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The Wingless planar cell polarity 
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activity-dependent synaptic 
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From fly to man, the Wingless (Wg)/Wnt signaling molecule is essential for both 
the stability and plasticity of the nervous system. The Drosophila neuromuscular 
junction (NMJ) has proven to be  a useful system for deciphering the role of 
Wg in directing activity-dependent synaptic plasticity (ADSP), which, in the 
motoneuron, has been shown to be dependent on both the canonical and the 
noncanonical calcium Wg pathways. Here we show that the noncanonical planar 
cell polarity (PCP) pathway is an essential component of the Wg signaling system 
controlling plasticity at the motoneuron synapse. We  present evidence that 
disturbing the PCP pathway leads to a perturbation in ADSP. We first show that 
a PCP-specific allele of disheveled (dsh) affects the de novo synaptic structures 
produced during ADSP. We  then show that the Rho GTPases downstream of 
Dsh in the PCP pathway are also involved in regulating the morphological 
changes that take place after repeated stimulation. Finally, we show that Jun 
kinase is essential for this phenomenon, whereas we  found no indication of 
the involvement of the transcription factor complex AP1 (Jun/Fos). This work 
shows the involvement of the neuronal PCP signaling pathway in supporting 
ADSP. Because we  find that AP1 mutants can perform ADSP adequately, 
we hypothesize that, upon Wg activation, the Rho GTPases and Jun kinase are 
involved locally at the synapse, in instructing cytoskeletal dynamics responsible 
for the appearance of the morphological changes occurring during ADSP.
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Introduction

Synapses are the site of plastic events that shape their morphological and electrophysiological 
properties depending on their experiences (Shepherd, 2004; Holtmaat and Svoboda, 2009; Ho 
et  al., 2011; Pereda, 2014; Harris and Littleton, 2015). One such plastic event is activity-
dependent synaptic plasticity (ADSP), by which the synaptic efficacy can be increased or 
decreased, reflecting previous excitatory or inhibitory stimuli (Castillo, 2012; Lüscher and 
Malenka, 2012). This plasticity is thought to be the cellular correlate of learning and memory, 
and it is essential to improve our understanding of the molecules and molecular signals 
underlying this phenomenon. The secreted molecule Wg/Wnt regulates ADSP (Budnik and 
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Salinas, 2011; Rosso et  al., 2013). Indeed, activity-dependent 
mechanisms induce Wnt release that, in turn, induces plasticity 
signaling in hippocampal neurons (Chen et al., 2006; Tabatadze et al., 
2014). This increase in Wnt secretion provokes structural alterations 
in dendritic arborizations (Yu and Malenka, 2003; Wayman et al., 
2006; Ferrari et al., 2018) and spines (Ciani et al., 2011; Tabatadze et al., 
2014; McLeod et al., 2018), promoting changes in synaptic strength 
and plasticity. Drosophila served as a model of choice to explore the 
instrumental role of Wg in directing ADSP (Budnik and Salinas, 2011; 
Bai and Suzuki, 2020). ADSP can be elicited at the NMJ when the 
preparation is submitted to a repeated stimulation protocol (Ataman 
et  al., 2008; Piccioli and Littleton, 2014; Vasin et  al., 2014, 2019; 
Maldonado-Díaz et al., 2021), similar to the one used on hippocampal 
neurons to elicit LTP (Wu et al., 2001). The changes associated with the 
NMJ experiencing ADSP are both electrophysiological and structural 
(Ataman et al., 2008; Alicea et al., 2017; Maldonado-Díaz et al., 2021). 
Live and confocal imaging, electron microscopy and tomography at 
the NMJ allowed for the observation of these structural changes 
(Ataman et  al., 2008; Vasin et  al., 2019). Two types of synaptic 
modifications appeared very quickly (within 1 h) after repeated 
stimulation: filipodia-like structures called synaptopods, and newly 
formed varicosities containing synaptic vesicles but devoid of 
postsynaptic structures, called ghost boutons (Figure 1A). These ghost 
boutons develop within 24 h into mature boutons by acquiring 
presynaptic active zone markers and postsynaptic glutamate receptors. 
Because they are easily identifiable, ghost boutons are used to assess 
ADSP. The Wg canonical pathway is essential for this plasticity 
(Ataman et al., 2008). Repeated stimulation of the NMJ promotes an 
increase in synaptic Wg that leads to rapid structural and 
electrophysiological changes (Ataman et  al., 2008). In fact, Wg 
signaling regulates these changes bidirectionally; post-synaptically 
through nuclear import of its receptor, and pre-synaptically by the 
inhibition of GSK3ß/Sgg (Ataman et al., 2008). In addition, there is 
evidence that the calcium pathway is involved in this plasticity. In this 
pathway, an increase in intracellular calcium activates CaMKII and the 
transcription factor NFAT (Koles and Budnik, 2012). The neuronal 
expression of NFAT subunit A at the NMJ prevents the formation of 
ghost boutons upon stimulation (Freeman et al., 2011). In addition, 
synaptic CaMKII protein expression increases upon stimulation which 
correlates with de novo bouton formation (Nesler et  al., 2016). 
However, to date the third pathway that responds to the Wg/Wnt 
signal, the planar cell polarity (PCP) pathway, has not yet been assessed 
for its role in regulating ADSP.

Here we use the Drosophila NMJ model to ask whether the Wg 
PCP pathway (Figure 1E) is involved in ADSP. We use the appearance 
of de novo synaptic structures, ghost boutons, to quantify the extent 
of these changes. Because of their rapid development (90 min 
following stimulation), ghost boutons represent early pre-synaptic 
structures that are devoid of post-synaptic differentiation (Figure 1A). 
This characteristic has been widely used to easily identify ghost 
boutons at the NMJ, in order to quantify ADSP (Ataman et al., 2008; 
Fuentes-Medel et al., 2009; Freeman et al., 2011; Nesler et al., 2013, 
2016; Piccioli and Littleton, 2014; Vasin et al., 2014, 2019; Alicea et al., 
2017; Maldonado-Díaz et al., 2021). Our present work investigates the 
role of the PCP pathway in the production of these morphological 
synaptic changes. We find that several pathway members are involved 
in this process. Indeed, we first show that a PCP-specific dsh allele 

(Perrimon and Mahowald, 1987) is necessary for optimal 
ADSP. We  then show that activity of the Rho1, Rac1, and Cdc42 
GTPases can also influence ADSP. We then investigate the Jun kinase 
(JNK), an effector of these GTPases (Coso et al., 1995; Rosso et al., 
2005) and show that its loss of function is detrimental to ADSP; 
however, the transcription factor AP1 (Fos/Jun), a target of JNK 
(Sanyal et al., 2002; Etter et al., 2005), is not necessary for this process. 
In most of our experiments, we use an inducible RNA expression 
system to selectively down- or up-regulate the activity of the members 
of the PCP pathway pre-synaptically only (post-synaptic expression is 
unchanged) and late in development (after the establishment of the 
NMJ). This allows us to conclude that the effects we observed are due 
to a change in the PCP pathway activity within the motoneuron and 
not a consequence of developmental perturbation. On the contrary, 
we  argue that it reflects a need for the PCP pathway within the 
motoneuron to achieve optimal ADSP.

Materials and methods

Genetics

For experiments using the elavc155-gal4 insertion on the X 
chromosome, only females were used (in order to consider 
heterozygote animals). In the other experimental procedures, animals 
from both sexes were used. Flies were reared on standard fly food at 
18°C for conditional experiments or at 25°C in all other cases. Our 
methods are consistent with standard husbandry and care. Our 
laboratory follows ethical practices while carrying out experiments as 
well as the cataloging of Drosophila. The fly strains used in this study 
include dsh1 [Bloomington Drosophila stock center (BDSC), stock  
#5298], and w1 (BDSC, stock #145) as a control. We used the Gal4/
UAS system (Brand and Perrimon, 1993) to express dominant-
negative or constitutively active genes in neurons. For this, we used 
the pan-neuronal driver elavc155-gal4 (BDSC, stock #458) whose 
expression starts early in embryogenesis (after neuroblast mitosis) in 
combination with UAS-dsh-RNAi (BDSC, stock #31306), UAS-rac1N17 
(BDSC, stock #6292), UAS-rac1V12 (BDSC, stock #6291), UAS-rho1N19 
(BDSC, stock #58818), UAS-rho1V12 (BDSC, stock #58817), 
UAS-cdc42N17(BDSC, stock #6288), UAS-cdc42V12 (BDSC, stock  
#4854), Tub-Gal80TS (BDSC, stock #7108), UAS-jnkDN (BDSC, stock  
#9311), UAS-fosDN (BDSC, stock #7215) and UAS-junDN (BDSC, stock 
#7218). The controls for these experiments were the driver elavc155-gal4/+. 
For the conditional experiments, we  made a fly containing the 
elavc155-gal4 on the first chromosome and Tub-Gal80TS on the second 
chromosome. This fly expresses the thermosensitive inhibitor Gal80TS 
(McGuire et al., 2004) under the control of an ubiquitous tubulin 
(Tub) promoter. Larvae for the conditional experiments were reared 
at 18°C, where Gal80TS inhibits protein expression by binding to the 
Gal4 activator. Then, we shifted them to 29°C, inhibiting Gal80TS and 
therefore allowing the expression of specific proteins activated by 
Gal4. Considering the lethality and the axon pathfinding errors 
associated with the early expression of these transgenes, we decided 
to limit their expression to 48 h before performing the stimulation 
protocol. At this time, we  minimize the effect of the transgenes’ 
expression on synapse development and growth while affecting their 
function for ADSP.
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Stimulation protocol

We dissected the body wall muscles from third instar larvae in 
hemolymph-like HL3 saline (70 mM NaCl, 10 mM NaHCO3, 115 mM 
sucrose, 5 mM trehalose, 5 mM HEPES, 10 mM MgCl2), leaving 
unharmed the CNS and the peripheral nerves innervating the body 
wall muscles. The protocol was carried out on partially intact and 
non-stretched preparations. The stimulation protocol that we used 
was adapted from Ataman et al. (2008) and is constituted of 5 stages 
that alternate stimulation and rest periods. In the first three stages the 
preparations were stimulated for 2 min followed by a 15 min rest 
period. The fourth stage is composed of a 4 min stimulation period 
followed by a 15 min rest while the fifth and last stage is composed of 
a 6 min stimulation period followed by a 14 min rest. The 5 stimulation 
periods were elicited using a potassium- and calcium-rich HL3 saline 

solution (90 mM KCl and 1.5 mM CaCl2), while during the five rest 
periods a HL3 saline containing 5 mM KCl and 0.1 mM CaCl2 
was applied.

Immunohistochemistry

After stimulation, the preparations were fixed for 15 min at room 
temperature in a solution of 4% paraformaldehyde in PBS before 
being incubated overnight at 4°C within a primary (anti-Dlg) 
antibody solution (1:20; Budnik et al., 1996). The secondary antibody 
(1,300; Alexa Fluor 488-conjugated AffiniPure goat anti-mouse or 
anti-rabbit, Jackson ImmunoResearch) and Anti-Hrp (1,300; 
Cy3-conjugated AffiniPure goat anti-horseradish peroxidase, Jackson 
ImmunoResearch; Jan and Jan, 1982) were applied for 1 h at room 

FIGURE 1

Dishevelled and its planar cell polarity domain regulate ADSP. (A) Schematic diagram representing a NMJ labeled with pre-synaptic (red) and post 
synaptic (green) markers. Upon stimulation, de novo synaptic boutons called “ghost boutons” are identifiable because they only show the pre-synaptic 
marker HRP. These structures, with time, will acquire post-synaptic differentiation. (B) Representative confocal photograph of an unstimulated control 
synapse showing HRP (presynaptic marker) and DLG (postsynaptic marker) immunoreactivity. (C) Representative confocal photograph of a stimulated 
control synapse. Arrowheads point to ghost boutons. (D) Representative confocal photograph of a stimulated synapse expressing dsh RNAi. 
(E) Schematic diagram illustrating the components of the Wg planar cell polarity pathway. (F–M) Quantification of the ghost bouton number in 
(F) unstimulated and (G) stimulated control and preparations expressing dsh RNAi constitutively; (H) unstimulated and (I) stimulated control and 
preparation carrying the suppressed conditional expression system at 18°C; (J) unstimulated and (K) stimulated control and preparation expressing dsh 
RNAi for 48  h prior to the stimulation (activated expression system at 29°C); (L) unstimulated and (M) stimulated control and dsh1 mutant preparations. 
Scale bar: 10  μm. (F,H) Mann–Whitney test. (G,I–M) Two-tailed, unpaired t-tests: *p <  0.05; **p <  0.01. Data are shown as scatter plots and 
means  ±  SEM.
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temperature as previously described (Alicea et al., 2017; Maldonado-
Díaz et al., 2021).

Quantification of ghost boutons

We treated control preparations in parallel with each experimental 
genotype to account for the potential variation in our experimental 
manipulations. The control preparations were designed to contain the 
experimental preparations’ genetic background (w1 for dsh1 or the 
corresponding gal4 driver for the different expression systems used). 
Control and experimental preparations were also reared at the same 
temperature and submitted to the same shift (18–29°C) when 
applicable. We  identified a ghost bouton as a bouton that had a 
positive immunoreactivity to anti-HRP and negative immunoreactivity 
to anti-Dlg. In all the experiments, ghost boutons were counted on 
muscle 6/7 NMJs, in A3 segments of third instar larvae. To carry out 
these observations, we  used a Nikon Eclipse 80i microscope at a 
magnification of 400X.

Statistical treatment

We first identified any outlier using the ROUT method with a 
Q = 0.1%. Then, we  assessed whether the data fitted a normal 
distribution using the Shapiro–Wilk normality test. For data sets with 
n ≥ 12, parametric tests were run when the Shapiro–Wilk normality 
test showed p > 0.0001. For data sets with n < 12, parametric tests were 
run when the Shapiro–Wilk normality test showed p > 0.05. For cases 
of parametric statistics, we ran an ANOVA test—when there are three 
or more data sets. We applied a post hoc Dunnett’s correction test 
when multiple comparisons are carried out against a control value. 
When only two data sets were compared, we performed two-tailed, 
unpaired t-tests. For non-parametric tests and when comparing three 
or more data sets, we ran a Kruskal–Wallis test with a post hoc Dunn’s 
multiple comparison test. When comparing two data sets, the Mann-
Witney test was used. GraphPad Prism 6 was used to apply these 
statistical treatments.

Results

Disheveled and its PCP-specific domain 
relay the signal necessary for ADSP

Previous studies showed that the secreted molecule Wg and its 
pre-synaptic receptor Fz2 controlled ADSP at the Drosophila NMJ 
(Ataman et al., 2008; Alicea et al., 2017). Because Disheveled (Dsh) is 
the cytoplasmic molecule making the link between the Wg receptor 
and its different effectors, it is often called the Wg hub (Gao and Chen, 
2010). We asked whether Dsh loss of function could reduce ADSP and 
phenocopy the defects in ADSP observed in the wg and fz2 loss of 
function backgrounds (Ataman et  al., 2008; Alicea et  al., 2017). 
We used a well-described method to repeatedly stimulate the NMJ 
preparation in a way reminiscent of the stimulation protocol used on 
hippocampal neurons in culture (Wu et al., 2001). In these conditions, 
after a 90-min patterned repeated stimulation protocol, we observe 
the appearance of ghost boutons (see schematic diagram Figure 1A; 

Ataman et  al., 2008) that show the neuronal membrane-specific 
marker revealed by the anti-HRP immunoreactivity (Jan and Jan, 
1982), without the apposition of the post-synaptic marker Dlg (Disc 
large, the membrane-associated guanylate kinase homolog; Lahey 
et al., 1994; Budnik et al., 1996). These de-novo synaptic structures are 
noticeable when comparing unstimulated control synapses (Figure 1B) 
to stimulated control synapses (Figure 1C; arrowheads point to ghost 
boutons) and are easily quantifiable (Figures 1F–M).

Throughout this manuscript, we paid attention to the status of the 
synapse at rest (without stimulation) to ensure that there was no 
significant difference in the mean synaptic ghost bouton number 
between the studied genetic backgrounds. This way, we can infer that 
any observed differences after stimulation reflect a change in the 
synaptic answer to the activity-dependent process. In fact, 
unstimulated preparations across all the genotypes studied 
(Figures  1F,H,J,L) show no differences. We  later ensured that our 
stimulation protocol was efficient in eliciting ghost boutons. Here, our 
unstimulated control preparations showed a mean of 0.36 ± 0.15 ghost 
boutons per synapse (Figure  1F, black circle, n  = 11), and our 
stimulated controls showed 7.28 ± 0.69 ghost boutons (Figure  1G, 
black circle, n  = 25), indicating an increase in ghost boutons 
comparable to previously published work (Ataman et  al., 2008; 
Freeman et al., 2011; Nesler et al., 2013, 2016; Piccioli and Littleton, 
2014; Vasin et al., 2014, 2019; Alicea et al., 2017; Lee et al., 2017; 
Maldonado-Díaz et al., 2021).

We then asked whether Dsh was necessary to perform 
ADSP. Because of the importance of Dsh in transducing the Wg 
signal, its null alleles (for example dshX788 and dshnYn234Y) are embryonic 
lethal and therefore do not allow the study of the larval NMJ 
(Perrimon and Mahowald, 1987; Klingensmith et al., 1994). To create 
a viable loss of function condition for dsh, we used RNA interference 
(RNAi; Piccin et al., 2001) and expressed it using the elav-Gal4 post-
mitotic neuronal driver (Robinow and White, 1991). When these 
preparations were submitted to the patterned repeated stimulation 
protocol, they showed fewer ghost boutons (Figure 1G, red circles). 
The mean ghost bouton number in these preparations was 4.46 ± 2.48, 
a value less than the control value (p = 0.0026; n = 22), suggesting that 
Dsh is indeed involved in ADSP.

Although we used the postmitotic driver elav-Gal4 to initiate dsh 
loss of function, its expression starts early in development (end of 
embryogenesis). Therefore, the phenotype we observe could be caused 
by a detrimental event during synapse formation due to a lack of Dsh 
activity. To rule out this possibility, we first examined the NMJ and did 
not notice any phenotype affecting axon routing or synaptic growth. 
Secondly, we designed an inducible expression system to affect Dsh 
activity. This system involves the expression of 3 different transgenes 
within the studied animal: the elav-Gal4 driver, the effector UAS-dsh-
RNAi, and the inhibitor Tub-Gal80TS. In this system, the temperature-
sensitive (TS) Gal80TS protein is expressed ubiquitously (under the 
control of the tubulin promoter) and able to repress Gal4 at permissive 
temperature (18°C; McGuire et al., 2004). Indeed, at this temperature, 
the expression of dsh RNAi is shut off and we observe no difference 
between the controls and the animals containing dsh RNAi in both 
non-stimulated (Figure 1H) and stimulated (Figure 1I) preparations. 
At the restrictive temperature (29°C), the temperature-sensitive 
mutation carried by Gal80TS is revealed, producing a non-functional 
Gal80, which leads to the de-repression of the system, and the 
expression of dsh RNAi. In this condition, we can observe a loss of 
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function phenotype when we elicit ADSP. When we derepressed the 
Gal4/UAS system for 48 h before performing the stimulus protocol, 
we did not observe any difference at rest between controls and dsh 
RNAi loss of function (the mean value of controls is 0.75 ± 0.25, n = 8, 
while it is 0.67 ± 0.19, n  = 12 for dsh RNAi expressing animals; 
Figures 1B,J). After repeated patterned stimulations, we did observe 
differences between controls and preparations containing the dsh 
RNAi construct. While the mean value of ghost boutons is 9 ± 0.8 for 
controls (n = 9; Figures 1C,K), it is reduced in dsh RNAi animals 
(4.8 ± 1.07 ghost boutons; n  = 10; p  = 0.007; Figures  1D,K). This 
reduction, provoked by a loss of Dsh activity only 48 h before applying 
the repeated stimulation protocol, is comparable to the reduction 
observed when we inhibit Dsh function since the end of embryogenesis 
(Figure 1G). This suggests that the effect observed on ADSP is due to 
the requirement of Dsh function at the time of the stimulation 
challenge and not a consequence of perturbed development. It is 
important to note that we have previously shown that temperature 
itself can have limited yet significant effects on the apparition of ghost 
boutons (Maldonado-Díaz et al., 2021). This is why our work here will 
only compare the data emanating from animals that experienced 
identical temperatures during their development and 
experimental procedures.

Having established the importance of Dsh in transducing the 
signal responsible for ADSP, we asked whether the planar cell polarity 
pathway (PCP) was involved in this phenomenon. To do so, we took 
advantage of the previously studied and isolated dsh1 allele (Perrimon 
and Mahowald, 1987). This allele, often referred to as a PCP-specific 
allele, encodes a version of Dsh that selectively affects the transduction 
of the Wg signaling to the PCP pathway without altering the efficacy 
of the Wg signal toward the canonical or the calcium pathway 
(Axelrod et al., 1998; Boutros et al., 1998; Yanfeng et al., 2011). At rest, 
there is no difference between control and dsh1 animals (the mean 
value of controls and dsh1 animals are 0.54 ± 0.21, n = 13 and 0.55 ± 0.8, 
n = 14 respectively; Figure 1L). Nevertheless, after repeated patterned 
stimulation, the mean number of ghost boutons appearing at the 
synapse is reduced in dsh1 animals (4.32 ± 0.54, n = 25; red circles, 
Figure 1M) when compared to control (6.81 ± 0.83, n = 21; p = 0.017; 
black circles, Figure 1M). This result suggests that part of the Wg 
signal required to perform ADSP is transduced through the PCP 
pathway. To consolidate the idea that the Wg PCP pathway is an 
integral part of ADSP machinery, we decided to ask whether other 
members of this pathway (Figure 1E) could affect this plasticity.

Rho1 activity can repress the 
morphological changes associated with 
ADSP

Since Dsh transduces the Wg signal through several GTPases 
(Boutros et al., 1998; Fanto et al., 2000; Schlessinger et al., 2007), 
we decided to investigate the role of Rho1 in ADSP. Rho1 is a small 
GTPase that functions as a molecular switch cycling between an 
inactive GDP-bound form and an active GTP-bound form to mainly 
regulate the assembly and reorganization of the actin cytoskeleton 
controlling different cellular activities (Jaffe and Hall, 2005). In this 
way, Rho1 influences several biological processes such as 
embryogenesis, cell polarity, and cell division (Hariharan et al., 1995; 

Olson et al., 1995; Barrett et al., 1997; Strutt et al., 1997). Its role in 
neuronal development has also been studied; Rho activation can 
promote or inhibit neuronal growth cones as well as inhibit dendritic 
growth (Luo, 2000; Dickson, 2001; Auer et al., 2011). Reducing the 
activity of p190 RhoGAP, a negative regulator of Rho, provokes axonal 
guidance defects and decreases axon number in hippocampal cells 
(Brouns et al., 2001). In Drosophila mushroom bodies, the reduction 
of p190 RhoGAP promotes retraction of axonal branching, while its 
overexpression promotes axonal extension (Billuart et al., 2001). In 
addition, inhibition of neural activity in cortical neurons decreases 
active Rho levels while expression of constitutively active Rho 
increases axon branching by elimination and addition of branches 
(Ohnami et al., 2008).

Here we  asked whether Rho1 was involved in ADSP at the 
NMJ. Because of Rho1’s multiple cellular functions its null mutations 
are lethal, so we therefore decided to express a dominant negative 
version (Rho1DN, see material and methods) and a constitutively active 
version (Rho1CA, see material and methods). We  used the Gal4/
Gal80TS inducible system described previously to bypass the potential 
effects of these constructs’ expression on axon pathfinding and 
neuronal growth. We  first checked that there were no notable 
differences regarding the number of ghost boutons in unstimulated 
preparations across all the genotypes considered at both permissive 
temperature (controls showed 1.21 ± 0.27 ghost boutons; n  = 19; 
Rho1DN 0.91 ± 0.28; n = 11; p = 0.57; Rho1CA 0.64 ± 0.2; n = 14; p = 0.2; 
Figure 2D) and restrictive temperature (control showed 1.6 ± 0.29 
ghost boutons; n = 22; Rho1DN 1.14 ± 0.31; n = 14; p = 0.6; Rho1CA 
1.82 ± 0.28; n = 22; p = 0.97; Figure 2F). We also asked whether the 
inhibition of the Rho1DN or Rho1CA expression by Gal80TS at 18°C was 
consistent with the observed results; we expected all the preparations 
to behave like controls if the expression was silenced efficiently. 
Indeed, the stimulated control preparations showed a mean number 
of ghost boutons of 6.5 ± 0.73 (Figure  2E; n  = 10), a number not 
statistically different from the one observed in the stimulated 
preparations carrying the silenced dominant negative construct 
(7.75 ± 0.93; n  = 12; p  = 0.42) or the silenced constitutively active 
construct (5.9 ± 0.5; n = 10; p = 0.82). This suggests that the expression 
of these transgenes is efficiently suppressed by Gal80TS at 18°C or that 
it does not affect the mean ghost bouton number. Notably, we can 
confirm that our constructs worked effectively because the expression 
of either Rho1DN or Rho1CA at 25°C was lethal. We therefore shifted 
the temperature to 29°C 48 h before assessing ADSP. In this condition, 
we  observed a mean number of ghost boutons of 11.14 ± 0.68 
(Figure 2A,G; n = 35) in control animals, while animals expressing the 
dominant negative form of Rho1 presented a mean ghost bouton 
number of 12.10 ± 1.5 (n = 20), a value similar to control (Figure 2B,G; 
p  > 0.99). This suggests that Rho1 activity is not required for the 
formation of the morphological synaptic structures associated with 
ADSP. In contrast, when we expressed the constitutively active version 
of Rho1 in neurons 48 h before repeated stimulation we could observe 
a decrease in the mean number of GB formed (Figure 2C,G; 5.6 ± 0.27; 
n = 15; p < 0.0001). These results show that the Rho1 GTPase activity 
can suppress part of the morphological synaptic response that is 
associated with activity-dependent synaptic plasticity. This is 
reminiscent of its role in neuronal morphogenesis and structural 
plasticity in which Rho1 signaling regulates repulsive axon guidance 
cues and axon or dendritic retraction (Luo, 2002).
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The GTPase Cdc42 represses ADSP

We then investigated the role of another GTPase, Cdc42, known 
to be  activated downstream of Dsh (Moriguchi et  al., 1999; 

Schlessinger et al., 2007). We first constitutively expressed dominant 
negative (DN) or constitutively active (CA) versions of Cdc42 in post-
mitotic neurons (elav-Gal4 driver). Under these conditions, we did not 
observe any differences in the mean number of ghost boutons in 

FIGURE 2

The GTPase Rho1 can repress ADSP. (A) Representative confocal photograph of a stimulated control synapse showing HRP and DLG immunoreactivity 
and ghost bouton formation (arrowheads). (B) Representative confocal photograph of a stimulated synapse expressing a dominant negative (DN) form 
of the Rho1 GTPase. (C) Representative confocal photograph of a stimulated synapse expressing a constitutively active (CA) form of the Rho1 GTPase. 
(D–G) Quantification of mean ghost bouton number in (D) unstimulated and (E) stimulated preparations containing the repressed (18°C) conditional 
expression system to express Rho1DN or Rho1CA; (F) unstimulated and (G) stimulated preparations expressing (29°C) Rho1DN or Rho1CA 48  h prior to the 
stimulation. Scale bar: 10  μm. (D,G) Kruskal–Wallis with Dunn’s multiple comparison test. (E,F) ANOVA with Dunnett’s multiple comparisons test: 
****p <  0.0001. Data are shown as scatter plots and means  ±  SEM.
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unstimulated and stimulated preparations (Figures  3D,E). This 
suggests that changing Cdc42 activity might have no consequences on 
the neuronal properties underlying ADSP or that these consequences 
might be  compensated for during development. To distinguish 
between these two possibilities, we  used the previously described 
inducible expression system in which expression of the altered Cdc42 
constructs is switched on 48 h before carrying out the repeated 
stimulation protocol. As previously described, we confirmed again 
that the system was inhibited at 18°C (data not shown) before 
de-repressing the expression system 48 h prior to the repeated 
stimulation protocol. Following this activation, we  observed no 
change in unstimulated preparations (Figure 3F). In contrast, after 
repeated stimulations we observed an increase in the mean number of 
ghost boutons when we expressed the dominant negative form of 
Cdc42 (compare 8.61 ± 0.46  in control to 11.23 ± 4.46  in cdc42DN; 
p  = 0.009; Figures  3A,B,G). Interestingly, the expression of the 
constitutively active form of Cdc42 showed a decrease in the number 
of morphological changes associated with ADSP (average of ghost 
bouton is 5.83 ± 0.58  in cdc42CA; p = 0.002; Figures 3C,G). These 
results suggest that Cdc42 is involved in repressing the expression 
of ADSP.

The GTPase Rac 1 affects ADSP

We tested a third GTPase activated by Dsh and the Wg signaling, 
Rac1 (Fanto et al., 2000; Bikkavilli et al., 2008; Li et al., 2016), for its 
potential role in shaping activity-dependent synaptic plasticity. As 
previously described, we  used a temperature-driven conditional 
expression system to express Rac1 dominant negative (DN) or 
constitutively active (CA) versions. We  first verified that no 
phenotypes were associated with Rac1 expression at low temperatures 
(18°C; data not shown). We then induced Rac1DN or Rac1CA expression 
48 h before our experimental procedures. While we  observed no 
differences in unstimulated preparations (Figure 4D), we did observe 
changes in the mean number of ghost boutons present at the Rac1DN- 
and Rac1CA- expressing synapses. When control synapses showed a 
mean number of ghost boutons of 9.62 ± 0.42 (dark circles; n = 65; 
Figure  4A), synapses expressing both Rac1 constructs showed an 
increase in the mean ghost bouton number. Indeed, Rac1DN expressing 
synapses showed 12.93 ± 1.2 ghost boutons (red circles; n  = 30; 
p  = 0.002; Figures  4B,E) and Rac1CA expressing synapses showed 
14.2 ± 1.3 (blue circles; n = 18; p = 0.0009; Figures 4C,E). Although it 
seems counterintuitive that the expression of both the dominant 
negative and the constitutively active forms of Rac1 provokes the same 
phenotype it is reminiscent of phenotypes previously observed during 
axon pathfinding within neurons expressing Rac1DN or Rac1CA. Indeed, 
ISNb axons of motoneurons expressing either Rac1DN or Rac1CA 
during embryonic development showed arrested growth cones 
(Kaufmann et al., 1998). In addition, the expression of both Rac1DN 
and Rac1CA during embryonic axonal outgrowth causes increased 
axonal loss (Luo et al., 1994). Interestingly, that study showed that 
Rac1CA expression induced a stronger phenotype and an accumulation 
of F-actin that was not present in Rac1DN-expressing animals (Luo 
et al., 1994), suggesting that Rac1CA and Rac1DN expression led to the 
same phenotype by affecting different cytoskeletal processes. 
Interestingly, at the NMJ expression of Rac1DN (Park et al., 2022) and 
Rac1CA (Ball et al., 2010) both cause an increase of synaptic boutons. 

Here we show that changing Rac1 activity increases the morphological 
changes associated with activity-dependent synaptic plasticity. Taken 
together, these results show that the Rho family GTPases downstream 
of Dsh are involved in the morphological response associated with 
activity-dependent synaptic plasticity.

Jun kinase activity is required for optimal 
ADSP in an AP1-independent manner

One of the major PCP pathway effectors is Jun kinase (Jnk; Strutt 
et  al., 1997; Boutros et  al., 1998; Jenny, 2010). This kinase can 
be activated by the Rho GTPases and can in turn activate cytoskeletal 
effectors (Strutt et al., 1997; Fanto et al., 2000; Bikkavilli et al., 2008) 
and transcriptional regulators. The latter are composed of the 
transcription factors cJun and cFos which act as dimers known as AP1 
(Curran and Franza, 1988; Karin et  al., 1997). We  expressed a 
dominant-negative form of Jun kinase (JnkDN) in a constitutive 
manner (Figure 5E) and used the temperature-driven conditional 
expression (48 h prior to repeated stimulations; Figures 5B,G). In both 
cases, we observed a significant decrease in ghost bouton formation. 
In the experiment in which we use constitutive expression, control 
preparations showed a mean of 6.82 ± 0.52 (Figure 5E) ghost boutons 
after stimulation, while the mean ghost bouton number of 
preparations with JnkDN constitutive expression was 2.47 ± 0.6 
(Figure  5E; p  < 0.0001). When we  use the conditional expression 
system, the control synapses showed 8.97 ± 0.57 (Figures 5A,G) but 
only 5.63 ± 0.61 (Figures 5B,G; p = 0.0018) in preparations presenting 
JnkDN conditional expression. This shows that Jnk activity is required 
to fully achieve the morphological changes associated with ADSP.

We then logically asked whether the transcription factors cJun and 
cFos were involved in transducing the signal necessary for the ghost 
bouton formation after stimulation. To do so, we expressed dominant 
negative forms (Eresh et  al., 1997) of these two constructs in a 
constitutive and conditional form (Figures 5C–G). We observed no 
difference between control preparations and preparations containing 
the dominant negative forms in unstimulated and stimulated 
procedures. When expressing the dominant negative constructs 
we noticed smaller synapses, a phenotype documented before (Ballard 
et al., 2014) that validates our expression system. This result suggests 
that the transcriptional control exercised by AP1 is not necessary for 
the morphological changes associated with activity-dependent 
synaptic plasticity. We  favor the hypothesis that Jnk and the Rho 
GTPases act on cytoskeletal regulators to achieve these 
morphological changes.

Discussion

Structural synaptic plasticity is a fundamental feature of the 
nervous system, in which Wg/Wnt signaling plays an essential role. 
Reduction of Wg and its receptor Fz2 impaired the formation of 
activity-dependent modifications of synaptic structure (Ataman et al., 
2008; Alicea et al., 2017). Overexpression of GSK3β/Sgg, an important 
canonical pathway member, prevents ADSP at the Drosophila NMJ 
(Ataman et al., 2008). Upon stimulation, Wg protein release increases 
at the synapse (Ataman et al., 2008), which suggests an increased 
activation of Wg signaling pathways. Repeated simulation of the 
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synapse also promotes an increase of CaMKII, and reducing synaptic 
CaMKII impairs the activity-dependent formation of de novo boutons 
(Nesler et  al., 2016). This suggests some role of the Wnt/Ca2+ 
non-canonical pathway on activity-dependent synaptic plasticity.

Despite the existing interest in the Wnt/Wg PCP pathway, its role 
regarding processes of synaptic plasticity has not been extensively 
investigated. The Wg signal for polarity has been described extensively 
in several cellular environments (Maung and Jenny, 2011). In the 

FIGURE 3

The GTPase Cdc42 represses ADSP. (A) Representative confocal photograph of a stimulated control synapse showing HRP and DLG immunoreactivity 
and ghost bouton formation (arrowheads). (B) Representative confocal photograph of a stimulated synapse expressing a dominant negative (DN) form 
of the Cdc42 GTPase. (C) Representative confocal photograph of a stimulated synapse expressing a constitutively active (CA) form of the Cdc42 
GTPase. (D–G) Quantification of mean ghost bouton number in (D) unstimulated and (E) stimulated control and preparations expressing Cdc42DN or 
Cdc42CA constitutively; (F) unstimulated and (G) stimulated control and preparations expressing Cdc42DN or Cdc42CA for 48  h prior to the stimulation. 
Scale bar: 10  μm. (D) Kruskal–Wallis with Dunn’s multiple comparison test. (E–G) ANOVA with Dunnett’s multiple comparisons test: **p <  0.01. Data are 
shown as scatter plots and mean  ±  SEM.

https://doi.org/10.3389/fnsyn.2024.1322771
https://www.frontiersin.org/journals/Synaptic-neuroscience
https://www.frontiersin.org


Dominicci-Cotto et al. 10.3389/fnsyn.2024.1322771

Frontiers in Synaptic Neuroscience 09 frontiersin.org

developing eye, alteration of the PCP pathway provokes defects in the 
anterior–posterior and dorsal-ventral axes in the arrangement of 
ommatidia (Strutt et al., 1997; Boutros et al., 1998; Fanto et al., 2000; 
Adler, 2002; Strutt et al., 2013). In the Drosophila wing, the orientation 
of cellular hairs in the proximal-distal axis is impaired by defects of 
the PCP pathway (Strutt et al., 1997; Adler, 2002; Wu et al., 2013; 

Fagan et al., 2014). Neurons are one of the most morphologically 
polarized cell types, and mutations of Wnt/PCP pathway members like 
Dsh, Prickle, Strabismus, and Fz provoke axonal branching defects in 
mushroom bodies (MB) of Drosophila adult brain (Ng, 2012). Studies 
showed that Rac GTPase inactivation in mushroom bodies results in 
axonal branching defects (Ng et al., 2002). Wnt5, Fz, and Dsh act in 

FIGURE 4

The GTPase Rac 1 can regulate ADSP. (A) Representative confocal photograph of a stimulated control synapse showing HRP and DLG immunoreactivity and 
ghost bouton formation (arrowheads). (B) Representative confocal photograph of a stimulated synapse expressing a dominant negative (DN) form of the 
Rac1 GTPase. (C) Representative confocal photograph of a stimulated synapse expressing a constitutively active (CA) form of the Rac1 GTPase. 
Quantification of mean ghost bouton number in (D) unstimulated and (E) stimulated control and preparations expressing Cdc42DN or Cdc42CA for 48 h prior 
to the stimulation. Scale bar: 10 μm. ANOVA with Dunnett’s multiple comparisons test: **p < 0.01; ***p < 0.001. Data shown as scatter plots and mean ± SEM.
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FIGURE 5

Jun Kinase is required for optimal ADSP in an AP1-independent manner. (A) Representative confocal photograph of a stimulated control synapse 
showing HRP and DLG immunoreactivity and ghost bouton formation (arrowheads). (B) Representative confocal photograph of a stimulated synapse 

(Continued)
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concert with the small GTPase Rac1 to activate the actin assembly 
functions of dDAAM (dsh-associated activator of morphogenesis) 
necessary for the correct targeting of MB axons (Gombos et al., 2015). 
In addition, dDAAM regulates microtubule stability and synaptic 
growth at the Drosophila NMJ (Migh et al., 2018) while expression of 
RacDN (Park et al., 2022) and RacCA (Ball et al., 2010) promote synaptic 
overgrowth at the NMJ. Here, we have provided evidence that key 
molecules involved in the PCP pathway can affect the morphological 
modifications consequent to ADSP and are therefore necessary to 
achieve optimal activity-dependent synaptic plasticity. It is important 
to note that we never observed a complete ghost bouton elimination 
after affecting the PCP pathway. This makes sense since the other Wg 
pathways — the canonical pathway (Ataman et al., 2008; Alicea et al., 
2017) and the calcium pathway (Freeman et al., 2011; Nesler et al., 
2016)— are also necessary to achieve full ADSP. The contribution of 
the Wg PCP pathway to the formation of de novo synaptic structures 
after stimulation illustrates the redundancy and robustness of the  
Wg/Wnt signal in directing ADSP.

Our work revealed PCP pathway molecules exercising both 
activation and repression of ADSP. Indeed, the loss of function of dsh, 
either using RNAi or the PCP-specific allele dsh1, showed 
compromised plasticity. The same was true for the loss of function of 
jnk. This suggests that the role of these molecules is to promote 
activity. Activation and repression of ghost bouton formation was also 
achieved by modifying Rho GTPase activity. Expression of the 
constitutively active forms of the three GTPases we tested showed 
phenotypes, suggesting that these molecules can regulate ADSP. While 
Cdc42CA and Rho1CA expressing synapses show reduced plasticity, 
Rac1CA expression elicited an over plastic response. This antagonistic 
relationship between Rho1 and Rac1 has been documented previously. 
For example, Rac1 activation promotes neurite formation and 
outgrowth, but Rho1 activation leads to neurite retraction and 
suppresses neurite outgrowth (Luo, 2000; Lorenzetto et al., 2013). 
Similarly, proper dendritic spine morphogenesis requires balanced 
Rho GTPase activity regulation (Penzes and Cahill, 2012). 
Interestingly, Rac1 induces the formation and maintenance of 
dendritic spines, while Rho1 decreases spine formation by promoting 
spine pruning or retraction (Nakayama et al., 2000; Tashiro et al., 
2000; Newey et al., 2005; Bolognin et al., 2014). Like for neurite and 
spine formation but also cell migration (Ridley, 2015; Xu et al., 2019), 
our work has the potential to illustrate the importance of the relative 
balance of the GTPases’ spatiotemporal activity in regulating 
cytoskeletal dynamics.

Indeed, our work provides an insight into the complexity of the 
Rho GTPases at the NMJ. It is intriguing that the expression of the 
dominant negative or constitutively active forms of cdc42 do not 
provide a phenotype when expressed since early embryogenesis. In 
contrast, both constructs’ expressions provoke a phenotype when 
expressed for 2 days before eliciting ADSP. This is reminiscent of the 
results obtained with Wg overexpression, where only a transient 
expression could influence synaptic proteins’ expression (Alicea et al., 

2017). This perhaps illustrates that for Wg and its downstream 
GTPases, a briefer change of expression or activity likely better mimics 
the timescale relevant to ADSP than a constitutive expression. This 
result could be due to compensatory mechanisms between different 
GTPases. Indeed, the functional redundancy between Cdc42 and 
Rac1 is established. For example, Rac1 and Cdc42 both promote 
dendritic spine formation (Nakayama and Luo, 2000; Bolognin et al., 
2014), cell extension (Nakayama et al., 2000; Swetman et al., 2002), 
and actin polymerization (Nobes and Hall, 1995; Lamarche et al., 
1996). In addition, Cdc42 and Rac1 can be activated by the same 
molecular cascade (Buchsbaum, 2007) and there is evidence 
suggesting that depletion of Cdc42 in Hela cells can be compensated 
for by other GTPases to restore functional actin dynamic (Bonfim-
Melo et al., 2018). Therefore, although there is evidence that GTPases 
functions are required at different times (Vadodaria et al., 2013), Rac1 
could substitute Cdc42. The observed Cdc42 phenotypes indicate a 
role in repressing ADSP. Indeed, the dominant negative form is over 
plastic, while the constitutively active form is under plastic. This shows 
that in our system Cdc42 represses ghost bouton formation. This is 
surprising since most studies show that Cdc42 and the Rho GTPases 
in general promote membrane protrusion (Sadok and Marshall, 2014). 
Nevertheless, at the NMJ, cdc42 mutations provoke an overgrown 
synapse, suggesting that Cdc42 represses synaptic growth (Rodal et al., 
2008) while expression of RacDN (Park et al., 2022), RacCA and RacOE 
(Ball et  al., 2010) promotes synaptic growth. These studies might 
indicate a more complex interaction between the Rho GTPases.

While Rho1CA animals showed repressed ADSP, Rho1DN did not 
show any phenotype. It is important to note that we know that Rho1DN 
expression can decrease Rho function since its constitutive expression 
creates lethality. We  can therefore hypothesize that the absence of 
phenotype in the Rho1DN animals might be due to compensation/
redundancy from other GTPase activity. Alternatively, its function at 
the time at which we express its dominant negative form is perhaps not 
to repress ADSP. Indeed, Rho GTPases serve different functions at 
different times. For example, in hippocampal neurogenesis, Cdc42 
promotes initial dendritic development and spine maturation, while 
Rac1 is essential for the late stages of dendritic growth and spine 
maturation (Vadodaria et al., 2013).

Finally, both the constitutive and dominant negative forms of 
Rac1 provoke over plasticity at the NMJ. Although surprising, this is 
not the first time that the same phenotype has been observed when 
expressing these two constructs. Expression of both constitutively 
active and dominant-negative forms of Rac1 causes axonal loss in 
Drosophila (Luo et al., 1994), and Rac1 can have a dual function 
regulating attractive and repulsive signals in axonal guidance (Fan 
et al., 2003). Taken together, these results give an image of an intricate 
and complex local role of the Rho GTPases in regulating ADSP 
induced at the synapse upon high neuronal activity.

We have shown that the transcriptional regulator AP1 is unlikely 
to be involved in ADSP. We favor the hypothesis that regulation of the 
cytoskeleton by the PCP pathway is involved in regulating this 

expressing a dominant negative (DN) form of Jun Kinase. (C) Representative confocal photograph of a stimulated synapse expressing a dominant 
negative (DN) form of c Jun. (D–G) Quantification of mean ghost bouton number in (D) unstimulated and (E) stimulated control and preparations 
constitutively expressing JnkDN or c JunDN or c FosDN; (F) unstimulated and (G) preparations expressing JnkDN or c JunDN or c FosDN for 48  h prior to the 
stimulation. Scale bar: 10  μm. (D,F,G) Kruskal–Wallis with Dunn’s multiple comparisons test (E) ANOVA with Dunnett’s multiple comparisons test: 
**p <  0.01; ****p <  0.0001. Data are shown as scatter plots and mean  ±  SEM.

FIGURE 5 (Continued)
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plasticity. The reorganization of the synaptic cytoskeleton has been 
extensively studied in spines and is linked to processes of activity-
dependent plasticity and learning and memory (Repetto et al., 2014; 
Macgillavry et al., 2016; Cornelius et al., 2021). This process involves 
the reorganization of filamentous actin, actin regulators, and 
microtubules (Ka and Kim, 2016; Schätzle et al., 2018; Cornelius et al., 
2021). In fact, we have previously isolated one such regulator, the actin 
regulator Cortactin (Weed et  al., 2000; Weaver et  al., 2001) and 
showed that it is a regulator of ADSP, and that its protein is upregulated 
under the control of Wg signaling (Alicea et al., 2017). Determining 
whether the PCP pathway is involved in this regulation will be  a 
challenge for the future.
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