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AMPA receptors in the evolving
synapse: structure, function, and
disease implications

Fleming Francis†, Dewan Chettri† and Deepak Nair*

Centre for Neuroscience, Indian Institute of Science, Bengaluru, India

Synapses, once considered static conduits for neuronal signals, are now
recognized as dynamic, multifunctional structures critical to brain function,
plasticity, and disease. This evolving understanding has highlighted the
tripartite nature of synapses, including pre-synaptic terminals, post-synaptic
compartments, and regulatory glial elements. Among excitatory synapses,
glutamatergic transmission dominates, with AMPA receptors (AMPARs) playing
a central role in fast synaptic signaling. AMPARs are tetrameric, ligand-gated
ion channels that mediate rapid depolarization and are tightly regulated by
subunit composition, trafficking, and interactions with scaffolding and signaling
proteins. Their activity-dependent modulation underpins key processes such
as long-term potentiation and depression, central to learning and memory.
Importantly, dysfunctions in AMPAR expression, localization, or signaling are
increasingly linked to neurological and psychiatric disorders including autism
spectrum disorders, epilepsy, schizophrenia, and Alzheimer’s disease. This review
discusses AMPAR biology in the context of synaptic organization, highlighting
recent advances and ongoing challenges in understanding their roles in health
and disease.
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Introduction

Over the past three decades, our understanding of synapses, the fundamental units
of communication between neurons, has evolved dramatically. Once regarded as static
junctions responsible solely for transmitting signals across neurons, synapses are now
recognized as dynamic, multifunctional structures, finely tuned in space and time.
Advances in molecular and imaging technologies have revealed that synaptic composition
and organization are not fixed but instead undergo rapid and localized changes with
nanometer-scale spatial precision and submillisecond temporal resolution (Nair et al.,
2013; Archibald et al., 1998; Fukata et al., 2024). This transformation in perspective has
led to the recognition that synapses are not merely neuronal interfaces; they are also
the fundamental building blocks of neuronal communication. They are now understood
as tripartite functional units composed of the pre-synaptic terminal, the post-synaptic
membrane, and a third regulatory element, often glial cells, particularly astrocytes
(Archibald et al., 1998; Szatkowski et al., 1990; Bevan et al., 1973; Dennis and Miledi,
1974; Villegas, 1972). These non-neuronal cells are not passive bystanders; rather, they
actively modulate synaptic strength and contribute to the homeostatic regulation of both
the immediate synaptic environment and broader neuronal networks (Perea et al., 2009;
Kettenmann et al., 2025). This insight has expanded our conceptual framework of how
information is processed and stored in the brain and has opened new avenues for exploring
mechanisms of synaptic dysfunction in disease.
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A significant portion of this new understanding has come
from studies of excitatory synapses in the mammalian brain.
Among the various neurotransmitter systems that mediate
excitation, glutamatergic synapses predominate, accounting for
approximately 80–90% of excitatory synaptic activity (Somogyi
et al., 1998; Shinohara and Hirase, 2009). These synapses are
predominantly localized to the dendritic spines, with small, actin-
rich protrusions emerging from the dendritic shaft (Weber et al.,
2016; Segal, 2005). Each spine typically receives input from
a single pre-synaptic bouton, which contains synaptic vesicles
filled with glutamate. Upon stimulation, glutamate is released
into the synaptic cleft, where it binds to receptors on the
post-synaptic membrane. This event triggers the depolarization
of the spine and initiates the post-synaptic signaling cascade
that determines the likelihood of generating an action potential
(Qu et al., 2009; Ikeda and Bekkers, 2009). The structural and
functional compartmentalization provided by dendritic spines
enables localized signal processing, allowing neurons to integrate
thousands of synaptic inputs with remarkable specificity and
plasticity (Tecuatl et al., 2021; Drachman, 2005). Over the
last two decades, detailed molecular dissection of synaptic
architecture has revealed a complex network of proteins involved
in synaptic transmission, plasticity, and stability. Key among
these are the molecular sensors and receptors that detect the
arrival of neurotransmitters in the synaptic cleft. These include
ionotropic receptors such as AMPA and NMDARs, which mediate
fast excitatory transmission, as well as metabotropic glutamate
receptors that modulate slower, longer-lasting synaptic responses
(Watkins and Evans, 1981; Conn and Pin, 1997; Barnes and Henley,
1992). The trafficking, localization, and functional tuning of these
receptors are tightly regulated by scaffolding proteins, kinases,
and other signaling molecules that collectively form the post-
synaptic density (PSD)—a dense, protein-rich structure critical to
synaptic integrity. The pre-synaptic machinery is equally intricate,
involving vesicle docking, priming, and calcium-dependent fusion
processes mediated by proteins such as synaptotagmins, SNAREs,
and complexins (Sheng and Kim, 2011; Schoch and Gundelfinger,
2006; Scannevin and Huganir, 2000; Dani et al., 2010; MacGillavry
et al., 2013; Fukata et al., 2013). The coordinated activity of these
proteins ensures that neurotransmitter release is both rapid and
precisely timed. Importantly, many of these molecules are subject
to activity-dependent regulation, providing a mechanistic basis
for synaptic plasticity phenomena such as long-term potentiation
(LTP) and long-term depression (LTD), which underlie learning
and memory (Szatkowski et al., 1990; Bevan et al., 1973; Barnes and
Henley, 1992).

Glutamate binds with Glutamate receptors and functions as
an excitatory neurotransmitter in the Central Nervous System.
Classically, Glutamate receptors are classified into two major
types: ionotropic glutamate receptors (iGluRs) and metabotropic
glutamate receptors (mGluRs). iGluRs, including α-Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-
D-aspartate (NMDA), and kainate receptors, are ligand-gated
ion channels that directly affect neuronal excitability (Traynelis
et al., 2010). On the other hand, mGluRs are G protein-
coupled receptors that indirectly regulate neuronal activity
through intracellular signaling pathways (Niswender and Conn,
2010). While early studies in synaptic biology emphasized how

these molecular components ensure reliable neuronal signal
transmission, contemporary research increasingly highlights their
roles in neurological and psychiatric disorders. Our review
focuses more on the roles of glutamate receptors, particularly
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)
receptors, which are key mediators of fast excitatory synaptic
transmission in the central nervous system. Discovered as ligand-
gated ion channels responsive to the neurotransmitter glutamate,
AMPARs are tetrameric complexes typically composed of GluA1-
4, with distinct functional properties governed by their subunit
composition, post-translational modifications, and interactions
with auxiliary proteins (Miguez-Cabello et al., 2025; Greger et al.,
2017; Certain et al., 2023). Functionally, AMPARs are critical
for synaptic plasticity mechanisms such as LTP and LTD, which
underlie learning and memory (de Leon-Lopez et al., 2025;
Citri and Malenka, 2008). Their rapid trafficking to and from
the synaptic membrane enables dynamic regulation of synaptic
strength in response to activity patterns, positioning them as central
molecular integrators of experience-dependent neural adaptation.
Importantly, dysfunctions in AMPAR expression, localization,
or signaling have been implicated in a wide range of brain
disorders. Mutations in AMPAR subunits or their associated
scaffolding proteins have been linked to autism spectrum disorders,
intellectual disability, epilepsy, and schizophrenia (Yonezawa et al.,
2022; Jimenez-Sanchez et al., 2024; Hanada, 2020). Moreover,
in neurodegenerative diseases like Alzheimer’s, altered AMPAR
trafficking and synaptic localization contribute to early synaptic
failure and cognitive decline, often preceding neuronal loss (Zhang
et al., 2022; Babaei, 2021). As research continues to uncover
the complex modulation of AMPARs across developmental,
physiological, and pathological states, they remain a focal point in
efforts to elucidate and correct the molecular basis of cognitive and
behavioral dysfunctions. In this review, we will track a brief recap of
the AMPA subtype of glutamatergic receptors, their implication in
health and diseases, and current challenges and advances that allow
us to dissect the roles of these molecules from the perspectives of
synapses and synaptic organization.

Glutamate in the brain and its function

L-glu is the major excitatory neurotransmitter involved in
functions such as learning and memory, long-term potentiation,
and synaptic plasticity (Zhou and Danbolt, 2014; Tapiero et al.,
2002; Petroff, 2002; McKenna, 2007; Fairman and Amara, 1999;
Erecinska and Silver, 1990). A kilogram of brain tissue contains
5–15 mmol L-glu, depending on the region, which far exceeds
concentrations of all other amino acids (Schousboe, 1981). Neurons
also show very high activity when it comes to L-glu uptake (Stern
et al., 1949). L-glu’s excitatory effect was later discovered as well
(Fonnum, 1984; Curtis et al., 1960, 1959). L-glu release from pre-
synaptic vesicles occurs via Ca²+-dependent exocytosis triggered
by voltage-gated calcium channels (Meldrum, 2000; Anderson
and Swanson, 2000). With vesicular L-glu concentrations reaching
∼100 mM, the release of a single vesicle generates an excitatory
post-synaptic potential (EPSP) (Meldrum, 2000). Virtually all
nervous system cells express at least one glutamate receptor subtype
(Vernadakis, 1996; Shelton and McCarthy, 1999; Bergles et al., 2000).
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Studies involving Glutamate receptor-mediated mechanisms have
not only led to the development of treatments for Glutamate-
related neurodegenerative diseases such as Alzheimer’s, Parkinson’s
disease, and multiple sclerosis, but also a basic understanding
of synapses and how the brain controls structure-function
relationship from molecular, and cellular levels that have
repercussions in cognitive processes (Pizzi et al., 2005).

Glutamate receptors

Glutamate receptors comprise two structurally distinct families
of transmembrane proteins: iGluR and mGluRs (Watkins and
Evans, 1981; Barnes and Henley, 1992). IGluR facilitate rapid
synaptic signaling. Structurally, iGluRs function as tetrameric
ligand-gated ion channels with distinct pharmacological profiles
and electrophysiological characteristics (Traynelis et al., 2010).
Excessive or prolonged activation of iGluRs and other post-
synaptic signaling components can induce excitotoxicity, a process
strongly linked to neurodegenerative diseases and nervous system
injuries (Danbolt, 2001; Cortese and Phan, 2005; Bains and
Hall, 2012). mGluRs, in contrast, are G-protein-coupled receptors
(GPCRs) that activate downstream signaling cascades or modulate
cation influx upon L-glu binding, regulating synaptic efficacy and
plasticity (Conn and Pin, 1997; Tikhonov and Magazanik, 2009).
These receptors are widely distributed in the central and peripheral
nervous systems and have been implicated in maintaining
homeostasis across multiple organ systems (Niswender and Conn,
2010; Julio-Pieper et al., 2011).

Extensive pharmacological research conducted between 1980
and 2000 established the canonical classification system for iGluRs,
dividing them into three distinct functional categories: (1) AMPA-
sensitive receptors, activated by α-amino-3-hydroxy-5-methyl-
isoxazole-propionic acid (GluA1-GluA4), (2) kainate-sensitive
receptors, activated by kainic acid (GluK1-GluK5), (3) NMDA-
sensitive receptors, activated by N-methyl-D-aspartate (GluN1,
GluN2A-D, GluN3A-B), and the orphan glutamate receptors (4)
(GluD1 and GluD2) that formed a separate phylogenetic cluster
classified as Delta receptors due to their unique sequence features
and lack of known agonists, bringing the total to four major groups
(Watkins and Evans, 1981; Yamazaki et al., 1992; Watkins et al.,
1990; Stevens, 1986; Simon et al., 1976; Nowak et al., 1984; Lomeli
et al., 1993; Honore et al., 1982; Henley et al., 1989) (Figure 1).

As mentioned above, excitatory post-synaptic currents were
initially categorized according to their kinetic and pharmacological
properties, distinguishing between currents mediated by AMPA-,
kainate-, and NMDA-type glutamate receptors (Watkins and
Evans, 1981). However, there was a major drawback to this method
of classifying glutamate receptors. There are subunits classified
under glutamate receptors that do not bind glutamate. Subunits
GluN3A and GluN3B of the NMDA family do not bind L-glu, and
NMDA receptors consisting of them are insensitive to glutamate
and instead bind glycine to form excitatory glycinergic receptors
(Yao et al., 2008; Ulbrich and Isacoff, 2008; Chatterton et al.,
2002; Al-Hallaq et al., 2002). Also, five of the 18 vertebrate iGluR
subunits, GluN1, GluN3A, GluN3B, GluD1, and GluD2, also bind
glycine other than glutamate, while also endogenously interacting
with the D-serine in multiple brain regions (Naur et al., 2007;

Kumar et al., 2023; Hansen et al., 2021; Alberstein et al., 2015).
Hence, now the classification has shifted to a more sequence
homology-based approach.

The classes have different electrophysiological characteristics as
well. AMPARs display rapid desensitization kinetics, while kainate
receptors undergo more prolonged desensitization (Mosbacher
et al., 1994; Erreger et al., 2004; Castillo et al., 1997). NMDARs
possess unique activation requirements, demanding concurrent
conditions: (1) glycine/serine binding, (2) pre-synaptic L-glu
release, and (3) post-synaptic membrane depolarisation, removing
a magnesium block from the channel pore, allowing the exchange
of ions. This triple-gating mechanism establishes NMDARs as
molecular coincidence detectors, particularly crucial for initiating
molecular reorganization important for persistent long-term
changes like LTP. They also (Tang et al., 1999; Kleckner and
Dingledine, 1988; Johnson and Ascher, 1987). Recombinant delta
receptors don’t directly open on binding of agonists but have been
shown to conduct depolarising current when induced by mGluRs
(Wo and Oswald, 1995).

Ionotropic glutamate receptors:
structure, function, and assembly

The molecular architecture of iGluR subunits consists
of four distinct structural domains: (1) an extracellular N-
terminal/amino-terminal domain (NTD/ATD), (2) an extracellular
ligand-binding/agonist-binding domain (LBD/ABD), (3) a
transmembrane domain (TMD), and (4) an intracellular carboxyl-
terminal domain (CTD) (Sobolevsky et al., 2009; Laube et al.,
1998) (Figure 2). The LBD forms through the interaction of
two discontinuous polypeptide segments (S1 and S2) that flank
the membrane-spanning regions. The TMD contains three
transmembrane helices (M1, M3, M4) and a membrane-reentering
loop (M2), while the CTD mediates subcellular targeting and
regulatory post-translational modifications (Warnet et al., 2021;
Evans et al., 2019; Anggono and Huganir, 2012). Ligand binding
induces a conformational change in the LBD that mechanically
couples to the TMD, causing structural rearrangements that
open the ion conduction pathway. This gating mechanism,
along with the presence of key amino acids that make up
the selectivity filter of the channel pore, permits selective
permeation of Na+, K+, and Ca2+ ions across the membrane
(Twomey and Sobolevsky, 2018).

iGluRs function as tetrameric assemblies (Sobolevsky et al.,
2009; Laube et al., 1998; Rosenmund et al., 1998; Nakagawa
et al., 2005; Mano and Teichberg, 1998) with strict subunit
selectivity, ensuring receptors form exclusively from members of
the same pharmacological class (Monyer et al., 1992; Leuschner
and Hoch, 1999; Kuusinen et al., 1999; Ayalon and Stern-Bach,
2001; Ayalon et al., 2005). This assembly principle maintains
the functional specificity of AMPA, kainate, NMDA, and Delta
receptor subtypes.AMPARs have flexible assembly properties, with
GluA1-GluA4 subunits capable of forming both homomeric as
well as heteromeric complexes (Hollmann and Heinemann, 1994;
Herguedas et al., 2013; Bowie, 2012). AMPARs comprise both
calcium-impermeable (CI-AMPARs) and calcium-permeable (CP-
AMPARs) subtypes, with CP-AMPARs distinguished by their lack
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FIGURE 1

Structural and functional diversity of iGluR subtypes and their respective permeability to ions (Watkins and Evans, 1981; Barnes and Henley, 1992;
Traynelis et al., 2010; Lomeli et al., 1993), along with the downstream signaling of mGluRs upon binding of mGluRs (Conn and Pin, 1997; Coutinho
and Knopfel, 2002). “*” indicates special conditions for the conduction of these ions.

of GluA2 subunits. GluA2-lacking AMPARs are permeable to
calcium, whereas those containing GluA2 subunits are calcium-
impermeable (Burnashev et al., 1992). But recently it has been
shown that GluA2-containing AMPARs are also permeable to
calcium (Miguez-Cabello et al., 2025). CP-AMPARs exhibit
unique biophysical and pharmacological signatures, enabling
their functional identification. Studies have demonstrated their
critical involvement in multiple forms of synaptic plasticity, like
LTP (Park et al., 2019), LTD (Sanderson et al., 2016), and
homeostatic plasticity (Sutton et al., 2006; Sanderson et al.,
2018). In contrast, NMDARs exhibit strict subunit requirements:
functional channels necessitate two obligatory GluN1 subunits
combined with either two GluN2 subunits or a combination
of GluN2 and GluN3 subunits (Ulbrich and Isacoff, 2008,
2007; Schorge and Colquhoun, 2003). Kainate receptors display
intermediate assembly characteristics: GluK1-GluK3 subunits can
form homomers or heteromers among themselves, while GluK4
and GluK5 require co-assembly with at least one GluK1-3 subunit
for functionality (Reiner et al., 2012; Meyerson et al., 2016;
Jaskolski et al., 2005; Herb et al., 1992; Cui and Mayer, 1999).
The orphan Delta receptors GluD1 and GluD2 subunits assemble
into homotetrameric complexes that function as trans-synaptic
adhesion molecules and ion channels (Naur et al., 2007; Mayat et al.,
1995; Kohda et al., 2000).

Metabotropic glutamate receptors

Eight members of the G-protein-coupled mGluR family
have been identified to date, namely mGluR1–8. Based on
pharmacological properties, second messenger coupling, and
sequence homology, mGluRs are classified into three groups:
Group I (mGluR1 and mGluR5), Group II (mGluR2 and mGluR3),
and Group III (mGluR4, mGluR6, mGluR7, and mGluR8) (Yin
et al., 2014; Anwyl, 1999) (Figure 1). Group I mGluRs primarily
signal through Gq/G11 proteins, activating phospholipase Cβ,
whereas Group II and Group III mGluRs couple to Gi/Go proteins
(Conn and Pin, 1997; Coutinho and Knopfel, 2002; Anwyl, 1999;
Valenti et al., 2002; Hermans and Challiss, 2001).

Group I mGluRs typically couple to Gq/G11 to activate
phospholipase Cβ, triggering phosphoinositide hydrolysis that
results in the formation of inositol 1,4,5-trisphosphate (IP3)
and diacylglycerol (DAG). This canonical pathway causes the
release of intracellular calcium from the ER and activates protein
kinase C (PKC). An increase in intracellular calcium also induces
inhibitory post-synaptic potentials (IPSPs) via Ca²+-activated
K? conductance (Fiorillo and Williams, 1998). However, these
receptors are now known to regulate additional signaling cascades
beyond Gq, including pathways mediated by Gi/o, Gs, and G
protein-independent mechanisms (Hermans and Challiss, 2001).
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FIGURE 2

General architecture of iGluRs. (a) Cartoon depicting general iGluR architecture with the domains NTD, LBD, and TMD. (b) Subunit polypeptide chain
linear representation. (c) 3D structure of GluA2 homomer [PDB ID: 3KG2, (Sobolevsky et al., 2009)] with the different subunits marked. (d) The NTD,
viewed from the outside of the cell toward the cytosol. (e) The TMD, viewed from the cytosol toward the exterior of the cell, with the channel pore
visible.

Their downstream effects vary by cell type, modulating effectors
like phospholipase D, multiple protein kinases like casein kinase 1,
cyclin-dependent kinase 5, Jun kinase, and key pathways related to
plasticity, particularly the MAPK/ERK and MTOR/p70 S6 kinase
cascades (Page et al., 2006; Li et al., 2007; Hou and Klann, 2004).
Group II and III mGluRs instead primarily signal through Gi/o
proteins, which typically inhibit adenylyl cyclase while directly
modulating ion channels and other effectors via the release of the G
protein subunits Gβγ. Recently, emerging evidence has shown that
these receptors also engage in other signaling pathways, including
MAPK and PI3 kinase activation (Iacovelli et al., 2002). Even
though mGluRs are capable of facilitating synaptic communication
by generating prolonged excitatory post-synaptic depolarisations,
their principal function lies in fine-tuning neural activity, where
they adjust cellular responsiveness, information transfer across
synapses, and adaptive changes in synaptic strength.

Structurally, mGluRs are dimeric and possess an extensive
extracellular N-terminal region known as the Venus flytrap domain
(VFD). This structural element harbors the L-glu binding pocket
and plays an essential role in both homomer and heterodimer
formation among these receptors (Pin et al., 2003; Muto et al.,
2007; Kunishima et al., 2000; Jingami et al., 2003) (Figure 3).
Ligand binding induces conformational changes that propagate
from the Venus flytrap domain (VFD) through cysteine-rich
domains (CRDs) to the seven-transmembrane domain and the
C-terminal tail (Muto et al., 2007; Rondard et al., 2006). The C-
terminal domains of mGluRs play crucial roles in regulating G

protein coupling. These regions also undergo alternative splicing,
phosphorylation-dependent regulation, and modulatory protein-
protein interactions in several mGluR subtypes (Niswender and
Conn, 2010). MGluRs exhibit broad expression across the central
nervous system, present in numerous major brain areas. They
show precise localization patterns, occupying both synaptic and
extrasynaptic compartments within neuronal and glial cells. They
have also been associated with multiple neuropsychiatric disorders,
including Fragile X syndrome, schizophrenia, and autism spectrum
disorder (Bhattacharyya, 2016).

Evolution of glutamate as a major
excitatory neurotransmitter

The seminal work of Curtis, Phillis, and Watkins demonstrated
L-glu’s capacity to induce depolarization in central neurons,
establishing its potential as the primary excitatory neurotransmitter
in the CNS (Moroz and Romanova, 2021). Evolutionarily, L-glu,
ATP, and nitric oxide (NO) acquired neurotransmitter functions
early in cellular evolution, with these signaling roles emerging
concurrently in primitive cells (Moroz, 2009; Bennett et al.,
2009). Substantial evidence indicates that L-glu synthesis occurred
on primordial Earth (>3.5–4 billion years ago) under reducing
atmospheric conditions, driven by diverse energy inputs. L-
glu represents the predominant metabolic intermediate across
bacterial and mammalian systems, achieving intracellular levels
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FIGURE 3

General architecture of mGluRs. (a) Cartoon depicting general mGluR architecture with the VFD, CRD, and the seven-transmembrane domain. (b)
Subunit polypeptide chain linear representation. (c) 3D structure of mGluR2 homomer (PDB ID:7MTQ, Seven et al., 2021) with the different subunits
marked. (d) The NTD/VMD, viewed from the outside of the cell toward the cytosol. (e) The seven-transmembrane domain, viewed from the cytosol
toward the exterior of the cell.

of 96 mM in E. coli (Park et al., 2016), 44 mM in yeast, and
64 mM in immortalized baby mouse kidney (iBMK) epithelial cells
(Ohwada and Sagisaka, 1987). Its pool size exceeds 20–40% of
the total cellular metabolite content. Within bacterial biofilms,
metabolic and electrical signaling networks emerge, with L-glu
serving as a critical mediator between central and peripheral cell
populations (Moran et al., 2015; Liu et al., 2015). L-glu functions
as a versatile nutrient source, supplying carbon, nitrogen, and
energy, and consequently, nearly all prokaryotic organisms require
L-glu detection to maintain ecological competitiveness across
diverse environments.

Structural evolution of iGluRs

Potassium channels likely served as the evolutionary precursors
for glutamate receptors, representing a crucial exaptation event.
Phylogenetic analyses indicate that potassium channels predate
most other ion channel families, evidenced by the remarkable
conservation of their transmembrane domains (Yu et al., 2005;
Miller, 2000; Arinaminpathy et al., 2003). The co-dependence of
potassium and L-glu metabolism supports the proposed dual-
origin model for iGluRs suggesting their emergence from (i)
ancestral potassium channels and (ii) a nutrient-sensing ligand-
binding domain (Tikhonov and Magazanik, 2009; Ger et al.,
2010; Felder et al., 1999; De Bortoli et al., 2016). It has been
proposed that this complex architecture emerged from the fusion of
multiple prokaryotic genes, each adding new domains. The domain
organization of iGluRs is conserved across eukaryotes (Alberstein
et al., 2015; Scheepers et al., 2016), arising from the fusion of
prokaryotic genes (e.g., KcsA + LAOBP). This modular evolution

enabled specialization for L-glu signaling, while retaining ancestral
roles in nutrient sensing (Chen et al., 1999) (Figure 4).

Eukaryotic iGluRs share an evolutionary lineage with bacterial
GluR0-type potassium channels (Arinaminpathy et al., 2003;
Schonrock et al., 2019; Kuner et al., 2003). This homology extends
to viral K-channel homologs, suggesting lateral gene transfer played
a role in iGluR evolution. Prokaryotic iGluR-like structures are
found in bacteria, cyanobacteria, and archaea, though these lack
the NTD, M4 segment, and CTD present in eukaryotic iGluRs
(Tikhonov and Magazanik, 2009; Felder et al., 1999; De Bortoli
et al., 2016). The transmembrane domain (TMD) of iGluRs,
particularly M1, M2, and M3, shows high structural similarity to
the bacterial potassium channel KcsA (K channel of Streptomyces
A) (Schrempf et al., 1995; Meuser et al., 1999; Chiu et al., 1999).
This supports the hypothesis that GluR0 evolved from the insertion
of KcsA between the two lobes of a periplasmic binding protein
(LAOBP) (Jatzke et al., 2002; Forde and Lea, 2007). Notably, GluR0
remains K-selective, while eukaryotic iGluRs are non-selective
cation channels (Kumar et al., 2009; Burnashev et al., 1995).
The bilobed LBD (S1/S2) of the Ligand-Binding Domain (LBD)
originated from prokaryotic periplasmic substrate-binding proteins
(SBPs), particularly the lysine-arginine-ornithine (LAOBP) and
leucine-isoleucine-valine (LIVBP) binding families (Jatzke et al.,
2002; Forde and Roberts, 2014).

The N-terminal domain (NTD) facilitates receptor
tetramerization in the ER (Sia et al., 2007) and helps with
interactions with N-cadherins, pentraxins, and ephrins
(Saglietti et al., 2007; Paoletti et al., 2000). It also provides
binding sites for regulatory ions/small molecules (Masuko
et al., 1999; Ehlers et al., 1998).The Transmembrane Segment
M4 provides cytoplasmic-facing C-termini, critical for
post-translational modifications (Bayés et al., 2014) and
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FIGURE 4

Evolution of the vertebrate iGluR through fusion of multiple prokaryotic genes. A LAOBP (lysine-arginine-ornithine-binding periplasmic protein),
forming the ligand-binding domain (LBD), fused with a KcsA potassium channel. Separately, a prokaryotic iGluR (GluR0) fused with a LIVBP
(leucine-isoleucine-valine-binding periplasmic protein) and acquired sequences encoding the M4 transmembrane segment and C-terminal domain
(CTD), ultimately yielding the domain architecture of vertebrate iGluRs. These fusion events may not have occurred in the depicted sequence. The
bottom shows the phylogenetic tree of iGluR-containing organisms, with estimated lineage divergence times annotated below.

scaffolding protein interactions (Salussolia et al., 2011; Husi
et al., 2000). It also helps with tetramer stabilization via
conserved residues interacting with M1/M3 (Yuan et al.,
2005). The M3 domain contains a highly conserved gating motif,
maintaining a closed state in eukaryotes (Kohda et al., 2000;
Chater and Goda, 2022), unlike bacterial GluR0s, which are
passively open.

Major base substitutions also exist between humans and
chimpanzees, including GluN3A-D71G (loss of myristoylation)
and GluN3B-R727H (gain of phosphorylation), both directly
affecting synaptic plasticity, LTP, and LTD (Goto et al., 2009).

Role in synaptic transmission

Synaptic plasticity is defined by the experience-driven
alteration of synaptic transmission efficacy at synapses, which
is a fundamental mechanism of neural circuit adaptation and
information processing. Synaptic plasticity is of two main types:
short-term synaptic plasticity (STP), which lasts for tens to
hundreds of milliseconds to several minutes and results in a
temporal modification of synaptic efficiency, and LTP, which
can have a duration of from minutes to hours, days, or even
months. LTD is another form of synaptic plasticity that works

antagonistically to LTP, resulting in a progressive weakening of
synapses (Citri and Malenka, 2008). The concept of neuronal
circuits was first introduced over a century ago by Spanish Nobel
laureate Santiago Ramón y Cajal in his book, “Histology of the
nervous system of man and vertebrates.” Histology of the nervous
system of man and vertebrates (Ramón y Cajal, 1995), Oxford
University Press. He identified the axonal growth cone and
experimentally disproved the reticular theory (which posited the
nervous system as a continuous network), instead demonstrating
that neurons were contiguous yet separated (Jones, 1994). This
work presented concrete evidence for the “neuron theory,” now
widely regarded as the foundation of modern neuroscience.

This foundation was expanded in the late 1940s by Donald
Hebb, who theorized that associative memories emerge through
synaptic strengthening when pre-synaptic activity coincides with
post-synaptic firing (Hebb, 2005). This mechanism of synaptic
plasticity, which encodes memories by detecting coincident events,
provides a compelling cellular explanation for behavioral learning
paradigms like the classical Pavlovian conditioning (Pavlov, 2010).
Growing evidence suggests that impaired synaptic plasticity may
underlie many neuropsychiatric disorders (Citri and Malenka,
2008). These will be discussed in the latter parts of the review.

The majority of excitatory synapses in the mammalian brain
are glutamatergic, where pre-synaptic activity triggers the fusion
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of glutamate-packed vesicles. The released L-glu diffuses across
the ∼20 nm synaptic cleft and binds to post-synaptic glutamate
receptors (Kerchner and Nicoll, 2008). AMPARs facilitate fast
excitatory L-glu signaling in the mammalian CNS by gating rapid
sodium channel activity. These receptors dynamically adjust to
neuronal activity patterns through swift insertion into or removal
from post-synaptic membranes. Synaptic strength strengthens
during LTP through increased AMPAR incorporation, while LTD
weakens connections via receptor removal (Huganir and Nicoll,
2013).

The discovery of silent synapses fuelled the search for the
role of AMPARs in Early LTP. Silent synapses in the CA1
region of the hippocampus are characterized by the absence of
detectable excitatory post-synaptic currents (EPSCs) at resting
membrane potential, despite receiving pre-synaptic L-glu release.
This phenomenon is primarily attributed to synapses containing
NMDARs but lacking functional AMPARs under basal conditions.
However, these synapses can be functionally “unsilenced” upon
post-synaptic depolarisation and induction of NMDA, leading to
insertion of AMPARs, which allows previously silent synapses to
participate in neuronal communication (Makino and Malinow,
2009; Lledo et al., 1998; Liao et al., 1995; Isaac et al., 1995).
These silent synapses play a crucial role in synaptic plasticity and
are particularly abundant during early development, decreasing in
number with maturation (Lüscher et al., 1999).

AMPAR insertion occurs primarily in perisynaptic zones
rather than directly at the synaptic site. From these regions, the
receptors are incorporated into the membrane and subsequently
diffuse laterally to reach synaptic locations (Penn et al., 2017).
This mechanism allows for controlled delivery and integration of
AMPARs into the post-synaptic density during synaptic plasticity.
The GluA1 subunit is especially crucial for the activity-driven
insertion of AMPARs during LTP. AMPARs exhibit high mobility,
freely diffusing in and out of synapses until being anchored by PDZ
domain-containing scaffolding proteins (primarily PSD-95) at the
post-synaptic density. This is followed by synaptic entry via lateral
diffusion (Kim et al., 2014).

Late-LTP involves new protein synthesis, including AMPAR
subunits and auxiliary proteins, to sustain this now-established
synaptic strengthening. Dendritic spines enlarge, and new synapses
form, increasing the number of AMPARs (Penzes et al., 2008;
Okuno et al., 2012; Murakoshi et al., 2011). In LTD, AMPARs are
internalized via endocytosis, weakening synapses (Fiuza et al., 2017;
Ehlers et al., 2007; Chowdhury et al., 2006).

LTP and LTD represent Hebbian synaptic plasticity
mechanisms that function at single synapses to store particular
information. Alternatively, homeostatic plasticity describes
neurons’ capacity to maintain network stability by globally
adjusting synaptic strength upward or downward to prevent
either complete silence or excessive activity (Turrigiano et al.,
1998; Turrigiano, 2012; Pozo and Goda, 2010). Like Hebbian
synaptic plasticity, homeostatic scaling regulates synaptic strength
by adjusting AMPAR surface expression. During scaling up,
synaptic levels of GluA1-containing AMPARs rise, including both
GluA1 homomers and GluA1/GluA2 heteromers (Soares et al.,
2013; Goel et al., 2011; Diering et al., 2014). Prolonged neuronal
activity suppression (via TTX) multiplicatively increases synaptic
AMPAR levels, with GluA1 exhibiting greater upregulation

(scaling factor: 1.30) than GluA2 (1.16), indicating subunit-
specific regulation in homeostatic plasticity (Venkatesan et al.,
2020). During homeostatic scaling down, AMPARs containing
GluA1 subunits are selectively internalized from synapses
(Widagdo et al., 2017).

Synapses are highly dynamic structures, and AMPARs
exhibit continuous movement even in the absence of neuronal
activity (Nair et al., 2013; Archibald et al., 1998; Fukata
et al., 2013). These receptors undergo constitutive trafficking
between endosomes and the cell surface, with a half-life of
1–2 days (Passafaro et al., 2001; Ojima et al., 2021; O’Brien
et al., 1998). The surface delivery of AMPARs is subunit-
specific (Tian et al., 2015; Shi et al., 2001) and regulated by
accessory proteins, such as transmembrane AMPAR regulatory
proteins (TARPs).

Moving forward, the review will be focused specifically on
AMPARs due to their sheer abundance and importance in
excitatory synaptic transmission.

AMPAR

AMPA Glutamate receptors are the primary excitatory
neurotransmitter in the brain, mediating rapid signaling
throughout the brain. AMPAR is composed of four subunits
(GluA1-GluA4) and assembles to form tetrameric ion channels
with two-fold symmetry. Each of these subunits contributes
differently to receptor trafficking, selectivity, and kinetics (Miguez-
Cabello et al., 2025). The pore-forming subunits (GluA1-GluA4)
of AMPAR are made up of four distinct domains, the extracellular
N-terminal domain (NTD) which functions for subunit assembly,
synaptic localization, and receptor clustering (Rossmann et al.,
2011; Kamalova and Nakagawa, 2021), the Ligand Binding Domain
(LBD) which functions to bind L-glu and channel gating followed
by the Transmembrane Domain (TMD), which is composed of
three helix (M1, M3, and M4) and one re-entrance helix-loop
(M2), this TMDs function for ion conductance by the AMPAR
(Kamalova and Nakagawa, 2021; Hollmann et al., 1994), and finally
the fourth domain is a cytoplasmic C-terminal domain (CTD)
which is involved in controlling receptor anchoring, intracellular
signaling, and trafficking (Kamalova and Nakagawa, 2021; Kim
and Sheng, 2004). Based on the permeability of AMPAR for
Calcium (Ca2+), they are functionally grouped into two types:
Ca2+ permeable or Ca2+ impermeable AMPAR. The permeability
of AMPAR for calcium is determined by the presence or absence
of Q/R edited GluA2 subunit. GluA2-containing AMPARs that
are Q/R site–edited predominantly in the central nervous system
and are impermeable to Ca2+ (Miguez-Cabello et al., 2025;
Seeburg and Hartner, 2003). Dysregulation of Q/R site editing in
GluA2R has also been linked to the development of AD, both in
human and mouse models (Wright et al., 2023; Khermesh et al.,
2016). The number of AMPARs at any given synapse is subject
to regulation by neuronal activity. The retention of AMPAR at
the synaptic site involves three distinct steps: 1. exocytosis of
the intracellular AMPARs, 2. Lateral diffusion of these receptors
toward synaptic sites and 3. Anchoring at the synaptic site
through interaction with scaffolding proteins (Opazo and Choquet,
2011).
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Auxiliary subunits associated with
AMPARs

Although the native AMPAR complex is composed of the
assembly of four GluA subunits, the functional AMPAR has
auxiliary subunits associated with it. Some of the well-studied
auxiliary subunits include TARPs (Tomita et al., 2005; Chen et al.,
2000), cornichons (CNIHs) (Schwenk et al., 2009), CKAMP44
(Shisa9) (von Engelhardt et al., 2010), Shisa6 (Klaassen et al., 2016),
SynDIG1/Prrt1, SynDIG4 (Kalashnikova et al., 2010), and GSG1L
(Perozzo et al., 2023) as shown in Figure 5. These auxiliary subunits
are known to add functional diversity for channel gating kinetics
and receptor localization.

TARPs

The two most abundant AMPAR auxiliary subunits in the
hippocampus, cortex, and striatum are TARPs and CNIHs.
Structurally, TARP proteins are claudin-like proteins that were
identified as having protein homology to the γ-subunits of voltage-
dependent calcium channels (VDCC), which are known to regulate
the function of AMPARs in the post-synaptic membrane (Twomey
et al., 2019a). Based on the sequence and function, TARPs are
classified into three types: Type 1a (γ2, γ3), Type 1b (γ4, γ8), all
of which are positive modulators of AMPAR, while Type 2 (γ5,
γ7) exhibit distinct and diverse functions. In situ hybridization and
western blotting experiments by Tomita et al. (2003) have shown
that TARPs show a regional distribution in the brains, the highest
level of TARP γ2 occurred in the cerebellum, γ-3 in the cerebral
cortex, γ-4 in the olfactory bulb, and γ-8 in the hippocampus
(Tomita et al., 2003). The primary point of interaction between
AMPAR–TARP is TMD, where auxiliary subunits act as a scaffold
around the AMPAR (Shaffer et al., 1987). TARPs subunits are
known to regulate various properties of AMPAR, such as mean
channel conductance, channel kinetics (Shaffer et al., 1987; Priel
et al., 2005), polyamine sensitivity (Soto et al., 2007), opening
probability (Priel et al., 2005), localization, and trafficking of
AMPAR to PSD95 (Coombs and Cull-Candy, 2009). Experimental
evidence from Opazo et al. (2010) has shown that phosphorylation
of the C-terminal tail of Stargazin by CAMKII causes the diffusional
trapping and accumulation of AMPARs at the synaptic site,
enhancing the surface localization of AMPAR (Opazo et al., 2010).
Mechanistically, they found that phosphorylation elongates the
length of the C-terminal tail, facilitating binding even to the
farthest-located AMPAR and PSD-95 contributing to the increased
synaptic transmission (Hafner et al., 2015). Yamazaki et al. (2004)
also found that the co-expression of GluA2 with stargazing
enhanced the export of GluA2 from the Endoplasmic Reticulum
(ER) and increased the surface expression of GluA receptors.

The assembly of AMPARs begins in the endoplasmic reticulum
(ER), where GluA subunits first form homo or hetero dimers
to form tetramers. Experimental evidence from Bedoukian et al.
(2006) has given compelling evidence that TARPs associate with
AMPARs in the ER at this early stage (Bedoukian et al., 2006).
AMPARs undergo various post-translational modifications assisted
by TARPs and interact with additional trafficking-associated

proteins such as nPIST (Cuadra et al., 2004), MAP1 LC2 (Ives et al.,
2004), and AP-4 (Matsuda et al., 2008), which are believed to assist
in directing the receptor complex to the cell surface via vesicular
transport. Co-immunoprecipitation experiments by Tomita et al.
(2003) showed that the AMPARs co-immunoprecipitated with
stargazing, suggesting that Stargazin strongly interacts with
AMPAR. The PDZ-binding domains of type I TARPs, type II lacks
it, located toward COOH of the terminus, interact with PSD-95
and immobilizes TARPs to the post-synaptic membrane, causing
AMPARs to accumulate at post-synaptic sites (Coombs and Cull-
Candy, 2009), contributing to the synaptic plasticity (Heine et al.,
2008) and formation of macromolecular condensate, liquid-phase
separation (Zeng et al., 2019). The PDZ-binding domain of TARP
has a consensus site which acts as a substrate for various kinases,
and phosphorylation of this site is known to disrupt the interaction
with PSD-95, preventing synaptic clustering of AMPARs (Choi
et al., 2002; Chetkovich et al., 2002).

Stargazin was first discovered in 1990 in A/J inbred mice line
at the Jackson Laboratory. Mice homozygous for the autosomal
recessive mutant form of the Cacng2 gene in chromosome 15
displayed a distinct clinical behavior of frequently looking upward,
so the researchers named the mutation “stargazer” (Noebels et al.,
1990). The ectodomain of Stargazin is known to influence the
gating of AMPAR, thus shaping the post-synaptic current. To
quantify the glutamate-evoked current in the presence of Stargazin,
Tomita et al. (2005) injected varying amounts of Stargazin
and GluA1 in oocytes and measured glutamate-evoked currents.
They found that GluA1, which shows no detectable current on
its own, produces nearly maximal current when co-expressed
with stargazin. Furthermore, they investigated whether stargazin
influences both receptor trafficking and channel properties. To
quantify the surface expression of GluA1, they tagged the
hemagglutinin (HA) epitope into the extracellular region of GluA1.
They observed that when oocytes were injected with 2, 1, or
0.1 ng of GluA1 cRNA, both the amount of GluA1 on the cell
surface and the currents triggered by L-glu were reduced, while
co-injection of stargazin cRNA with 0.1 ng GluA1 significantly
enhanced glutamate-evoked currents. Notably, the increase in
current was substantially greater than the increase in GluA1 surface
expression, suggesting that stargazin enhances GluA1 function
through a mechanism that is not solely dependent on receptor
trafficking (Tomita et al., 2005).

Structurally, TARPs are composed of four transmembrane
domains (TM1-TM4), with an intracellular N-terminal domain
(NTD) preceding TM1. The extracellular domain is composed
of β-strands, an extracellular helix, four flexible loops, and an
intracellular C-terminal Domain (CTD), as shown in Figure 5. The
TM3 and TM4 domain of TARPs directly interacts with M1 and M4
of adjacent AMPAR subunits (Twomey et al., 2016). As described
earlier, AMPAR has a twofold symmetry which gives rise to two
distinct TARP binding sites referred to as A’/C’ and B’/D’ sites (Zhao
et al., 2016). This site has no relation to the A/C and B/D subunit
positions defined within the AMPAR tetramer. The A’/C’ binding
sites are located beneath the ABD dimers and are more sterically
constrained compared to the B’/D’ binding sites, which are located
below the ABD dimers. As a result, the specific binding position
of TARPs within the AMPAR complex may influence how they
modulate receptor function (Hansen et al., 2021).
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FIGURE 5

AMPARs auxiliary subunits: (A) TARP has four transmembrane domains, with both N and C-terminal domains facing the cytoplasm. The extracellular
domain is composed of β-strands, an extracellular helix, and four flexible loops. (B) GSG1L has four transmembrane domains labeled as TM (1–4).
Both the N and C termini of GSG1L face the cytoplasm, with the beta-sheet facing the extracellular space. (C) CNIH’s protein has four
transmembrane helices, with both N and C-terminal facing the extracellular space. (D) CKAMP has a single transmembrane domain, the N-terminal
faces the extracellular space, and the C-terminal faces the cytoplasm. (E) SynDIG4 has a single transmembrane domain and a membrane-associated
domain facing the extracellular space.

TARPs act as a positive modulator of synaptic transmission;
they act by slowing the desensitization and deactivation kinetics of
AMPARs. The residues in the lower lobe of the AMPAR ABD are
found to be critical for γ-2 mediated gating modulation and are
hypothesized to interact with the extracellular domain of TARPs,
slowing desensitization kinetics of GluA2 AMPARs (Twomey et al.,
2019b). In type I TARPs, the residues within the β1–β2 loop of
the extracellular domain are also responsible for slowing receptor
desensitization (Hawken et al., 2017).

Germ cell-specific gene 1-like
(GSG1L) protein

GSG1L is another widely studied auxiliary subunit known to
interact with GluA1 and GluA2 subunits of AMPAR (Keifer et al.,
2017). GSG1L shows some structural similarity to TARPs, as shown
in Figure 5. GSG1L expresses during later phase of development
and is expressed in region specific manner in brain, GSG1L can
either co-assemble with TARPs, Cornichons or as the sole auxiliary
subunits. GSG1L slows the recovery of AMPARs from desensitized
state through evolutionarily-conserved allosteric site unique to
GSG1L (Perozzo et al., 2023). Schwenk et al. (2012) also found
that this protein is associated with GluA2- or GluA4-containing
AMPARs in dendritic spines of hippocampal pyramidal neurons,
giving a clue that these proteins may possibly have a role in
synaptic transmission. Shanks et al. (2012) found that GSG1L
negatively modulates synaptic transmission; it works by stabilizing
the desensitized state (Schwenk et al., 2012). Studies have shown
that the two GSG1L subunits bind to the M1 and M4 of adjacent
AMPARs, preferentially to the B0/D0 site (Twomey et al., 2019a,
2017).

Cornichon (CNIHs)

Proteomic analyses have identified four cornichon family
proteins (CNIH1-4 4); however, only CNIH2 and CNIH3 have been
shown to associate with AMPAR (AMPAR) subunits (Schwenk
et al., 2009). Herring et al. (2013) showed that CNIH-2/-3
selectively bind to GluA1 in hippocampal neurons, enhancing
surface expression of GluA1A2 receptors (Herring et al., 2013).
Cornichon has four transmembrane domains with both N and
C termini facing the extracellular space, as shown in Figure 5.
CNIH2 is expressed abundantly in the Hippocampus, striatum,
and cortex (Schwenk et al., 2014). Previous studies in Drosophila,
chickens, and cultured cells have characterized cornichon and its
homologs as cargo exporters in the endoplasmic reticulum (ER)
for members of the transforming growth factor α (TGFα) family
(Castro et al., 2007; Bökel et al., 2006). Based on these findings, Shi
and colleagues examined the potential role of CNIH2 in AMPAR
trafficking. Their study demonstrated that CNIH2 facilitates the
export of AMPARs to the cell surface (Shi et al., 2010). Their
findings were further supported by Harmel et al. (2012) who
found that the overexpression of CNIH-2 in HeLa and primary
neurons increased the functional surface population of AMPARs.
Investigation of the underlying mechanism unrevealed that the
CNIH-2 subunits continuously shuttle between the endoplasmic
reticulum (ER) and the Golgi apparatus. During this cycle, they
pick up cargo proteins in the ER and facilitate their selective export
through a coat protein complex II (COPII)-dependent mechanism
(Harmel et al., 2012). CNIH3 and TARPs both bind to the surface
formed by the M1 and M4 helices of neighboring AMPAR subunits,
resulting in competition between them for the same binding site;
this reduces the number of CNIH that can potentially bind with
AMPARs (Herring et al., 2013). Like TARPs, CNIH proteins also
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directly modulate AMPAR function by enhancing L-glu sensitivity
and prolonging both deactivation and desensitization (Schwenk
et al., 2009; Coombs et al., 2012).

Cystine-knot AMPA
receptor-modulating proteins
(CKAMPs)

CKAMPs constitute a family of four proteins, namely
CKAMP39 (shisa8), CKAMP44 (shisa9), CKAMP52 (shisa6),
and CKAMP59 (shisa7). Structurally, they are classified as type
I transmembrane proteins, with the cysteine-rich N-terminal
domain oriented toward the extracellular space and the C-terminal
domain, with a PDZ type II binding motif, facing the cytoplasm.
The extracellular cysteine-rich domain and short stretch of 20
amino acids immediately downstream of the transmembrane
domain is known to interact and modulate AMPARs (Khodosevich
et al., 2014), while the PDZ type II binding motif act as anchoring
site proteins for such as PSD95, GRIP1, MPP5, PICK1 and Lin7b
(Klaassen et al., 2016; Khodosevich et al., 2014; Kunde et al.,
2017). CKAMPs family members show regional expression profiles
within the brain, CKAMP39 is expressed in granule cells of the
cerebellum and olfactory bulb, CKAMP44 is abundantly expressed
in the dentate gyrus and the glomerular layer of the olfactory
bulb, CKAMP52 is expressed in the principal cell layers of all
hippocampus, and the Purkinje layer of the cerebellum, KAMP44
and CKAMP52 only colocalize with glutamatergic synapses.
While CKAMP59 mRNA is expressed in the cortex, striatum,
and principal cell layers of the hippocampus, the granule cell
layer of the olfactory bulb (von Engelhardt, 2019). CKAMP44
enhances the sensitivity of AMPARs to L-glu, slows the rate of
deactivation, accelerates desensitization, and delays recovery from
the desensitized state. These effects may be due to its ability
to stabilize the closed-cleft conformation of the agonist-binding
domain (ABD), favoring the desensitized state (von Engelhardt
et al., 2010).

Synapse differentiation-induced gene
4 (SynDIG4)/Prrt1

SynDIG4/Prrt1 is a type II transmembrane protein that is
known to colocalize with AMPARs GluA1 subunit at synapses and
extrasynaptic sites, modulating the AMPARs’ activity. Prrt1 was
initially identified as a key gene involved in synapse differentiation
(Kalashnikova et al., 2010; Kirk et al., 2016). Prrt1 has an N-
terminal domain facing the cytoplasm, a transmembrane domain,
and a membrane-associated C-terminal domain as shown in
Figure 5. Prrt1 is known to interact with all of the AMPAR subunits
GluA1-GluA4. This interaction is mediated by the transmembrane
domain and intracellular loop (Martin et al., 2021). SynDIG4
is known to act by slowing the deactivation and desensitization
kinetics of AMPARs in a subunit-dependent manner. SynDIG4
Knockout mice, therefore, have shown reduced AMPAR-mediated
mEPSCs (Matt et al., 2018).

Disease associated with AMPAR complexes

Auxiliary subunits of AMPAR are known to interact directly
or indirectly with AMPAR subunits and several synaptic molecules
that modulate receptor trafficking, localization, and gating kinetics;
their dysregulation has been directly linked to the pathology of
various neurological disorders.

Amyotrophic lateral sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a progressive
neurodegenerative disorder that leads to the degeneration of
motor neurons projecting from the motor cortex, brainstem, and
the spinal cord. Several studies have suggested that AMPARs
play a major role in slow and selective neurodegeneration of
motor neurons as seen in ALS. To date, riluzole—a glutamate-
modulating drug with anti-excitotoxic effects—remains the only
therapy shown to slow ALS progression and prolong survival
by roughly 2–3 months (Brooks, 2009; Bensimon et al., 1994),
reinforcing the notion that glutamate-driven excitotoxicity
is central to ALS pathogenesis. Although NMDAR-mediated
mechanisms have traditionally been implicated in glutamate-
induced excitotoxicity, emerging evidence suggests that in ALS,
calcium-permeable AMPARs play a predominant role in mediating
neuronal excitotoxicity. The exact mechanism underlying neuronal
excitotoxicity in ALS has not yet been fully understood, but
it has been found that the overactivation of AMPARs causes
mitochondrial Ca2+ overload, leading to mitochondrial damage
and production of Reactive Oxygen Species (ROS) (Williams
et al., 1997; Carriedo et al., 1998, 2000). Neurons show selective
vulnerability to excessive Ca2+ influx; motor neurons have lower
expression of Ca2+ binding proteins, limiting their Ca2+ buffering
properties, which makes them more susceptible to AMPAR-
mediated excitotoxicity (Van Den Bosch et al., 2006). Permeability
to Calcium by AMPARs is determined by the presence of the
GluA2 subunit; its presence makes AMPARs impermeable to
Ca2+ (Keinänen et al., 1990). But as mentioned earlier in the
review, GluA2-containing AMPARs have now been shown to have
permeability for calcium ions (Miguez-Cabello et al., 2025). GluA2
subunit undergoes post-translational modification at the Q/R site
of the M2 domain, where glutamine is substituted by arginine. It
is the presence of this edited Arginine in the central position that
renders calcium impermeability to the GluA2 bearing AMPARs
(Seeburg and Hartner, 2003). In a study conducted by Kawahara
et al., they reported a significant reduction in RNA editing at the
Q/R site of the GluA2 subunits in spinal motor neurons of patients
with sporadic ALS, suggesting that this alteration may contribute
to the development and progression of the disease (Kawahara et al.,
2004).

Alzheimer’s disease (AD)

Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder that predominantly impairs memory and cognitive
function. The pathological hallmarks of AD include the
accumulation of extracellular amyloid-β (Aβ) plaques and
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the formation of intracellular neurofibrillary tangles composed
of hyperphosphorylated tau protein (Hardy and Higgins, 1992;
Glenner and Wong, 1984). During the early stages of AD, synaptic
deterioration emerges as a key pathological feature, and AMPARs
are the principal glutamate receptors that mediate fast excitatory
neurotransmission. Thus, synaptic deterioration is strongly linked
to the impaired function of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptors. Dysfunction of these
receptors disrupts excitatory neurotransmission and synaptic
plasticity, processes that are critical for learning and memory,
thereby contributing to the early cognitive deficits observed in AD
(Ning et al., 2024). As discussed earlier, AMPARs are composed
of GluA1-GluA4 subunits, and Aβ has been known to bind to
the C-terminal tail of unedited GluA2 subunits, which leads to a
reduction in the expression of surface AMPARs, weakening the
strength between synapses (Babaei, 2021). The exact molecular
mechanism that leads to the decrease in the expression of AMPARs
has not yet been fully elucidated, but a study conducted by Zhang
et al. (2018) reported that the presence of Aβ both in culture and
brain of AD patients showed enhanced ubiquitination of surface
AMPARs, facilitating receptor internalization and degradation
causing LTD. Enhanced ubiquitination is mediated by upregulation
of Nedd4, an E3 ligase, and downregulation of deubiquitinase
USP46 (Zhang et al., 2018). Aβ not only alters the ubiquitination
of AMPARs but is also known to alter the acetylation of AMPARs
in AD conditions. Normally, AMPARs are subjected to lysine
acetylation by p300 acetyltransferase, conferring them higher
stability, reduced receptor internalization and degradation (Wang
G. et al., 2017). Under AD conditions, AMPARs are hypoacetylated,
leading to a reduction in surface AMPARs and contributing to
synaptic weakening and impaired cognition, as seen in AD
(O’Connor et al., 2020). In addition to ubiquitination, Aβ may
also impact the surface diffusion of AMPARs. Accumulation of
amyloid-β (Aβ) within neurons has been known to mislocalize
and internalize the L-glu transporter in astrocytes, decreasing
L-glu clearance (Matos et al., 2008; Li et al., 2009; Lanznaster
et al., 2017). Aβ also increases L-glu spillover through α7 nicotinic
acetylcholine receptors (a7nAChR) (Zhang et al., 2022; Kabogo
et al., 2010; Hascup and Hascup, 2016). This excessive L-glu leads to
aberrant activation of extrasynaptic GluN2B-containing NMDARs,
subsequently activating downstream Rap-p38 MAP, protein
phosphatases PP1, and calcineurin, inducing AMPAR endocytosis
and excitotoxicity, contributing to progressive neuronal damage
as seen in AD (Guntupalli et al., 2016). The modulation of
AMPARs has emerged as a promising therapeutic strategy for
addressing cognitive deficits associated with AD. Preclinical studies
have demonstrated the efficacy of AMPAR-positive modulators
in enhancing synaptic transmission and improving memory
functions. One such compound, LY451395, has been shown to act
as a positive allosteric modulator of AMPARs. In animal models,
systemic administration of LY451395 increased AMPAR-mediated
synaptic responses in the hippocampus and significantly improved
performance in memory-based behavioral tasks. However, despite
promising preclinical outcomes, clinical trials in patients with mild
to moderate AD failed to show significant cognitive improvement
following an 8-week administration of LY451395. Nevertheless,
these studies underscore the potential of AMPAR modulation in
AD therapy (Chappell et al., 2007; Chang et al., 2012).

Epilepsy

Epilepsy ranks among the most prevalent neurological
disorders worldwide. The characteristic features of Epilepsy include
recurrent, unprovoked seizures resulting from brief, abnormal
bursts of electrical activity in the brain that alter behavior,
consciousness, cognition, and/or movement. These episodes reflect
a temporary disruption of the brain’s excitatory-inhibitory balance,
detectable through EEG monitoring. (Milligan, 2021). Elevated
levels of extracellular L-glu concentrations have been seen in
epilepsy patients (Sarlo and Holton, 2021). Evidence shows that
AMPAR antagonists effectively suppress seizures, indicating an
important role of glutamatergic signaling in epilepsy pathogenesis
(Chang et al., 2016; Celli and Fornai, 2021; Barker-Haliski and
White, 2015). Genetic screening of epilepsy patients has identified
Nedd4-2 mutations, an epilepsy-associated gene encoding a
ubiquitin E3 ligase that regulates neuronal activity via GluA1
ubiquitination. All three identified missense mutations disrupt
GluA1 ubiquitination, failing to reduce surface GluA1 levels and
also spontaneous neuronal activity, explaining the heightened
electrical activity in the brain (Zhu et al., 2017). Studies also
showed a decreased number of AMPARs in epileptic patients
compared to normal people (Eiro et al., 2023). Also, excessive
glutamate receptor activation elevates intracellular calcium levels,
contributing significantly to neuronal death in epilepsy. After a
neurologically adverse incident like an epileptic seizure, GluA2
AMPAR expression drops, promoting the formation of calcium-
permeable, GluA2-lacking AMPARs that may amplify glutamate-
mediated neurotoxicity (Lorgen et al., 2017).

Limbic encephalitis and Rasmussen’s
encephalitis

Limbic encephalitis involves autoimmune-mediated
inflammation targeting the limbic system and other brain
regions. Some limbic encephalitis patients harbor autoantibodies
against GluA1, GluA2, or GluA1/GluA2 subunits. These
autoantibodies target the N-terminal (NTD) and ligand-binding
(ABD) domains of GluA1/2 without binding specific epitopes
(Gleichman et al., 2014). Anti-GluA1/2 autoantibodies promote
synaptic AMPAR internalization, causing chronic AMPAR
dysfunction and impaired synaptic plasticity (Peng et al., 2015;
Lai et al., 2009; Haselmann et al., 2018). Disrupted synaptic
plasticity underlies the memory deficits observed in mouse
models infused with patient-derived anti-GluA2 autoantibodies
(Haselmann et al., 2018). While these antibodies primarily
target GluA1 and GluA2 epitopes, they also reduce synaptic
levels of GluA3-containing AMPARs (e.g., GluA2/3 heteromers)
(Peng et al., 2015; Lai et al., 2009).

Anti-GluA3 autoantibodies were initially identified in a
Rasmussen’s encephalitis patient (Rogers et al., 1994), a severe
pediatric condition characterized by seizures, hemiparesis, motor
deficits, and cognitive decline (Bien et al., 2005). These antibodies
have since been associated with additional seizure disorders (Levite,
2014). Multiple anti-GluA3 autoantibodies, including those from
Rasmussen’s encephalitis, bind to the N-terminal domain (NTD)
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residues 372–395 of GluA3 (Mantegazza et al., 2002; Levite et al.,
1999; Ganor et al., 2005a). These antibodies function as positive
allosteric modulators, exerting pathogenic effects through both
direct agonist activity and complement-dependent cytotoxicity
(Levite et al., 1999; Whitney and McNamara, 2000; Twyman et al.,
1995; He et al., 1998; Cohen-Kashi Malina et al., 2006; Carlson et al.,
1997). Animal models immunized with peptides containing the
anti-GluA3 epitope develop behavioral impairments and neuronal
degeneration (Goldberg-Stern et al., 2014; Ganor et al., 2005b,
2014). Current standard treatments for Rasmussen’s encephalitis
remain immunosuppressive therapy and surgical hemispherectomy
of the affected cerebral hemisphere.

Autism spectrum disorder (ASD)

Autism spectrum disorder (ASD) is a complex
neurodevelopmental disorder affecting people’s ability to
communicate, interact, and learn. Genes implicated in ASD are
often involved in fundamental cellular pathways, including protein
synthesis, cell proliferation, and synaptic function, highlighting
the molecular complexity underlying the pathophysiology of
ASD (Ozonoff et al., 2005; Lin et al., 2016; Hussman et al.,
2011). ASD has become a widespread and socially significant
neurodevelopmental condition, currently affecting approximately
1.5% of the population (Lyall et al., 2017; Kanner, 1968).

The causes of ASD consist of a wide range of contributing
factors, such as de-novo mutations and microdeletions of GRIA2
gene (Rylaarsdam and Guemez-Gamboa, 2019; Salpietro et al.,
2019); environmental and acquired influences during the pre-,
peri-, and postnatal periods (Wang C. et al., 2017); and
the polygenic co-inheritance of, asymptomatic haplotypes or
polymorphisms that may converge to disrupt neural circuit
homeostasis (Rubenstein and Merzenich, 2003). Among these
are the structural components critical to synaptic integrity and
brain circuit function. Particularly those involving AMPAR-
mediated neurotransmission. Some pathways demonstrate selective
enrichment in cerebro-cerebellar regions, hinting at their role
in ASD (Ebrahimi-Fakhari and Sahin, 2015; Bagni and Zukin,
2019). Findings have shown a general upregulation of AMPAR
mRNA transcripts, coupled with a selective reduction in AMPAR
protein levels within the cerebellum in individuals affected by
autism (Purcell et al., 2001). Studies have also identified a potential
molecular pathway underlying this disruption: loss of function in
UBE3A, a gene implicated in both autism and Angelman syndrome,
was shown to increase AMPAR internalization, thereby attenuating
synaptic AMPAR availability and reducing LTP (Greer et al.,
2010). Genetic mutations in P-Rex1, a gene involved in regulating
AMPAR endocytosis, have been identified in individuals with
autism, and preclinical models lacking this gene exhibit behavioral
phenotypes consistent with core features of ASD, including
social deficits and reduced behavioral flexibility (Li et al., 2015).
Neurobeachin, a gene identified in autism-associated cohorts, has
revealed pronounced disruptions in dendritic spine morphology
accompanied by a reduction in miniature excitatory post-synaptic
currents (mEPSCs) (Niesmann et al., 2011). In contrast, studies
of Rbm8a, a gene involved in non-sense-mediated mRNA decay
and similarly linked to autism, have demonstrated abnormally
elevated mEPSC frequency (Alachkar et al., 2013). Genetic mouse

models with targeted deletions of synaptic scaffolding proteins
such as Shank3 exhibit a significant reduction in AMPAR-mediated
current, contributing to the synaptic deficit. This finding supports
the hypothesis that altered AMPAR signaling contributes to the
neurodevelopmental and behavioral phenotypes observed in ASD
(Lee et al., 2017; Jaramillo et al., 2020). These findings hint toward
a role of AMPARs in ASD pathogenesis due to their crucial role in
synaptic transmission and generation of EPSCs.

Perspectives

Glutamatergic receptors, particularly AMPARs, constitute
one of the most critical molecular families in the central nervous
system. Their biophysical properties, subunit composition,
interaction partners, and membrane dynamics exert a direct
influence on synaptic function, plasticity, and the pathophysiology
of numerous brain-related disorders. Changes in AMPAR
expression, trafficking, and clustering are increasingly recognized
as molecular hallmarks of neurodevelopmental, neuropsychiatric,
and neurodegenerative diseases. Over the past three decades, a
substantial body of knowledge has accumulated regarding the
molecular composition and biochemical behavior of AMPARs.
These studies have identified a range of endogenous ligands,
mapped their expression profiles across brain regions, and
explored their interaction networks through genomic, proteomic,
and biochemical paradigms. Classical structural and biophysical
approaches, including crystallography, electrophysiology, and
fluorescence-based imaging, have offered deep insight into
AMPAR function at synaptic membranes. However, recent studies
are revealing a new layer of complexity, with a growing emphasis
on the spatial distribution of AMPARs within sub-synaptic and
extrasynaptic domains, their dynamic trafficking kinetics, and the
emergent principles of allosteric gating.

One emerging theme is the spatial regulation of AMPAR
clustering at nanodomains, which modulates both the amplitude
and frequency of excitatory post-synaptic currents. Subsynaptic
organization is now known to be governed by multiple
mechanisms, including activity-dependent anchoring, scaffolding
interactions, and homeostatic scaling. These processes are not
merely passive; they exert non-linear effects on receptor gating,
ligand binding, and signal integration. For instance, changes
in receptor density and localization in nanodomains influence
ligand binding kinetics, desensitization rates, and synaptic
current summation, collectively reshaping synaptic strength and
plasticity. Understanding this spatial and kinetic heterogeneity
is increasingly important for future therapeutic targeting. The
complexity of AMPAR function cannot be captured by traditional
pharmacology alone. Future strategies will likely require multi-
pronged approaches that integrate molecular modeling, AI-guided
drug discovery, and high-throughput screening platforms. These
methods can be informed by detailed structural insights from
cryo-electron microscopy and super-resolution imaging and
validated using patch-clamp electrophysiology and optogenetic
assays in physiologically relevant models.

The mounting evidence points to AMPARs as early molecular
transducers of activity-dependent synaptic changes. As such, they
represent promising targets for therapeutic modulation in early-
stage cognitive dysfunction and neurodegenerative disease. One
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forward-looking direction involves engineering synthetic ligands
that can selectively modulate AMPAR activity in a brain region-
specific manner, effectively designing chemical switches to silence
or activate particular excitatory circuits. Additionally, advances in
genome editing technologies such as CRISPR-Cas9 have opened
new possibilities to modify AMPAR genes in the adult brain with
cell-type and region-specific precision. This raises the exciting
potential for molecular engineering of customized receptor variants
that could restore or tune synaptic function in disease contexts.
By combining synthetic biology, structural pharmacology, and
next-generation imaging and editing tools, the next decade may
offer transformative strategies for regulating AMPAR activity
with unprecedented precision and efficacy in the context of
brain disorders.
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