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Introduction: Non-invasive brain stimulation techniques, widely used to

manipulate neural excitability and behavior, are well studied at the meso- and

macroscopic scales. However, less is known about their specificity at the level of

individual cells.

Methods: Models based on real pyramidal and parvalbumin neuron

morphologies created by the Allen Institute for Brain Science were characterized

using metrics we devised to quantify various aspects of cellular morphology,

ranging from whole cell attributes to net compartment length, branching,

diameter and orientation. The models were simulated to quantify the single-cell

variability and evoked response susceptibility to uniform electric fields.

Results and discussion: No physical traits yielded layer- or cell-type-specific

responses passing statistical significance tests. While uniform electric fields

reliably modulated somatic, dendritic and axonal compartments, and subtype-

specific responses were observed, specificity was blurred by the variability in

cellular morphology. These null results suggest morphology alone may not

account for the reported subtype specificity to electric field stimulation, and

question the extent to which non-invasive techniques can control specific

components of neural circuitry.

KEYWORDS

non-invasive brain stimulation (NIBS), transcranial electric stimulation, computational

modeling, single neuron model, uniform electric field

Introduction

Non-invasive brain stimulation (NIBS) paradigms are used for a variety of purposes,

including attempted treatment of several psychiatric conditions [e.g. major depressive

disorder (Riddle et al., 2020; Haller et al., 2020), schizophrenia (Hasan et al., 2016),

bipolar disorder (Piccoli et al., 2022)], and investigating neural oscillation properties and

controllability (Hui et al., 2019; Paulus, 2011; Huang et al., 2021). Despite reported clinical

efficacy, many questions remain about the mechanisms involved (Liu et al., 2018) as well

as how to optimize their use. The high variability in brain response to NIBS protocols

represents a major limitation in these efforts. Such variability has been attributed to

genetic and neurophysiological factors, but evidence suggests that the brain state during

stimulation may further impact the response (Rocchi et al., 2018; Guerra et al., 2020;

Lefebvre et al., 2017). Many contributing factors to response variability are immutable (e.g.

subject age, skull thickness, etc), but others, such as the placement of the apparatus (e.g.

electrodes or coil), are malleable (Guerra et al., 2020; Tremblay et al., 2019). The immense

combination of free parameters in these protocols greatly complicates parsing which ones

are crucial. This has led to the development of a variety of computational models in efforts
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to improve the efficacy of experimental approaches and our

overall understanding of NIBS (Huang et al., 2021; Mahmud and

Vassanelli, 2016).

Despite widespread utility, comparatively little is known about

the effects of NIBS at the level of single neurons (Liu et al.,

2018). It is known experimentally, although not widely investigated,

that NIBS techniques can modulate the activity of individual cells

(Krause et al., 2019, 2022; Tremblay et al., 2019). Along with

this awareness has come an acute interest in parsing the limits

of specificity of these techniques: That is, the extent to which

neuron traits (e.g. subtype, morphology) govern the ability of a

single NIBS protocol to acutely activate or suppress the response

of neurons sharing similar characteristics. Preliminary efforts have

been made to elucidate a relationship between response variability

and neuron morphology via intermediate morphological models

(that is, models with a limited set of stereotyped, structural

components) with nominal success (Yi et al., 2017; Aspart et al.,

2018; Komarov et al., 2019; Aberra et al., 2020; Arnaudon et al.,

2023). One such simplified model examined the relationship

between many physical traits (e.g., branching, compartment widths

and lengths, etc.) of a basic neuron and found that, on a trait-by-

trait basis, they alter the strength of electric field (E-field) necessary

for the neuron to fire (Yi et al., 2017). Moreover, even for the

most simplified case of a straight-cable neuron model (Aspart et al.,

2018), changing a single property, such as the length of the cable,

was found to influence the response. Collectively this supports the

consensus that physical morphology acts as an avenue for layer- and

cell-type NIBS specificity.

However, experimental work in alert non-human primates, at

field strengths typically applied to humans, has shown transcranial

electrical stimulation is capable of recruiting individual neurons

and, in some cases, controlling the timing, but not firing rate, of

their spikes (Krause et al., 2019). That experimental study found no

notable difference in phase locking between putative interneurons

and putative pyramidal cells. This result is at odds with what has

historically been expected of individual neurons, which are long

theorized to have subtype- and layer-specific differences in NIBS

response (Radman et al., 2009; Komarov et al., 2019; Huang et al.,

2021). In light of this, it may then be purported that other neuron

traits (e.g. morphology) that vary widely across neuron populations

may in fact limit layer- and cell-type specificity to NIBS paradigms.

Here, we put these results to the test using detailed

morphological multi-compartment models from real mouse

neurons. The present work employs computational methods to

evaluate the effects of NIBS on membrane potential polarization

of neurons of different types (PV, PC) populating various cortical

layers via the application of a uniform E-field. We specifically

examined which, if any, physical characteristics might be involved

in generating cell-type and/or layer-specific responses. To do

so, we developed metrics quantifying various aspects of cellular

morphology, both at the level of whole cells and the compartments

they are modeled from, ranging from cell volume to compartment

lengths, diameters, number of branches, cellular orientation as well

as interneuron myelination (Technical White Paper: Biophysical

Modeling—All Active, 2016; Technical White Paper: Biophysical

Modeling—Perisomatic, 2017; Call and Bergles, 2021). Using

field strengths commensurate with those used in non-invasive

experimental settings, such metrics were used as a benchmark

for evaluating how polarization varied as a function of cellular

morphology, linking single-cell morphological characteristics to

response specificity. Axonal, dendritic, and somatic compartments

could be modulated reliably through changes in E-field amplitude

and orientation, and both subtype and layer-specific responses

could be observed. Yet, none of these results could be attributed

to morphology: the aforementioned metrics didn’t show any

statistically significant influence in supporting subtype- and/or

layer-specific responses. These null results suggest that the

interplay between stimulation parameters and physical neuron

characteristics is complex in its direction of neuron excitability

and that other biophysical features, such as ion channel density

and membrane time constant, might be more relevant. Yet, the

abundant variability of these traits both within and between

neuron subtypes (Pariz et al., 2023; Moradi Chameh et al.,

2021; Cembrowski and Spruston, 2019) may limit layer- and

subtype specificity of non-invasive stimulation paradigms. We

believe reporting such null results represents a crucial step

for the optimization, scope of applicability, and replicability of

NIBS studies.

Results

Characterizing neuron morphology
variability

The neuron models created by the Allen Institute are based

on the morphologies of pyramidal (PC) and parvalbumin (PV)

neurons from layers (L) 23, 4, and 5 of mouse primary visual

cortex (Technical White Paper: Biophysical Modeling—All Active,

2016; Technical White Paper: Biophysical Modeling—Perisomatic,

2017) (see Methods). A collection of example morphologies

of these models from each layer and subtype are shown in

Figure 1A. Seeking to investigate the effects of morphology on

the response of such neurons to NIBS is a very high-dimensional

problem due to the high variability seen between neurons. We

quantified the variability in physical properties between neuronal

subtypes at the level of (1) whole cells (i.e., vector magnitude,

length, volume, myelin; see Methods); and (2) compartments (i.e.,

axonal/dendritic compartment lengths, diameters, branches; see

Methods) and evaluated the contribution of each on membrane

potential polarization from uniform electric fields.

At the whole-cell level, vector magnitude refers to the mean of

the square root of the summed squared cartesian coordinates of

each compartment. The length refers to the maximum length of

the neuron in the z-direction and volume is the maximal elliptical

volume it occupies. Separating the mean vector magnitude for each

neuron subtype and layer, the PV neurons generally had smaller

vector magnitudes, and so were less spatially spread, than their PC

counterparts, with L2/3 having the smallest difference between the

two subtypes (see Figure 1B, top). In line with this, the PV neurons

were on average shorter than their PC counterparts in the same

layers, with L2/3 having the minimal difference between subtypes

(see Figure 1B, top and middle panels). Similarly to the vector

magnitudes and lengths of these cell models, the volumes occupied
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FIGURE 1

Whole-cell morphological characterization. (A) Example morphologies of three neuron models for each type, pyramidal (PC) and parvalbumin (PV),

for layers (L) 23, 4, and 5. (B) (left) Vector magnitudes of all neuron models split by layer and type; (middle) Length in the z-direction of all neuron

models; (right) ellipsoid volume occupied by neuron models. Error bars are standard deviations. All bars are color-matched to the morphologies

shown in (A). Significance determined using Mann Whitney U tests; single star represents p < 0.05. The numerical values of the mean and standard

deviation of each quantity can be found in Supplementary Table 1. (C) Example morphologies and schematic for a PC and a PV neuron model with

representative myelination on their axons. In (C), Ci, i = 1, 2, 3 represent the axonal compartment and the blue sheet over C2 is myelin.

by neuron subtypes in the same layers were similar, with the

exception of L4 where the PV neurons occupied substantially less

volume (Figure 1B, bottom). Within subtypes, these macroscopic

characterizations were correlated with each other, such that longer

neurons tended toward a larger vector magnitude and by extension

elliptical volume.

In addition to these whole-cell characterizations,

compartment-level variability may also be considered (see

Methods). These can be separated further into characteristics and

organization of dendritic and/or axonal components for each

subtype (see Figure 2 top and bottom rows, respectively). This

scale of breakdown for the model properties is important as it

has been demonstrated that, in isolation, each of these features

may affect the field strength required to evoke depolarization

(Yi et al., 2017). For these models, the compartment lengths show

more variability across the layers and subtypes in the axonal

compartments than in the dendritic ones (Figure 2A). Further, the

dendritic compartments are on average longer than the axonal

compartments, however, there are exceptions such as in L5 PC

models where axonal and dendritic compartments were around

the same length.

By contrast, diameters are relatively similar between the

dendritic and axonal compartments (Figure 2B). The diameters

observed between subtypes and layers are also, on average,

relatively similar to each other. Branching is, generally, observed

to be much more prevalent in the dendritic compartments than the

axonal ones (Figure 2C). However, there are exceptions to this, such

as in the L5 and L2/3 PV models where the axons are very densely

branched. Indeed, the PV models generally have more branching

than their PC counterparts in the same layer regardless of whether

the branching is considered at an axonal or dendritic level.

Subtype- and layer-specific membrane
potential polarization from uniform electric
fields

We first examined the mean membrane potential polarization

of these models across layers and subtypes, independently of

their morphological variability. To do this, we apply a uniform

electric field to the neuron models across all its compartments

(Figure 3A) (see Methods section). The field sign and strength will

influence whether depolarization or hyperpolarization is observed

in the neurons’ somatic compartments, and influence the neuronal

response. We quantified this response through (1) the mean

membrane potential polarization (i.e., 〈V〉); and (2) membrane

potential polarization variability (i.e., 〈CVV 〉) across independent

trials (see Figure 3B and Methods section). The mean membrane

potential polarization quantifies the net effect of field strength on

neuronal excitability, while the variability reflects its impact on

spiking activity evoked by the applied field. In each trial, neurons

were exposed to independent noise realizations of low amplitude,

insufficient to cause spontaneous firing.

While not statistically significant (see Methods), differences in

mean polarization and polarization variability could be observed

between subtypes and across layers. However, pooling the neurons

by layer (neglecting subtypes), no significant difference between

the mean somatic polarization could be observed. The lowest

coefficient of variation of these membrane potentials, 〈CVV 〉, is

observed for the L2/3 models, with the highest being the L4

models (Figure 3C) indicating increased firing in that layer. By

comparison, ignoring layers, and pooling the neuron models

based on their subtypes only, there are visible differences between

the depolarization responses of PC and PV cells (Figure 3D).
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FIGURE 2

Dendritic and axonal compartment characterizations. Compartmental properties averaged across neuron cell-subtypes of dendrites (top row) and

axons (bottom row). Individual points plotted on/above the bars are the compartmental quantity average for individual models; bars are the mean

values across models. (A) average compartment lengths (Li), (B) average compartment diameter (Di). (C) average number of branches. Error bars are

standard deviations. Significance determined using Mann Whitney U tests; single star represents p < 0.05. The numerical values of the mean and

standard deviation of each quantity can be found in Supplementary Table 2 (dendtritic compartments) and Supplementary Table 3 (axonal

compartments).

Of note, the differences observed between subtypes manifest

differently in the cases where the PV neuron models are myelinated

or not. For unmyelinated PV neurons, the same field strength

leads to less depolarization than is observed in the PC models at

the same field strength. However, in the myelinated PV models,

the response to the same field strength eventually catches up

with the PC models in terms of depolarization. Interestingly, the

myelinated PV models also hyperpolarize more aggressively than

either the PC or unmyelinated PV models (Figure 3D), suggesting

a difference in excitability induced by the applied field. The lack

of statistically significant differences observed in any of these

poolings suggests limitations to the extent of specificity attainable

via NIBS techniques for circuit control. The average CVV for the

pooled subtypes suggests that PC cells are more excitable and

experience increased firing. Based on the stronger deviation in

this curve compared to the PV models, as well as the similarly

shaped curves in the same plot pooled by layers, the majority of

the variation within the present selection of models comes from the

L4 PC models.

In addition to interrogating the effect of model subtype and/or

layer on their contributions to response variability in NIBS, we also

verified the impact of neuron orientation within a uniform field (see

Supplementary Figure 1). Considering three orientations (0◦, 90◦

and 180◦) of an exemplar neuron, in agreement with existing results

in transcranial direct current approaches Rahman et al. (2013);

Liu et al. (2018); Reato et al. (2019), the neuron’s depolarization

is influenced by its position particularly in the dendritic and

axonal compartments. However, the net response to the applied

field remains largely conserved at the soma, and does not differ

significantly from the somatic membrane potential polarization

observed in the other models (Supplementary Figure 1B). That is,

for neurons populating layers 2/3, 4 and 5, uniform electric fields

are unable to achieve sufficient specificity of neuron subtypes based

on their specific orientation in space.

Examining the relationship between
morphological variability and response
specificity

In light of the results shown in Figure 3, it becomes of interest

to ask: what drives subtype- and layer-specificity? Specifically,

we sought to determine whether any of the characterized

morphological attributes substantially influence the response of the

neurons to uniform electric fields. Returning to the physical metrics

used earlier to describe the neuron subtypes and layers (Figures 1B,

2A–C), the relationship of these properties to response can be

investigated by quantifying how morphological characteristics

correlate with observed changes in cellular polarization. To

examine the trends of individual model responses with respect to

applied field strength, we here quantified susceptibility, a linear

measure of the slope of the response which represents the cell-

specific subthreshold somatic polarization per unit electric field
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FIGURE 3

Uniform electric fields impact on somatic membrane potential polarization. (A) Schematic of a uniform electric field, E, being applied to a neuron

model; (B) Example single trial responses of the somatic compartment of a PV layer 5 neuron model to a uniform field for E = −50 mV/mm (dark

red), and E = +50 mV/mm (light red). The black dashed line is the average response to noise (E = 0 mV/mm) over ten trials. (C) Top: Average

polarization of the somatic membrane potential (〈V〉) across trials pooled by layer. Error bars are the standard deviation measured across trials.

Bottom: average coe�cient of variation (〈CVV 〉) of the membrane potential at di�erent E-field strengths, pooled by layer. Error bars are the standard

deviations across trials. (D) Top: Average membrane potential across trials pooled by neuron sub-type. Bottom: average 〈CVV 〉 of neurons at di�erent

E-field strengths pooled by neuron sub-type. Solid lines are myelinated; dashed lines are unmyelinated. Error bars are the standard deviation.

applied and is analogous to the polarization length used in prior

studies (Radman et al., 2009; Tran et al., 2022). The susceptibility

quantifies the predisposition to control by the applied field and can

be linked to various morphological traits to assess specificity.

As with the characterization of physical traits, susceptibility

can also be broken down into considering both whole-cell

and compartmental-scale physical characteristics. Looking at the

susceptibility agnostically (irrespective of the neuron subtype or

layer) with respect to whole cell metrics (i.e., vector magnitude,

length, volume occupied, and the number of branches), all

yielded non-significant correlations, while the occupied volume

showing the highest correlation (Figure 4). At the compartmental

level, investigation of the susceptibility of compartment-level

metrics also yielded no significant correlations, with dendritic

and axonal branching showing the highest correlation among

their respective compartmental attributes. These results suggest

that controlling individual cell types with uniform electric fields

is limited in its specificity, due to the high variability in

cellular morphologies both between cell types and across layers.

There was also no notable clustering among the cell types and

layers for any of the morphological properties with respect to

their susceptibility.

To more rigorously interrogate this result, we re-assessed

the relationship between the whole-cell physical metrics (e.g.

vector magnitude, volume and length) and susceptibility

for partial correlation when holding the relevant covariable

morphology traits constant (see Methods). From this more

detailed assessment, too, there was no significant partial

correlation between these measures and the susceptibility (see

Supplementary Figure 2, Supplementary Table 6). Moreover, we

then performed dimensionality reduction on all the morphology

traits and susceptibilities shown in Figure 4 to create a uniform

manifold approximation (UMAP) (see Supplementary Figure 3).

From the UMAP, we found no noticeable clustering of any given

cell-type and/or layer, suggestive of considerable net morphological

similarity across the models.

Based on a range of whole-cell and compartment-based

physical metrics, our null results suggest that cellular morphology,

on its own, has no significant influence on the specificity of

uniform electric fields. However, an important confound remains:

the neuron models considered exhibit important compartment-to-

compartment variability in biophysical properties (e.g., ion channel

conductances) (Technical White Paper: Biophysical Modeling—

All Active, 2016; Technical White Paper: Biophysical Modeling—

Perisomatic, 2017). Such variability may play an important role

in blurring differences in the response of cells across layers and

subtypes. To control for this additional source of variability,

ionic conductance values of a subset of neuron models were

fixed and made equal across all cellular compartments. That is,

the ionic conductance values of the L2/3 PC neuron models

Frontiers in SynapticNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnsyn.2025.1621352
https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org


Trotter et al. 10.3389/fnsyn.2025.1621352

FIGURE 4

Relating field e�ects to morphological characterization metrics. Susceptibility of average somatic membrane potential polarization (see Figures 3C,

D) per neuron as a function of their (A) vector magnitude, (B) neuron length, and (C) volume occupied. At the level of dendritic (upper) and axonal

(lower) compartment properties (see Figure 2), the susceptibility of the average somatic membrane potential polarization is shown as a function of

(D) average compartment length, (E) average compartment diameters, and (F) number of branches. All susceptibilities are calculated from response

in the upright (0◦) orientation. Schematics to the right of each plot correspond to the quantity on their x-axis. The Pearson correlation coe�cients, R,

their significance, p, and the line of best fit are found using SciPy’s linear regression package (Virtanen et al., 2020). In line with the scheme used in

Figures 1, 2, the colors of the points correspond to the layer and cell type of each neuron (red = PC L5, orange = PV L5, yellow = PC L4, green = PV

L4, blue = PC L23, and violet = PV L23).

were extracted from each model and averaged for each ion

channel type. The resulting averaged values were then manually

applied across each compartment of these models (see Methods).

These newly constructed neuron models do not possess any

variability in ion channel conductance properties; however, they

do retain variability in other compartment-to-compartment level

biophysical properties such as resistance, capacitance, and the

decay rate of the calcium dynamics. Exposing these biophysically-

controlled neuron models to the same uniform E-field protocol

as before, our simulations show that morphology does not

contribute significantly to specificity: Changes in mean somatic

polarization (see Figure 5A) could not be differentiated between

the different models. Calculating susceptibility, we also examined

the effect of morphological traits. For comparison purposes, we

added those to the existing scatter plots computed before (see

Figures 5B–D) where biophysical variability was not controlled for.

Yet again, we did not find any morphological trait passing the

statistical significance threshold, and thus strengthen our null result

that no singular morphological trait drives neuron response as

independent of biophysical properties.

Discussion

Previous NIBS studies have demonstrated that single neurons

are affected and entrained by low field strengths (Krause et al., 2019;

Aberra et al., 2018; Ladenbauer and Obermayer, 2019; Anastassiou

et al., 2010; Aspart et al., 2018). The extent of specificity for which

NIBS holds over single neurons is less clear. Some experimental

studies failed to observe any difference in the entrainment of

excitatory and inhibitory neurons (Krause et al., 2022, 2019),

yet identifying the source - if any - of NIBS specificity between

neurons remains experimentally intractable. Our computational

investigation found minimal differences in the acute specificity

of neuron subtypes, echoing previous experimental observations

(Krause et al., 2022, 2019). No significant correlation between

response variability and physical morphology could be identified.

These results further align with experimental work revealing that

the highly complex, variable morphologies observed in neural

tissue had no effect on the conservation of physiological waveforms

and circuit functions of neurons (Otopalik et al., 2017b). Similarly,

recent computational work in L5 pyramidal cells has shown
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FIGURE 5

Lack of morphological specificity holds even with fixed ionic properties. (A) For a subsample of neuron models (i.e., PC L2/3 models), ionic

conductance were set to the same fixed value across all dendritic and axonal compartments (see Methods). Change in polarization to a uniform

electric field was measured from the somatic compartment. Di�erent shades of blue denote individual models. Replotting the

susceptibility-morphological property scatter plots from Figures 4A–C for (B) vector magnitude, (C) length and (D) volume. The susceptibility of the

controlled models from panel (A) are added to the scatter plots as black stars.

morphological variance to be insufficient to reproduce electrical

variability observed empirically (Arnaudon et al., 2023).

Among the morphological sources of variability we considered

was myelination, which is known to influence neuron response to

NIBS (Scurfield and Latimer, 2018; Ronzano et al., 2021; Pfeiffer

and Benali, 2020). The minor differences in the PV, but not

PC, models in the myelinated and unmyelinated versions (see

Figure 3D) suggest that response variability due to myelination

is non-uniform and, consistent with a recent work (Aberra

et al., 2018), requires >15% coverage to manifest. This may help

reconcile our observations with previous computational work not

considering myelination, which found layer-specific differences in

the E-field strength required to depolarize neurons in L2/3 and

L5/6 (Radman et al., 2009). However, recent studies involving

myelination have shown a minimal difference required to evoke

firing from L2/3, L4, and L5 neurons (Aberra et al., 2018, 2020). As

the effect of myelination scales with its abundance, less myelinated

brain regions, or shorter axons of inhibitory neurons may respond

more similarly compared to their unmyelinated equivalents (see

Figure 3D), and hence be less depolarized than excitatory neurons.

Indeed, such effects may explain differences in our results and

other myelinated models that predicted specific activation of cells

across subtypes and layers. Where those studies use morphologies

from multiple regions of the brain (Komarov et al., 2019),

reported differences may hence be attributable to more salient

morphological variability present between different brain regions

compared to those found within the same region, as we have done

in our case. We hypothesize that such region-specific distinctions

may also be involved in the discrepancies between those studies and

the lack of significant difference found between subtype responses

in experimental protocols (Krause et al., 2019).

In addition to layer- and subtype-based neuron groupings,

we sought to explore the influence of physical morphology

on evoked polarization (see Figure 4). Previous compartment-

level studies of simplified neuron models identified multiple

physical traits influencing the field strength required to evoke

firing (Yi et al., 2017) (while this study considered hippocampal

neurons overall, we consider the results of the simplified

models comparable). Based on those findings, one could infer

that an “optimally susceptible” neuron (that is, one with the

lowest required field strength to fire) would have long, thick

dendrites with many branches that disperse minimally from

the primary axis the applied field lays on. Moreover, such a

neuron would have long, narrow axons with minimal branching

that disperses widely from the field axis. For the (realistic)

models considered here, no class of or individual neuron(s)
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possess the collective grouping of traits that would require an

electric field strength lower than that required by the other

neurons to evoke depolarization. In line with this, our simulations

did not identify any singular physical trait as the driving

source response specificity to the same stimuli between neurons

(see Figure 4), even when accounting for partial correlations

(see Supplementary Figure 2 and Supplementary Table 6) and

the possible influence of variability in compartmental ionic

conductances (see Figure 5). These results collectively suggest

that the difference between individual neuron models and their

response likely results from a convolution of morphological and

biophysical properties, rather than morphological traits alone.

Further supporting the seeming convolution of physical

traits is the lack of clear clustering observed in the UMAP

(Supplementary Figure 3) created from the data in Figure 4,

which suggests a significant heterogeneity of and overlap in

morphological features and response across the neurons. This

aligns with recent work on human neocortical pyramidal cells

that, using dimensionality reduction, found considerable intrinsic

electrophysiological similarity between layers (Moradi Chameh

et al., 2021). Having such overlap in physical traits despite

individual morphologies appearing markedly different additionally

fits with the ability of cells of widespread morphological variability

to create robust firing patterns (Marder et al., 2015; Otopalik

et al., 2017a,b, 2019). That is, it supports the idea that neurons

may possess widespread degeneracy (Albantakis et al., 2024),

whereby they can respond in qualitatively similar ways despite

being comprised of different features. Importantly, as is further

discussed below in the Limitations section, our null results are

constrained in their scope and do not encompass all possible factors

that may contribute to neuron-specific responses.

In light of our null results, we feel compelled tomention that we

do not claim that morphology does not affect neuron response to

electric fields, but rather, we conclude that (1) there is no singular

trait doing so in isolation; and (2) that the high morphological

variability observed across neurons may limit the specificity with

which they may be non-invasively targeted. Indeed, our null results

suggest that (realistic) morphology is not, in isolation, a defining

feature responsible for the observed variability in neuron response

to uniform electric field stimulation (see Figure 4). This is in

agreement with recent work on detailed biophysical models of L5

PC neurons found morphological variability to be insufficient to

reproduce electrical variability (Arnaudon et al., 2023). Moreover,

earlier results in somatogastric neurons (Otopalik et al., 2017b),

suggest that the electrophysiological properties of neurons can

be conserved without complex, morphological diversity. These

results support, then, that the approximations made in many

models of NIBS protocols that use mean-field type approaches,

whether for the whole model population or for subtypes within

the population (Huang et al., 2021): The assumptions made in

designing such computational models to not include specific

morphology in their frameworks may be sufficient for capturing

electrical properties.

We believe reporting null results represents a crucial step in

evaluating the scope of applicability of NIBS and replicability of

existing studies. In recent years, the number of studies pertaining

to the use of NIBS has exploded, however, with that momentum,

there has been limited replication or consistency in the stimulation

protocols used (Hui et al., 2019). Despite their infrequency

in publication, null results are often helpful to researchers in

furthering research in meaningful directions (de Graaf and Sack,

2018). This is particularly important for the blooming NIBS field,

given the extremely vast stimulation parameter space: null results

may hence serve to streamline optimizing the framework and scope

of NIBS paradigms.

Limitations

The morphology models used in this work come from a

relatively small collection of neurons found in the primary visual

cortex of mice. While the small sample size is due to the

experimentally limited number of such detailed models available

(Technical White Paper: Biophysical Modeling—Perisomatic,

2017), this does contribute to lower statistical power in the results,

as is common in the majority of neuroscience studies (Bonapersona

et al., 2021). Importantly, the models all being based on mouse

primary visual cortex morphologies limit the extrapolation of the

results of these simulations to any expectations for human cells,

as it has been shown that a number of neuron properties do not

scale from non-human to human neurons (Mohan et al., 2015;

Beaulieu-Laroche et al., 2021; Chameh et al., 2023). In line with this,

recent results showed that human L5 PC neurons have unexpected

biophysical properties for their size (Beaulieu-Laroche et al., 2021),

despite the composition and allometry of the human cortex scaling

relative to other species (Elston et al., 2001; Hattox and Nelson,

2007; Beaulieu-Laroche et al., 2018). Further, as these models are

simulated in isolation, they disregard any potential influence from

conductive tissue, distance-to-skull or other cell interactions that

may bolster response through biophysical mechanisms, such as

ephaptic coupling (Reato et al., 2010; Anastassiou et al., 2010;

Ladenbauer and Obermayer, 2019; Mahmud and Vassanelli, 2016).

White noise is added to account for some of these effects, however,

the net efficacy may still be impacted. Additional model-specific

limitations can be found in the Allen Institute technical papers and

documentation (Technical White Paper: Biophysical Modeling—

All Active, 2016; Technical White Paper: Biophysical Modeling—

Perisomatic, 2017).

The neuron models were predominantly simulated in one

orientation in free space. However, the overall effects of orientation

were considered by rotating the neuron models 0◦, 90◦ and 180◦

about the y-axis and recording from the somatic, axonal and

dendritic compartments in all three orientations (see Methods

and Supplementary Figure 1). The observed effect of this change is

relatively small at the somatic compartment, although the overall

polarization of the model changes. NIBS studies of biophysical

models found this minimal effect results from the axon branching

andmyelination, which drastically reduces the effects of orientation

on activation threshold (Aberra et al., 2018). The layers considered

may also reduce the effect of orientation, as L1 and L6 have

previously shown more variability in preferential orientation

(Aberra et al., 2020; Liu et al., 2018). The average membrane

potential in response to orientation changes is more attenuated at

the soma than the dendrites and axons, which are two to three
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timesmore susceptible to polarization at their terminals than somas

(Rahman et al., 2013).

The models considered in the present work are additionally

simulated in isolation, and hence disregard the potential influence

of conductive tissue, distance-to-skull, or other cell interactions.

One of the immediate possibilities with this framework is that,

for real neurons, the minimum field strength required to facilitate

depolarization may be greater than in these models where the

field is applied uniformly. Alternatively, the synaptic coupling with

other neurons may bolster their response and allow for activation

at lower field strengths than reported here. To account for this

latter possibility, we have added white noise of constant amplitude

to mimick recurrent input from other neurons (see Methods,

Neuron Models). We acknowledge that this approach neglects

the potential effects of network/recurrent correlations, which can

bolster response to NIBS far beyond what a single neuron can

achieve (Reato et al., 2013; Anastassiou et al., 2010). This is true

even in small networks, where ephaptic coupling can influence

the strength of field required to entrain cells (Ladenbauer and

Obermayer, 2019; Mahmud and Vassanelli, 2016). Therefore, the

exact propagation of current through in vivo tissue might differ

from what is modeled here. This may be of particular importance

when considering limits where the neurons are at a greater distance

from the current source, or the possibility that connectivity patterns

may contribute to the specificity with which neurons can be

non-invasively recruited. These important questions are left for

future work.

Among factors not considered in the present study are

membrane time constants, which vary by multiple orders of

magnitude within and between cell types, layers, and brain regions

(Moradi Chameh et al., 2021), and reflects cellular excitability and

integration of temporally-varying stimuli in the neuron (Fourcaud-

Trocmé et al., 2003; Ledoux and Brunel, 2011). This leads to

varied responsiveness between neurons to rhythmic input, and

contributes to the resultant dynamics of synaptic plasticity in

transcranial alternating current stimulation frameworks (Pariz

et al., 2023). In addition to synaptic plasticity, by simulating

the neurons in isolation, we also neglect potential influences by

synaptic inputs, and recurrent connections. This is of particular

note, as recurrent connections increase the correlated activity

among neurons (Wiechert et al., 2010; Helias et al., 2014) and

their absence may have marked effect on neuron response to

transcanial electrical stimulation. Moreover, recurrent connectivity

influences synaptic low-pass filtering that can introduce slower

dynamics in the activity of individual neurons different than

those of adaptive currents (Beiran and Ostojic, 2019). Collectively,

these factors may influence the response variability of individual

neurons, and particularly the selectivity of such neurons in cortical

circuit settings.

Methods

Neuron models

The models used here were created by the Allen Institute

for Brain Science based on the morphologies and biophysical

properties of real neurons found in the primary visual cortex of

mice (Technical White Paper: Biophysical Modeling—All Active,

2016; Technical White Paper: Biophysical Modeling—Perisomatic,

2017). That is, these computational mathematical models of

single neurons were created based on slice electrophysiology and

morphology reconstruction data (see below). A primary objective

of the Allen Institute in developing these models was to incorporate

active dendritic conductances due to their importance in the input-

output relationship of cortical neurons (Technical White Paper:

Biophysical Modeling—All Active, 2016). This was accomplished

by including active, Hodgkin-Huxley nonlinear conductances in

the dendrites. For the excitatory neuron models there are four

separate compartment types incorporated: axonal, somatic, basal

dendritic, and apical dendritic. In contrast, the inhibitory neuron

models only use three types of compartments: axonal, somatic,

and dendritic. For both model types active and passive properties

are considered.

The morphologies of each neuron are rendered in 3D using

the NEURON coding environment from imported SWC files.

These models feature a singular, spherical somatic compartment,

serving as the initial point from which child branches emerge,

extending outward into their respective branches (Technical White

Paper: Biophysical Modeling—All Active, 2016; Technical White

Paper: Biophysical Modeling—Perisomatic, 2017). As branches are

added further from the somatic compartment, their diameters were

made to match the expected decrease in diameter observed with

increasing branch order. Only models with an overall decrease in

dendritic diameter with increased branching order were accepted

(Technical White Paper: Biophysical Modeling—All Active, 2016).

Once the morphology of the model is in place, the passive and

active properties of each model were fit on electrophysiological

data. In the optimization of the 26 free parameters in these models

(18 active conductance densities, 4 intracellular Ca2+ dynamics

parameters and four passive parameters), fitting is assessed based

on 11 electrophysiological features including time to first spike,

time to last spike, as well as action potential width and height (see

Technical White Paper: Biophysical Modeling—All Active, 2016

are references therein). For every o those features, an absolute

Z−score was calculated and the highest score parameter set

was retained.

The passive parameters (e.g. specific membrane capacitance,

membrane resistance, intracellular resistivity, etc.) are assumed

to be uniformly distributed across all compartments and are,

for a given model, set to a singular value. The value itself

can be found using NEURON’s multiple run fitter. As a result,

compartment passive parameters were varied to find the best

match to experimental voltage traces, under the assumption

the active properties were absent (Technical White Paper:

Biophysical Modeling—Perisomatic, 2017; Technical White Paper:

Electrophysiology, 2017).

In contrast to the passive parameters, the active channel

properties are uniformly distributed in space across compartments

(Technical White Paper: Biophysical Modeling—All Active, 2016)

in the different compartment types (e.g. somatic, axonal, dendritic)

such that every type receives an independent set of channels (see

Table 1). As with the passive parameters, the numerical values for

these active properties were fitted so that the response of the model
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TABLE 1 Active properties morphology models.

Active properties Axon Soma Dendrites

Ih X X

Im X

Na X X X

Kd X

Kv2-like X

Kv3-like X X X

SK-type potassium X X

Low-voltage Ca2+ X X

High-voltage Ca2+ X X

Ca2+ decay dynamics X X

Ca2+ gamma dynamics X X

Reproduced table from Allen Institute technical paper (Technical White Paper: Biophysical

Modeling—All Active, 2016) listing all active parameters present in the Biophysical— all

active models. Check marks denote the presence of that property in those compartment types.

to step input currentmatches electrophysiological data. Specifically,

the free active parameters include 18 active conductance densities

(i.e., gbar,j) which corresponds to the maximum conductance

density of type j (e.g. Na+) in a given compartment (Technical

White Paper: Biophysical Modeling—Perisomatic, 2017). Except

for these free active parameters, all other parameters for the active

mechanisms are employed based on those from Hay et al. (2011).

These free active parameters are complemented by additional

parameters that account for intracellular Ca2+ dynamics and

Ca2+ entry due to transmembrane currents (Technical White

Paper: Biophysical Modeling—All Active, 2016). This model

includes a time constant for Ca2+ removal, as well as the binding

ratio of the Ca2+ buffer (Technical White Paper: Biophysical

Modeling—Perisomatic, 2017), and is given by

dCai

dt
= −10000

iCaγ

2Fd
−

Cai −mCai

τd
, (1)

where Cai is the Ca2+ concentration at time t in compartment

i, F is the Faraday constant, d is the depth of the submembrane

shell, τd is the removal rate of Ca2+, γ is the % of free unbuffered

Ca2+, mCai is a constant baseline concentration, and iCai is the

ionic current. With the exception of the calcium dynamics, the

active properties of the various ion channels all evolve according to

Hodgkin-Huxley equations. The specific equations and parameters

for a given model can be found in the “.mod” files downloadable

from the Cell Types Database of the Allen Brain Atlas

(https://celltypes.brain-map.org/data).

For the purposes of the simulations done in this work, two

types of models were considered: those based on pyramidal cell

(PC) morphologies and those based on parvalbumin cell (PV)

morphologies. A summary of the number of models used from

each type and layer is shown in Table 2. All simulations were

conducted in a mixed Python—NEURON environment, with the

models having been created in a NEURON environment (Hines

and Carnevale, 1997; vanRossum, 1995; Technical White Paper:

Biophysical Modeling—All Active, 2016). Subsequent data analysis

TABLE 2 Morphological model types.

Cell type Cortical layer No. morphs

PC 2/3 3

4 5

5 5

PV 2/3 5

4 4

5 5

Summary table of the number of morphological models (No. morphs) for each cell type and

cortical layer used in the simulations performed here. Pyramidal cells are PC and parvalbumin

cells are PV.

was performed using the NumPy, Matplotlib, Seaborn, SciPy, and

Pandas Python libraries (Oliphant, 2006; Hunter, 2007; Waskom,

2021; Virtanen et al., 2020; McKinney et al., 2011).

In the NEURON environment, the membrane potentials of the

models are calculated using the cable equation:

∂V

∂t
+ Inet =

∂2V

∂x2
, (2)

where Inet and V are the net current (ionic and injected) and

membrane potential, respectively. This is then approximated to

its spatially discretized form such that the neuron is reduced to a

set of connected compartments, and Equation 2 becomes a family

of equations,

cj
dvj

dt
+ iion,j =

∑

k

vk − vj

rjk
+ iinj,j, (3)

where cj is the membrane capacitance of compartment j, rjk
is the resistance between compartment j and k, iinj,j are the

injected currents, and iion,j includes all currents through ionic

channel conductances. The right-hand side of the equation is

the sum of the axial currents that enter the compartment from

its adjacent neighbors. The ionic currents, iion, of the neuron

models then evolve according to iion = g(v − eion), where v

is the internal voltage, eion is the Nernst potential, and g relates

the active conductances densities, gbar , to the relevant Hodgkin-

Huxley parameters [see individual model “.mod” mechanism files

for Equations Technical White Paper: Biophysical Modeling—All

Active (2016), and chapters 3 and 4 of the NEURON handbook

(Carnevale and Hines, 2006) for detailed expansion on this

derivation of the cable equation].

Within this framework, any spatial variation in the membrane

current is approximated as its value at the center of a given

compartment. Within NEURON’s framework, compartments of

the same size are grouped together as a section which contains

all of these compartments as segments of the section (Hines

and Carnevale, 1997; Carnevale and Hines, 2006). This is done

for computational efficiency, as Equation 3 may then be re-

formulated as,

Cm
dvj

dt
+ ij =

d

4Ra

vj+1 − 2vj + vj−1

1x2
, (4)
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where 1x and d are the compartment length and diameter,

respectively. If these are the same between compartments, as is the

case for a section, then Ra1x/π(d/2)2 is the axial resistance, and

Cmπd1x is the compartment capacitance.

The electric field is applied to all compartments in a cell using

NEURON’s extracellular function (Hines and Carnevale, 1997).We

neglect the distance component of the field, that is the field is

scaled to be connected in series with the conductance of the last

extracellular layer of the model and added in millivolts. For these

simulations, we use a uniform electric field with magnitude, E, in

the positive z-direction, such that each compartment receives a field

given by:

Ej = Ecosφ + ξj, (5)

where j is the compartment number, φj is the angle between

the middle of compartment j and the z-axis, and ξj is Gaussian

white noise added to that compartment to account for fluctuations

and inputs not explicitly modeled, such as synaptic activity or

ephaptic interactions, which may modulate neuronal excitability

and facilitate activation at lower field strengths. To account for

the orientation of the individual compartments, we calculate the

angle φj based on the a priori known Cartesian coordinates of each

compartment (Technical White Paper: Biophysical Modeling—All

Active, 2016; Hines and Carnevale, 1997). In these calculations, in

line with the design of the models detailed previously, the somatic

compartment is assumed to be located at the origin.

Taking these steps guarantees that field magnitude in a

compartment scales with its orientation (e.g., only compartments

in perfect alignment with the field receive its full magnitude).

The scaling of the field per-compartment based on compartment

orientation is particularly important when we consider the effects

of model-orientation on the observed response. When the model is

rotated, this is done again using the known Cartesian coordinates

of each compartment and a rotation matrix to reorient all

compartments to their new positions. The angles, φj, of the

new positions are then calculated and again used to adjust the

compartment-wise experienced field strength.

In addition to the applied field, our model also includes

background noise ξ , resulting in voltage fluctuations even

when E = 0 mV/mm. This noise was assumed to be

Gaussian white noise (i.e., µξ = 0; σξ = 4) and was added

alongside the field to each compartment. Realizations of this

noise are independent across neuron models, compartments and

trials. Ten trials each of subthreshold field strengths E =

{−50,−30,−10, 0, 10, 30, 50} mV/mm were applied, in line with

ranges that have been used for similar models (Yi et al., 2017;

Radman et al., 2009). The cell response was read out from the

somatic compartment as a membrane potential and the average

response across trials was taken to quantify the specificity of the cell.

Characterizing neural morphology

In the present framework, the Cartesian coordinates for

all compartments in the models are known. This allows for

both whole-cell and compartmental characterizations of the

morphologies to be made. For macroscopic measures, that is

characterizations that encompass the whole cell, we take three

quantities (1) the vector magnitude, (2) the length in the z-

direction, and 3) the elliptical volume. We define the vector

magnitude as the mean square root of the sum of the squares

for the Cartesian coordinates of all compartments in a given

model and calculate it to Rj = 〈
√

x2 + y2 + z2〉N , where N is the

number of compartments in model j. For the z-direction length

(referred to hereafter as length), the value L is calculated as simply

the difference between the maximum and minimum z-direction

coordinates [this represents the effective length of the neuron as

established in Tran et al. (2022)]. Finally, the elliptical volume

is calculated by halving the length (z) and equivalent maximum

distances in the x- and y- directions. The ellipsoidal volume is then

calculated as:

V =
4π

3

(

xmax

2

)(

ymax

2

)(

zmax

2

)

=
π

6
(xmaxymaxzmax) (6)

Additionally, at the level of whole cells, we sought to investigate

the effects of orientation. To do this, the models were rotated about

the y-axis using a rotational matrix within the field at θ = 0◦, 90◦,

and 180◦. At each orientation, the models were simulated with the

same E = {−50,−30,−10, 0, 10, 30, 50} mV/mm fields. For these

simulations, recordings of the stimulation responses were taken

for all compartment types to create a more complete polarization

profile. Notably, in these simulations the response is recorded at the

center of a given section to approximate the value of all segments

within the section.

For the more mesoscopic measures, that is those at the level

of the compartments that comprise the models, we consider

again three quantities: (1) the average compartmental length,

(2) the average compartmental diameter, and (3) the number of

branches. For each of these metrics, we further separate into the

dendritic and axonal measures. These metrics are defined in the

model reconstruction files themselves (Technical White Paper:

Biophysical Modeling—Perisomatic, 2017; Hines and Carnevale,

1997), and were subsequently extracted and averaged across

morphologies for the same neuron subtype and/or layer.

Simulations and analysis

For the simulations conducted here, the cells are artificially

positioned such that the somatic section, a singular section for all

models, is at the origin and all other compartment coordinates are

normalized with respect to this compartment. This is done using

the a priori known Cartesian coordinates for every segment in the

models. Additionally, the orientations were taken to be in standard

depiction format, that is with the dendritic arbor in the positive

z-direction. To improve the biophysical accuracy of the models,

myelin was added to the axonal compartments of the neuron

models by randomly selecting a fraction of the axonal segments

and setting their ionic conductances (and by extension their ionic

currents) to be zero. Themyelinated segments in a given simulation

Frontiers in SynapticNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnsyn.2025.1621352
https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org


Trotter et al. 10.3389/fnsyn.2025.1621352

were chosen from a Bernoulli trial for each axonal segment with

a probability of myelination p = 0.7 in the PV neuron models

and p = 0.15 for PC models (see Figure 1C). These values of

myelination probability were chosen in line with the percentage of

the axon length expected to be myelinated from experimental work

on these neuron types (Call and Bergles, 2021).

The physical characteristics of the models were separated

based on their layers and subtypes. As the groupings of neurons

are small, and therefore cannot be assumed to have normally

distributed properties, and each neuron’s properties are assumed

to be independent of the other neurons, the differences between

groupings were assessed for significance using a Mann Whitney

U Test from SciPy’s statistics library (Virtanen et al., 2020). For

the same reasons, comparisons between the responses of neuron

groupings were also assessed for significance using Mann Whitney

U Tests.

To validate that the observed results are not convolved by the

ionic properties, a subset of the neurons were resimulated with

their ionic properties manually reset to average values. That is,

the conductances, g
comp
ion , of the ionic channels for each of the PC

L2/3 models were averaged for each compartment type (somatic,

dendritic, apical and axonal). The resultant values, 〈g
comp
ion 〉, were

manually set for each of the corresponding compartments in

those models. These models were then re-simulated in the same

uniform electric field protocol in the upright (positive z−axis)

orientation, with their membrane potentials measured again at the

somatic compartment.

Susceptibility

The curves of membrane potential resulting from the

application of various applied field strengths as recorded at the

somatic compartment in the upright (or 0◦) orientation serve as

a representation of the susceptibility of a neuron to the applied

field. Here, we measure susceptibility, a measure analogous to the

polarization length (Radman et al., 2009; Tran et al., 2022), using

the slope of themembrane potential polarization curve with respect

to applied field strength:

S =
〈V〉−50 − 〈V〉+50

1E
(7)

where 1E is the difference between the E-field strengths for the

cases (here equal to -100 mV/mm) and 〈V〉i are the average

membrane potentials at field strengths i = {−50,+50} mV/mm.

As 1E < 0 here, the resulting values of S are also negative.

These susceptibility values offer a metric to quantify the

influence of the physical morphology characteristics on the

response of the neurons to stimulation by looking at their

correlations. Correlations of these susceptibilities are calculated

with respect to the different morphological traits using SciPy’s

linear regression function, which calculates the Pearson correlation

coefficient, R, and its corresponding p-value using a Wald Test

with t-distribution of the test statistic (Virtanen et al., 2020). These

correlations then allow us to discern which morphological trait

(if any) may contribute to the specificity of the NIBS protocol.

In addition to the linear regression analysis, partial correlations

were calculated for morphology traits with their susceptibility

using the Pingouin Statistics package in Python (Vallat, 2018). The

morphology traits held constant in each of these analyses were

decided based on having a significant correlation with the other

available ones (see Supplementary Figure 2A).
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SUPPLEMENTARY FIGURE 1

Orientation e�ects on the polarization profile of neurons. (A) Average

membrane potential per compartment for E = −50 mV/mm applied to an

example L5 PV neuron model as it is rotated 0◦, 90◦ and 180◦ (left to right)

with respect to the y-axis. Orientation is indicated in upper right of each

plot by the arrows on the circles. The lightness of blue on the arrow

corresponds to the curves on plots in (B). (B) The relationship between the

example neuron model orientation and average membrane potential with

respect to the applied E-field, error bars are standard deviation. The

simplified neuron schematic in the bottom right of each plot indicates

which compartment type is being plotted (left to right: somatic, axonal,

dendritic). The exact section of the neuron being recorded from is indicated

by the color-matched triangles in the rightmost panel of (A). In the left

panel of (B) the average membrane potential at 0◦ orientation from the

somatic compartment of all models is indicated by the gray line with the

error bars as their standard deviation. The inter-model mean was compared

with the single model mean using a Mann Whitney U Test and no significant

di�erence was found (p > 0.05).

SUPPLEMENTARY FIGURE 2

Partial correlation analysis shows no significant correlation between

susceptibility and morphology traits. (A) Heat map of the spearman

correlation coe�cient between each of the morphology traits considered in

this work. Significance (p-values) for these correlations are written on each

block rounded to two decimal places. Cases with p < 0.01 (shown as

p = 0.0 in heatmap) are considered correlated and controlled for in the

partial correlation analysis. The exact values for the correlation coe�cients

and p-values are reported in Supplemental Tables 4 and 5. (B) Heatmap of

the spearman partial correlation coe�cients between the susceptibility and

each morphology trait when controlling for significantly correlated traits as

determined from (A). The p-values are shown on each block. The exact

values for the correlation coe�cients and p values are reported in

Supplemental Table 6.

SUPPLEMENTARY FIGURE 3

Dimensionality reduction shows no clustering between neuron types or

layers Performing dimensionality reduction on the nine morphology traits

considered in Figure 4 and susceptibilities of the neurons to create a

uniform manifold approximation (UMAP) shows no clear clustering of the

neurons in reduced space.
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