependent hippocampal plasticity have

been extensively studied for age- and Alzheimer’s disease (AD)-

related decline in cognitive functioning and learning and memory,

less is known about the involvement of mGluR5-dependent

hippocampal plasticity in this context. In this collection, Valdivia

et al. used the APP/PS1 mouse model of AD (Lok et al., 2013) and

the Chilean rodent model of natural AD (Octodon degus) (Tan

et al., 2022) and found that while mGluR5-dependent plasticity was

intact in young animals, it was lost with parallel cognitive deficits

as animals aged. Given the conflicting result of a recent study

demonstrating the potentiation of mGluR LTD in the APP/PS1

mouse model (Privitera et al., 2022), validation of loss of mGluR

LTD in aging APP/PS1 mice and Octodon degus in this study is of

interest for future investigations using preclinical AD models that

exhibit natural age-related neurodegenerative processes common

to the AD such as in Octodon degus AD model.

Concluding remarks

The collection in this Research Topic serves as a vignette

of the current efforts in the field of synaptic plasticity. These

discoveries will continue to deepen our understanding of

normal and pathological synaptic plasticity and we hope

they fuel enthusiasm for future synaptic-based research on

causal mechanistic links between structural and functional

synaptic plasticity within brain circuits and networks

influencing learning, reward and motivated behaviors in health

and disease.
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