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Microbial communities are able to carry out myriad functions of biotechnological
interest, ranging from the degradation of industrial waste to the synthesis of
valuable chemical products. Over the past years, several strategies have emerged
for the design of microbial communities and the optimization of their functions.
Here we provide an accessible overview of these strategies. We highlight how
principles of synthetic biology, originally devised for the engineering of individual
organisms and sub-organismal units (e.g., enzymes), have influenced the
development of the field of synthetic microbial ecology. With this, we aim to
encourage readers to critically evaluate how insights from synthetic biology
should guide our approach to community-level engineering.
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1 Introduction

Fulfilling the promise of a circular economy, where waste byproducts can be reutilized
in closed-loop processes, relies on the development of sustainable alternatives to non-
renewable resources. In recent years, it has become increasingly evident that addressing this
challenge requires harboring the immense potential of microorganisms (Aswani et al.,
2024). Microbes carry out a variety of functions that could be harnessed for biotechnological
purposes. For example, some microbes are capable of degrading plastics (Taghavi et al.,
2021), transforming complex compounds like lignocellulose (often present in municipal
waste) into biofuels (Cragg et al., 2015; Ling et al., 2014; Prasad et al., 2019; Senne De
Oliveira Lino et al., 2021), producing biomaterials (Laurent et al., 2024), or synthesizing
high-value molecules including drugs (Zhang et al., 2022), plant natural products (Cravens
et al., 2019; Walls et al., 2023), or vitamins (Fang et al., 2017). Microbes are now even
emerging as a potential sustainable source of food (Graham and Ledesma-Amaro, 2023).

Unlocking the full biotechnological potential of microorganisms requires us to be able
to optimize the relevant functions they provide. Humans have been harvesting microbial
functions for millenia, with evidence that early agricultural societies already produced
fermented beverages around 7,000 years ago (Wang et al., 2021). Yet, it was only in recent
decades that the engineering of microbial functions began to be performed in a rational and
methodical manner, driven by technological advances in microorganism identification,
characterization, and manipulation. The development of genetic engineering tools (gene
cloning, recombinant DNA technology, or more recently CRISPR-Cas9) fueled the
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establishment and expansion of the field of synthetic biology.
Synthetic biology has aimed to systematize the engineering of
microbial systems with a dual aim: understanding the principles
by which living organisms process information, and constructing
synthetic biosystems with enhanced (or even novel) traits for
concrete biotechnological applications (Khalil and Collins, 2010;
Leonard et al., 2008). While progress has been made over recent
years, the latter objective has remained elusive (Hanson and
Lorenzo, 2023; Zakeri and Carr, 2015).

Synthetic biologists have been mostly concerned with the
engineering of individual strains or particular subcellular units,
such as proteins or metabolic pathways. Some of the earliest
examples include the genetic manipulation of yeast (Hansen and
Kielland-Brandt, 1996; Romano et al., 1985) and bacteria (McKay
and Baldwin, 1990) for food and beverage fermentation, the
development of enzymes with high substrate specificity or
catalytic activity through directed evolution (Schmidt-Dannert
and Arnold, 1999; Yano et al., 1998; You and Arnold, 1996), or
the optimization of intracellular biochemical reactions for increased
enantioselectivity (Reetz et al., 1997). More recently, engineered
microorganisms have been developed for modern applications such
as carbon sequestration (Hu et al., 2019) or cancer immunotherapy
(Chowdhury et al., 2019).

Engineered microorganisms, however, present various
important limitations. The expression of synthetic genetic circuits
is often inevitably noisy and subject to crosstalk with the native
machinery of the host cells— a problem that is accentuated as these
circuits become more complex (Kwok, 2010; Slusarczyk et al., 2012).
In addition, heterologous expression often comes at a fitness cost,
making engineered microbial functions sensitive to purging by
evolution or to exclusion from better-adapted competitor species.
Even when fitness costs are negligible, mere genetic drift may disrupt
the expression of synthetic functions if they do not confer a benefit
to the host. Synthetic biologists have proposed formal rules for the
design of biosystems (Slusarczyk et al., 2012) which attempt to
mitigate the effects of noise (Perrino et al., 2021), crosstalk (Müller
et al., 2019), or evolution (Bull and Barrick, 2017); however
challenges remain to this day.

The prospect of engineering microbial communities (as opposed
to single organisms) has emerged as a promising alternative
(Großkopf and Soyer, 2014; McCarty and Ledesma-Amaro, 2019;
Shong et al., 2012). Communities present several advantages with
respect to individual strains. They enable the compartmentalization
of functional components (i.e., division of labor), alleviating fitness
costs on individual strains (Beck et al., 2022; Wang M. et al., 2022;
Roell et al., 2019). Functions that emerge at the community level
may also be more robust (or at least change in predictable ways) in
the face of evolution of constituent species (McEnany and Good,
2024; Venkataram and Kryazhimskiy, 2023). Communities may
often be able to resist invasions from external species (Wagner,
2022; Mickalide and Kuehn, 2019) or groups of species (Diaz-
Colunga et al., 2022; Lechón-Alonso et al., 2021). Furthermore,
the composition and function of microbial communities may be
modulated without the need to genetically engineer any member
species, minimizing concerns on the environmental or health
hazards that genetically modified organisms may pose (EFSA
et al., 2020).

Here we review a variety of strategies which have been proposed
for optimizing the functions of microbial communities, many of
them inspired by synthetic biology at the level of organisms and
subcellular units. These strategies range from bottom-up
approaches, where defined sets of (typically few) species are
combined into consortia with the aim of maximizing a function,
to top-down approaches, where a community (which can be of high
complexity and even of undefined composition) is manipulated
through rational interventions (San León and Nogales, 2022). We
also review methods based on mathematical modeling, including
mechanistic models (most notably metabolic models) as well as
more recent data-driven models. With this, we seek to provide an
accessible overview of the rapidly-expanding field of synthetic
ecology. We aim to prompt readers to carefully consider the
extent to which the lessons learned from synthetic biology should
guide our path towards community-level engineering.

2 Trait-based approaches

Perhaps the most commonly used strategy for community-level
engineering has relied on the rational, bottom-up assembly of
synthetic consortia. In short, based on some known traits of a set
of microbial species/strains, a consortium is constructed with the
aim of maximizing a target function, as well as (potentially) its
ecological and evolutionary stability (Krause et al., 2014; Lajoie and
Kembel, 2019; Li et al., 2024).

This trait-based approach is reminiscent of how early efforts at
protein design were based on searching for optimal amino acid
sequences starting from the basic principles of amino acid
biochemistry (Song et al., 2023; Bryson et al., 1995) — i.e., the
biochemical “traits” of each amino acid. Using biochemical
reasoning to predict protein function from sequence can be seen
as solving a “puzzle” by carefully examining each of the pieces, with
each piece being a specific amino acid (Figure 1A, top panel). In the
case of synthetic organisms, the pieces could be genes within an
artificial plasmid, while for communities they would represent the
different member species (Figure 1A, bottom panel).

The strategy of “solving the puzzle” has sometimes yielded good
results. In some cases, consortia have been assembled by leveraging
the natural capabilities of wild-type microbial species for performing
specific tasks. For example, Park et al. used a two-species bacterial
co-culture for the production of bioethanol by leveraging the natural
ability of C. phytofermentans to hydrolyze cellulose and the potential
of E. coli to ferment cellobiose catabolism byproducts into ethanol,
respectively (Park et al., 2020). Alternatively, researchers have relied
on the genetic manipulation of different member species/strains
within a consortium. Examples include the construction of two-
species/strain systems for the generation of photovoltaic energy
(Zhu et al., 2019) or the production of resveratrol, a plant natural
product (Camacho-Zaragoza et al., 2016). In this last example, two
E. coli strains were engineered to express a complementary part of
the resveratrol biosynthesis pathway. Genetic engineering has
sometimes also served to enhance the stability of the community
and facilitate the coexistence of its members, for instance through
the imposition of obligate mutualisms (Pignon et al., 2024; Sgobba
et al., 2018).
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Beyond these and other biotechnological applications, it is worth
noting that synthetic communities have also been used to address
more fundamental questions in microbial ecology, such as how
microbial interactions determine the structure and dynamics of
communities (Hu et al., 2022; Van Vliet et al., 2022; Cordero
and Datta, 2016). Researchers have used synthetic consortia as
laboratory model systems to mimic natural communities in the
soil (Coker et al., 2022) or associated with animal and human hosts
(Bonillo-Lopez et al., 2024; Clark et al., 2021), among other contexts.
This is again reminiscent of how synthetic organisms have also
served purposes beyond biotechnology, such as providing insights
on cellular information processing and signal transduction (Gao
et al., 2023; Hanson and Lorenzo, 2023).

Yet, for biotechnology, the trait-based construction of synthetic
communities presents important challenges. First, the traits
expressed by an organism often depend on its ecological context,
that is, which other species (and potentially at which abundances)
may be present (Diaz-Colunga et al., 2024a; Yang, 2021). In
addition, even if the contribution of each individual microbial
cell to a community function was constant, species’ population
sizes often vary differently across ecological contexts (Baichman-
Kass et al., 2023; Sanchez et al., 2023), so the total functional
contribution of a species may change depending on the presence/
absence or abundance of other community members. Interactions
between species can often present higher-order components, e.g., a
third species may affect how two members of the community
interact (Morin et al., 2022; Sanchez-Gorostiaga et al., 2019;
Mickalide and Kuehn, 2019; Guo and Boedicker, 2016). In the
“puzzle” analogy, it would be as if the shape of each piece
changed every time we included a new one. Perhaps for this
reason, the construction of synthetic consortia for biotechnology
through trait-based approaches has been mostly limited to low-
complexity communities, typically of two or three species/strains

(Park et al., 2024; Park et al., 2020; Zhu et al., 2019). This also owes to
the fact that the rational assembly of microbial consortia in high-
throughput remains an experimentally tedious process. The
development of new experimental methodologies (Diaz-Colunga
et al., 2024a), including based on microfluidic devices (Kehe et al.,
2019; Kehe et al., 2021), promises to facilitate this process and
potentially expand the bottom-up approach to more complex
communities.

Much like in the case of synthetic organisms, communities
engineered through this trait-based approach may be disrupted
by evolution, environmental fluctuations, or the influx of invader
species (Amor et al., 2020; Shibasaki and Mitri, 2020). Several
strategies have been proposed for enhancing stability. For
example, it has been shown that synthetic communities engaging
in division of labor exhibit increased stability when not only the
fitness costs, but also the benefits of expressing a function are
allocated evenly across member species (Wang M. et al., 2022).
Stability may also be achieved by rationally modulating intercellular
interactions (Deter and Lu, 2022; Karkaria et al., 2021; Kong et al.,
2018; Wu et al., 2024), e.g., interspecies metabolic cross-feeding (Li
et al., 2022; Park et al., 2024; Peng et al., 2024; Ziesack et al., 2019), or
by imposing a defined spatial structure to physically separate
different subpopulations (Wang L. et al., 2022).

It is notable how these challenges (eco-evolutionary stability,
scalability beyond low-complexity constructs, etc.) are similarly
faced when engineering single organisms. This is a direct
consequence of the trait-based design of microbial communities
being very explicitly based on engineering principles from synthetic
biology (Johns et al., 2016; San León and Nogales, 2022) — which
becomes particularly evident in the case of consortia made up by
genetically engineered strains (Park et al., 2024; Sgobba et al., 2018;
Camacho-Zaragoza et al., 2016). In this case, the reasoning is
straightforward: the target function to express is encoded in a

FIGURE 1
Approaches for microbial community-level design and optimization are often inspired by engineering strategies at the (sub)organismal scale. (A) In
order to enhance the function of a protein, specific amino acid sequences can be rationally constructed based on fundamental knowledge of amino acid
biochemistry. Analogously, specific microbes can be chosen to form a consortium based on their individual traits in order to optimize an ecological
function. (B) Directed evolution, on the other hand, remains agnostic to the mechanisms of interaction between amino acids (or species). Instead,
high-functioning sequences (or communities) are iteratively propagated and selected, re-introducing variation in each round. (C) Environmental variables
(e.g., oxygen availability, carbon to nitrogen ratio, pH, temperature . . .) can strongly modulate organismal traits and community structures. Manipulating
these variables can thus serve to optimize biological functions across scales, from molecules and organisms to communities. (D) Mathematical models
can inform the design and construction of synthetic biological systems, from genetic, metabolic, and signaling pathways to entire communities.
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synthetic genetic circuit, but the burden of its expression is
distributed across different strains (i.e., multiple “chassis”)
instead of assigned to a single one. While the basic idea is
appealing, we must consider its practical limitations if the end
goal is to develop microbial communities for biotechnological
purposes which can be deployed on a large scale. Over the past
decades, synthetic biologists have devoted much effort to addressing
the challenges of engineering single organisms (e.g., Perrino et al.,
2021; Müller et al., 2019; Slusarczyk et al., 2012), with only limited
practical success (Hanson and Lorenzo, 2023; Zakeri and Carr,
2015). As the field of synthetic ecology develops, we must
carefully assess the risk of falling into a similar stage of stagnation.

3 Community-level directed evolution

Artificial selection, most notably directed evolution, has been
used for decades to improve the traits of individual organisms or the
properties of subcellular units such as enzymes (e.g., Schmidt-
Dannert and Arnold, 1999; You and Arnold, 1996) (Figure 1B,
top panel). Directed evolution mitigates many of the limitations of
rational design approaches, as it bypasses the need for a detailed
understanding of the underlying mechanisms that may determine
the function/trait of a molecule/organism. The basic strategy can be
conceptualized as an iterative exploration of a genotype space in
search of optimal phenotypes, e.g., an exploration of a sequence-
function landscape in the context of protein engineering.

Artificial selection at the microbiome level can be similarly
framed as a guided exploration of a community structure space
(defined as the set of all possible community compositions in terms
of species presence/absence or abundance) in search of states that
optimize a target community-level function. Such mappings
between community compositions and functions have received
the name of ecological landscapes or community-function
landscapes (George and Korolev, 2023; Sanchez et al., 2023;
Skwara et al., 2023), by analogy with the concept of genetic
fitness landscapes.

In its most general form, an exploration of a community-
function landscape through directed evolution would involve (i)
ranking a set of microbial communities based on a target
community-level function, (ii) selecting the best-performing ones,
and (iii) propagating them into a new set of “offspring”
communities, which can be ranked and propagated again in
subsequent rounds of selection (Figure 1B, bottom panel).
Despite its conceptual simplicity, this premise was not directly
tested until the early 2000s, when Swenson et al. attempted to
select for microbial ecosystems which efficiently performed
functions such as the degradation of 3-chloroaniline (Swenson
et al., 2000a) or the promotion of plant growth (Swenson et al.,
2000b). More recent efforts have aimed to select microbiomes with
the ability to induce early or late flowering in plant hosts (Panke-
Buisse et al., 2015), or to degrade environmental pollutants (Arias-
Sánchez et al., 2024). Community-level artificial selection has been
typically implemented as a top-down strategy, where communities
are selected and propagated without necessarily dissecting their
species-level composition (Chang et al., 2021; Chang et al., 2020;
Swenson et al., 2000a; Swenson et al., 2000b; Xie et al., 2019; Panke-
Buisse et al., 2015). More recently, bottom-up variations have also

been proposed, where the species-level composition of a community
is well defined and experimentally manipulated in each round of
selection (Arias-Sánchez et al., 2024; George and Korolev, 2023).
While there exist promising studies of in silico community-level
artificial selection (Chang et al., 2021; Lalejini et al., 2022; Xie et al.,
2019), experiments have generally yielded only modest functional
improvements, in some cases barely exceeding typical day-to-day
fluctuations.

Selection (whether artificial or natural, at the level of organisms
or groups) requires that there exists variation in the target trait/
function, and that this variation can be passed from parents to
offspring — i.e., that the trait is heritable to some extent (Lewontin,
1970). When organisms reproduce, they pass their genetic
information to the next-generation, such that those phenotypes
that are (at least partially) determined by the organism’s genotype
can exhibit some degree of heritability. The very same process can
also reintroduce trait variation through mutation or recombination,
upon which selection can further act.

Directed evolution of communities, however, entails important
nuances with respect to that of single organisms (Arias-Sánchez
et al., 2019; Blouin et al., 2015; Sánchez et al., 2021; Xie et al., 2019).
Communities, unlike organisms, cannot naturally self-replicate, and
thus generating an “offspring” community from a “parental” one
requires the intervention of the experimenter. The first attempts at
microbiome breeding addressed the issue of community-level
reproduction by taking inspiration from earlier experiments of
group-level selection in small animal populations [e.g., of
chickens (Muir, 1996) or beetles (Wade, 1976; Wade, 1977)]. In
short, offspring populations were initialized from a random sample
of individuals from the highest-functioning parental ones.

Yet, this approach was less successful when applied to microbial
communities (Swenson et al., 2000a; Swenson et al., 2000b). This
may be explained, at least partially, by an effect of population size
(Sánchez et al., 2021): If the number of individuals sampled from a
parent population is very large, all offspring populations may end up
being compositionally very similar to one another, as the effect of
stochastic sampling becomes negligible (Blouin et al., 2015). This
issue is typically more prominent in microbial communities than in
animal populations, as the former often have very large population
sizes (e.g., a single colony can contain millions of microbial cells).
The loss of structural (and therefore functional) variation across
communities can naturally obstruct further selection (Blouin et al.,
2015; Chang et al., 2020). Other mechanisms could also lead to the
exhaustion of variation or even to functional collapse: for instance,
evolution of member species within a community could have such
effects under certain conditions (Shibasaki and Mitri, 2020;
Venkataram and Kryazhimskiy, 2023; Xie et al., 2019).

Several strategies have been proposed to tackle this issue.
Structural variation can be externally re-introduced into the
offspring communities, for instance through the co-inoculation of
invader species or groups of species, through the application of
harsh population bottlenecks (Chang et al., 2021; Sánchez et al.,
2021), or through the propagation of not only the highest-function
community but also of sub-optimal ones (Xie et al., 2019). It has also
been suggested that selection schemes inspired by evolutionary
computing could aid in maintaining functional variation across
communities, leading to better selection outcomes (Arias-Sánchez
et al., 2024; Lalejini et al., 2022).
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Community-level artificial selection, in principle, could
substantially boost our ability to engineer microbiomes, the same
way it revolutionized our ability to engineer enzymes (Schmidt-
Dannert and Arnold, 1999). There is extensive theoretical and
empirical evidence showing that artificial selection can act above
the organismal level (Doulcier et al., 2020; Goodnight, 1990a;
Goodnight, 1990b; Lewontin, 1970; Wade, 1976; Wade, 1977),
and thus it is not immediately obvious why experiments of
microbiome-level breeding have found only modest success in
general. It is possible that current strategies for community-level
selection may be limited by methodological aspects, such as the
choice of community-level reproduction method or the
maintenance of functional variation across communities. It is
also possible that there exist more fundamental factors which
may intrinsically limit community-level artificial selection. These
could include stochastic fluctuations in species abundances, or the
rapid emergence of “cheater” strains, especially when the expression
of the target function is costly (Blouin et al., 2015; Shibasaki and
Mitri, 2020; Smith and Schuster, 2019).

It is important to note that targets of selection, artificial or
natural, do often have fundamental limits at the organismal scale.
These limits are evidenced, for instance, by the common observation
of diminishing returns at the level of organismal fitness
— i.e., beneficial mutations having smaller positive fitness effects
in genetic backgrounds which are already well-adapted (Chou et al.,
2011; Schoustra et al., 2016; Wünsche et al., 2017). Diminishing
returns have also been recently observed at the level of community
function (Diaz-Colunga et al., 2024b), suggesting that when a
community function is high, most interventions will tend to
disrupt it rather than improve it. This could pose an obstacle
towards community-level artificial selection. Such limitations may
become more pronounced when the individual members of a
community benefit from the expression of the target ecological
function — for instance, when the function is the clearance of a
toxin (Arias-Sánchez et al., 2024). When such organismal-level
pressures exist, the function may strongly dictate the composition
of the community in a very deterministic manner, leading to reduced
across-community functional variation. This would then constrain
further optimization through selection.

As promising as community-level directed evolution may be,
further work is necessary before it can become a viable option for
biotechnological applications. Are there intrinsic limits to selection
at the level of microbial communities? If not, why has directed
evolution not yet been successfully applied to microbiomes? If the
reasons are purely methodological, there are perhaps reasons for
optimism, as in silico simulations have proven useful to inform the
design of selection protocols (Chang et al., 2021; Lalejini et al., 2022;
Xie and Shou, 2021). These methods, however, remain to be tested
empirically.

4 Environmental engineering

Most efforts for the optimization of microbial community
functions have relied on manipulating its species/strain-level
composition and/or the genetic architecture of community
members. However, there is extensive evidence that abiotic
environmental variables can strongly modulate the traits of

individual microbes (Hu et al., 2021; Wasner et al., 2024; Yang,
2021), the interactions between species (Crocker et al., 2024; Ratzke
and Gore, 2018), and therefore the dynamics, composition, and
function of complex communities (Dal Bello et al., 2021; Estrela
et al., 2021; Goldford et al., 2018; Hu et al., 2022; Silverstein et al.,
2024; Sun et al., 2024). Thus, an alternative optimization strategy is
to rationally engineer the environment that microorganisms inhabit
(Sánchez et al., 2024; Silverstein et al., 2023; Silverstein et al.,
2024) (Figure 1C).

One of the most paradigmatic examples of environmental
engineering for microbial biotechnology is found in open
fermentation systems (Li et al., 2014). In these, the premise is
to manipulate a set of environmental conditions (e.g., pH,
substrate availability, etc.) that will naturally select for microbial
taxa which are able to carry out a desired function. The system is
left unsterilized, open to the influx of environmental microbes,
rather than inoculated with a specific set of strains previously
chosen by the experimenter. This approach has been traditionally
used in food and beverage fermentation, and has more recently
been employed for applications such as the production of butanol
from butyrate (Pinto et al., 2022) or the synthesis of enzymes
(Qureshi et al., 2017) or lactic acid (Wang et al., 2016) from
food waste.

The challenge of manipulating microbial environments lies in
managing their highly multidimensional nature. Microbial growth
and functional profiles may depend on a plethora of abiotic factors,
including nutrient availability (Okano et al., 2019; Skonieczny and
Yargeau, 2009; Zhu and Dai, 2024), temperature (Fu et al., 2022; Sun
et al., 2024), pH (Pinto et al., 2022; Ratzke and Gore, 2018), the
presence of antimicrobial compounds (Athamneh et al., 2014), or
the spatial structure (or lack thereof) in their habitat (Pignon et al.,
2024; Van Vliet et al., 2022). As an additional complication, the
effect of these factors can often be highly non-additive. A
paradigmatic example of this non-linearity is the observation that
different antibiotics can act synergistically in combination (Cacace
et al., 2023; Lázár et al., 2022; Yeh et al., 2006), or modify microbial
responses to other environmental variables such as temperature
(Cruz-Loya et al., 2021).

Ultimately, these challenges are similar to those faced by
synthetic biologists when engineering single organisms (or
communities) from the bottom-up. Interactions between
environmental components are, at least conceptually, reminiscent
of the interactions that exist between genes within an organism (or
between member species within a community). These interaction
networks can be very complex and of high dimensionality in all of
these cases. Owing to this analogy, strategies for environmental
design have drawn inspiration from the bioengineering of organisms
or subcellular components (Sánchez et al., 2024). For example,
genetic algorithms have been used to select optimal
environments. In these cases, a set of environmental variables
(pH, salinity, concentration of vitamins and minerals, etc.) were
manipulated in each round of selection, and the best environments
were propagated into subsequent generations. Vandecasteele et al.
followed this principle to identify environments where a microbial
community maximized the degradation of a synthetic dye
(Vandecasteele et al., 2008). In another example, Kucharzyk et al.
followed a similar approach to optimize the degradation of
perchlorate, both when the function was performed by a single
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strain of Dechlorosoma sp. or by a complex microbial community
(Kucharzyk et al., 2012).

Modeling tools can also be used to inform environmental
design strategies. For example, Pacheco and Segrè developed a
computational method combining metabolic modeling and
genetic algorithms to find optimal environmental
compositions for target community functions (Pacheco and
Segrè, 2021). Mathematical models of community dynamics
that are extensively used by microbial ecologists may explicitly
incorporate environmental variables, e.g., the secretion of
metabolic byproducts to the environment is specifically
included in microbial consumer-resource models (Marsland
et al., 2020b; Marsland et al., 2020a) or in some dynamic
community-level metabolic models (Dukovski et al., 2021).
These could be useful to inform the construction of
environments which optimize microbial community functions
such as the efficiency of substrate utilization or the production of
specific secondary metabolites.

Data-driven models have also been developed which aim to
infer optimal environmental compositions from partial
observations (Chen et al., 2009; Jiménez et al., 2014; Kikot
et al., 2010; Skonieczny and Yargeau, 2009; Zhou et al., 2023).
These methods have the advantage of not requiring information
on the specific biological mechanisms which may drive microbial
responses to their environment. Yet, the typically vast number of
potential environmental factors makes it so these models often
must be trained with very limited empirical data. They have thus
generally taken very simple forms, e.g., linear regressions with the
variables being the effects of each environmental factor, at most
incorporating pairwise interactions between environmental

components (Jiménez et al., 2014; Kikot et al., 2010). In
practice, this has limited their application to relatively simple
settings including few environmental components. As is the case
with the bottom-up assembly of communities, recent
methodological advances could facilitate the construction of
environments in high throughput (Diaz-Colunga et al., 2024a;
Sánchez et al., 2024) and the expansion of the scope of
these models.

5Modeling and computer-aided design

Mathematical and computational models have been widely
used by microbial ecologists to address questions such as inferring
species interactions from co-ocurrence networks (Faust and Raes,
2012), assessing microbial coexistence and community stability
(Akjouj et al., 2024), explaining the emergence of community-level
properties from complex interactions between species (Van Den
Berg et al., 2022), or reproducing the relationships that exist
between biodiversity and function within microbial
communities (Marsland et al., 2020b). In the context of
biotechnology, modeling has served to guide the construction of
microbial consortia that efficiently deliver target functions
(Figure 1D), such as the production of relevant metabolites
(e.g., Jones et al., 2016; Clark et al., 2021).

Models can be cataloged according to different criteria (VanDen
Berg et al., 2022). Here, for the sake of simplicity, we broadly classify
them into two categories: (1) models based on species’ traits and
interaction mechanisms, and (2) models which leverage statistical
features of microbial communities to reproduce and predict

FIGURE 2
Modeling approaches for the optimization of microbial community functions. Mathematical/computational models can be broadly classified into
two groups. Top: models of microbial communities can be based on the knowledge of the traits of a set of species and (potentially) their interactions.
Thesemodels typically need to be parametrized from extensive empirical data (e.g., species growth rates, substrate preferences, interactionmechanisms
. . .) or from genomic information. In order to inform the construction of optimal communities, they often (though not always) rely on simulating
species’ dynamics. Bottom: alternatively, the second class of models are purely statistical, agnostic to the specific biological processes that underpin
species’ traits and/or interactions. They rely on inference tools to learn the topography of the relationship between community composition and function
(i.e., the community structure-function landscape).
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community-level properties while remaining mechanism-
agnostic (Figure 2).

5.1 Mechanistic models

Mechanistic, trait-based models often (though not always)
represent the dynamics of the community, and can be expressed
in the generic form

dNi

dt
� f N, p( ) (1)

Where f is a function of some set of parameters (denoted as p),
and of a vector N which represents species abundances, with its i-th
element (Ni) being the abundance of species i. Out of the models of
the form in Equation 1, generalized Lotka-Volterra (gLV) models
are arguably the most widely used, where the parameters would be
the species’ growth rates and the pairwise species-by-species effects
on them. These models have successfully informed the construction
of microbial communities for specific functions, such as the retrieval
of heavy metals (Zheng and Li, 2016), the production of antibacterial
food additives (Giménez-Palomares et al., 2022), or the induction of
host immune responses (Stein et al., 2018). It is important to notice,
however, that even when a gLV model may be able to accurately
reproduce and predict species abundances, the function of the
community would remain unknown unless the per capita
contribution of each species was constant, that is, unless the total
functional contribution of every species was proportional to its
population size:

F � ∑
i

ϕiNi (2)

With ϕi being the (constant and known) per capita contribution
of species i (with a population sizeNi) to the community function F.
This is, however, very frequently not the case. Characterizing species
traits in isolation or interactions in pairwise co-cultures may often
not be sufficient for the models to reproduce how species will behave
in a more complex community (e.g., the per capita contributions in
Equation 2 may not be independent of community context) (Diaz-
Colunga et al., 2024a; Guo and Boedicker, 2016; Mickalide and
Kuehn, 2019; Morin et al., 2022; Sanchez-Gorostiaga et al., 2019), a
limitation shared with the empirical trait-based approaches we
discussed previously.

Alternatively, the dynamics of the function to optimize can be
explicitly incorporated into the model. This can be the case in
microbial consumer-resource models (mCRM) (Marsland et al.,
2020b; Marsland et al., 2020a), which explicitly model the
dynamics of metabolite exchange between community members.
For this reason, mCRMs can inform community design when the
function of interest is the production of specific secondary
metabolites or the rate of utilization of a substrate (Gowda et al.,
2022; Van Den Berg et al., 2022). Still, using this type of models for
biotechnology generally requires exhaustive characterization and
quantification of species traits [although in some cases these may be
inferred from genomic information (Gowda et al., 2022)] and/or
their interactions.

An alternative modeling approach based on species-specific
traits is metabolic modeling. Unlike gLV and mCRM models,

metabolic modeling is not typically used to predict temporal
changes in species abundances (although it can be adapted for
this purpose, as discussed below). Instead, it leverages
stoichiometric data inferred from species genomes and applies
optimization criteria to predict metabolic fluxes. Given its
extensive use in biotechnology, we describe this method in more
detail in the following section.

5.1.1 Metabolic models
Within the field of microbial biotechnology, arguably the most

prominent class of mechanistic models are metabolic models.
Metabolic modeling has become a cornerstone of systems
biology, enabling researchers to simulate cellular metabolism,
predict phenotypes, and guide metabolic engineering. Initially,
metabolic modeling was utilized to investigate clonal populations
(Varma and Palsson, 1994). For this, species-specific genome-scale
metabolic models (GEMs) (Gu et al., 2019; Mendoza et al., 2019)
together with Flux Balance Analysis (FBA) (Orth et al., 2010b) and
related graph- and constraint-based techniques were used. The use
of metabolic modeling to study clonal populations resulted in
successful predictions of growth, secretion profiles (Jouhten et al.,
2022; Neal et al., 2024; O’Brien et al., 2013), and the impact of
genetic modifications (Edwards and Palsson, 2000; Segrè et al., 2002;
Shlomi et al., 2005), making it invaluable for applications in
bioproduction and strain engineering (Blazeck and Alper, 2010;
Jiang et al., 2022) that considered isolated species.

In recent years, the use of metabolic modeling has expanded
from individual species to microbial communities, whether they are
small synthetic consortia or large natural microbiomes (Giordano
et al., 2024; Machado et al., 2021; Zelezniak et al., 2015). This
expansion has been made possible due to the development of tools
that support the rapid reconstruction of GEMs (Heinken et al., 2023)
and the adaptation of existing analytical methods as well as the
development of new methods for studying communities instead of
clonal populations (Chan et al., 2017; Diener et al., 2020; Heinken
and Thiele, 2022; Khandelwal et al., 2013; Stolyar et al., 2007;
Zomorrodi and Maranas, 2012). Additionally, the increasing
development of easy-to-use software packages that implement
complex metabolic modeling methods (Belcour et al., 2020;
Dukovski et al., 2021; Ebrahim et al., 2013; Frioux et al., 2018;
García-Jiménez et al., 2018; Zelezniak et al., 2015) has expanded the
use of this approach, allowing non-experts to leverage these
techniques for their own interests — ranging from studying the
ecology of microbes to bioremediation, bioenergy production or
personalized medicine.

Metabolic modeling relies on species-specific GEMs. These
represent all known metabolites, metabolic genes, and reactions
within a given organism. The process of reconstructing GEMs
begins with draft model reconstruction. Using annotated
genomes, metabolic genes and reactions are predicted to generate
an initial draft. This draft model is then refined to improve accuracy
in reproducing experimental data (Orth et al., 2010a; Mendoza et al.,
2019).With recent software tools (Aite et al., 2018; Arkin et al., 2018;
Karlsen et al., 2018; Machado et al., 2018; Olivier, 2018; Wang et al.,
2018), high-quality draft models can now be created in minutes,
expanding the application of metabolic modeling beyond a limited
set of well-characterized, culturable species to include uncultured or
lesser-known organisms as well.
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Besides GEMs, metabolic modeling leverages methods for their
analysis. Typically, these methods are categorized as graph-based
and constraint-based. Adapting graph-based methods to investigate
communities instead of clonal population is straightforward. On top
of this, graph-based simulations are computationally efficient,
enabling scalability and the analysis of large, complex microbial
communities (Belcour et al., 2020). However, the main limitation of
this approach is the loss of stoichiometric information which results
in reduced output information and prediction accuracy.

As an alternative, constraint-based methods such as FBA, rely
on species’ stoichiometric information. These methods rely on an
optimization to find the flux through every reaction in the metabolic
model which satisfies the stoichiometric and thermodynamic
constraints imposed. This sets the main limitation of using
metabolic modeling to investigate communities. While the
optimization criteria when simulating clonal populations is
straightforward - to maximize growth rate, it is far less evident
when simulating communities where positive and negative
interactions between community members determine total
community biomass. To overcome this limitation, different
methods have been developed (see for example Diener et al.,
2020; Zomorrodi and Maranas, 2012) which account for
potential trade-offs between species and community growth rate,
improving predictions at community level.

In addition to graph and constraint-based methods, dynamic
FBA (dFBA) was developed (Mahadevan et al., 2002) and soon
adapted to investigate communities (Chiu et al., 2014; Hanly et al.,
2012; Hanly and Henson, 2011; Salimi et al., 2010; Tzamali et al.,
2011; Zhuang et al., 2011). dFBA combines FBA with ordinary
differential equations to capture both environmental and growth
dynamics. In essence, dFBA involves simulating a series of
consecutive FBA calculations, updating species abundance and
nutrient availability between simulations. This method has been
further developed to model not only temporal changes but also
spatial distributions of microbial populations (Bauer et al., 2017;
Harcombe et al., 2014).

The application of metabolic modeling to microbial
communities has opened new avenues for community design and
optimization, with significant implications for industrial and
environmental applications. For example, graph-based methods
can be used to identify combinations of species that achieve a
specific metabolic goal, such as the production of a valuable
compound, by mapping metabolic pathways across community
members (Belcour et al., 2020; Eng and Borenstein, 2016; Frioux
et al., 2018; Julien-Laferrière et al., 2016). Constraint-based
approaches, adapted for community-level analysis, enable
researchers to optimize community composition and
environmental conditions to enhance desired outputs (Benito-
Vaquerizo et al., 2020; Jouhten et al., 2022), such as biofuel and
bioplastic production, nutrient cycling, or pollutant degradation.
Dynamic Flux Balance Analysis (dFBA) further extends these
capabilities by incorporating temporal changes in nutrient
availability and species abundance, allowing researchers to model
how community function evolves over time.

Metabolic modeling is thus transforming the field of microbial
community design, providing a framework for systematically
engineering communities with tailored functions. Through in
silico simulations, researchers can test multiple community

configurations, explore various environmental conditions, and
fine-tune community composition to achieve optimal performance.

5.2 Data-driven models and
machine learning

Ultimately, the task of identifying optimal communities relies on
our ability to accurately predict ecological function from
composition — that is, to learn the topography of the community
structure-function landscape (George and Korolev, 2023; Sanchez
et al., 2023; Skwara et al., 2023). In the most general form, such a
structure-function landscape can be expressed as a transformation
(which we denote as Γ) from a compositional space, containing all
potential community structures, to a scalar function F, as:

F � Γ xi{ }( ) (3)

With xi representing the compositional information of species i,
where the values that this variable can take depend on how the
landscape is defined (e.g., xi � Ni if x represents total population
sizes, xi � Ni/∑jNj if it represents relative abundances, xi � 1, 0 if it
represents species presence/absence, etc.). The basic premise of data-
driven methods is to infer the form of the relationship between
composition and function (that is, the form of Γ in Equation 3) based
on some subset of empirical observations (Figure 2, bottom).

There exist many general methodologies designed for this task,
with applications beyond microbial biotechnology. Perhaps some of
the simplest examples are linear regression algorithms (Maulud and
Abdulazeez, 2020), where the function F is expanded as

F � β0 +∑
i

βixi +∑
i

∑
j > i

βijxixj +∑
i

∑
j> i

∑
k> j> i

βijkxixjxk + ... (4)

And the coefficients in Equation 4 (β) are estimated via linear
regression. This family of models has been used by microbial
ecologists to reproduce empirical biodiversity-function patterns
(Kirwan et al., 2009), and has more recently been applied to
synthetic consortia (Clark et al., 2021; Skwara et al., 2023). In
order to make it possible to train these models on incomplete
data, they have been typically truncated at low orders, e.g.,
including only first-order effects (βixi) or up to second-order
interactions (βijxixj). Note that, in this context, an “interaction”
is defined in a statistical sense, as the combined effect that two (or
more) species may have on the community function F. This
definition is therefore agnostic to the specific biological
mechanisms that may drive the interaction (be it resource
competition, metabolic cross-feeding, or others), a notable
difference with respect to mechanistic models. Thanks to this
flexibility, these methods have been successfully applied across a
wide range of communities and functions (Skwara et al., 2023), and
they have also served to model interactions between other agents,
such as environmental components (Connors et al., 2023; Jiménez
et al., 2014; Kikot et al., 2010). In addition to their predictive power,
linear regression models have been proven able to identify
functional groups within microbial communities (Zhao et al., 2024).

Other data-driven methods, such as random forests, Bayesian
inference approaches, or neural networks, have been often used to
analyze the taxonomic structure, interactions, and dynamics of
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microbial communities (Baig et al., 2023; Bauer et al., 2017; DiMucci
et al., 2018; Shafiei et al., 2014; Shafiei et al., 2015; Statnikov et al.,
2013;Walsh et al., 2024). Yet, their use for predicting and optimizing
biotechnologically relevant functions has remained more limited. A
few notable exceptions include the use of random forests to predict
the ability of soil microbiomes for decomposing plant litter
(Thompson et al., 2019), the design of gut microbial consortia
for the production of butyrate through a combination of linear
regression, Bayesian inference, and gLV modeling (Clark et al.,
2021), or the use of Bayesian optimization together with
recurrent neural networks to predict and optimize species
abundances and metabolite concentrations (Thompson et al., 2023).

If we once again turn our attention to the organismal scale and
below, we find amuch broader variety of data-drivenmethods which
have been used to infer the relationship between structure and
function, including in the context of protein sequence-structure-
function landscapes (e.g., Barrio-Hernandez et al., 2023;
Otwinowski, 2018; Romero et al., 2013) and organismal
genotype-phenotype maps (e.g., Sailer et al., 2020; Tareen et al.,
2022; Tonner et al., 2022). Perhaps the most notable recent example
is the development of AlphaFold, a deep learning-based method for
predicting protein structure from sequence (Jumper et al., 2021).
These methods bypass the need for a priori knowledge on the
mechanisms of interaction between genetic components or amino
acids, allowing for the optimization of biological function much
further beyond what rational design strategies can achieve.

Can we apply similar principles at the ecological scale? Microbial
community functions emerge from interactions between species,
similar to how protein function emerges from biochemical
interactions between amino acids. The mechanistic basis
underpinning interactions at these two scales is in principle very
different. However, recent research has shown that the interactions
between species within a community often follow similar statistical
patterns than those between genetic components (Diaz-Colunga
et al., 2024b; Eble et al., 2023; Gould et al., 2018; Morris et al., 2020;
Sanchez-Gorostiaga et al., 2019). Furthermore, microbial
communities may in many cases be well represented by low-
dimensional statistical models with few parameters (Arya et al.,
2023; Arya et al., 2024; Skwara et al., 2023; Zhao et al., 2024)— that
is, despite the underlying complexity of species interactions, there
often appears to be an emergent simplicity at the level of community
function (Bergelson et al., 2021; Goldford et al., 2018). This strongly
suggests that models akin to those used to predict function from
structure at the scale of genes and proteins could also fare well for
predicting microbial community function from composition, even
when trained on very sparse data. Still, the application of such
methodologies for the optimization of microbial community
functions remains to be tested in practice.

6 Discussion and outlook

Throughout this review, we have discussed the parallels that
exist between the engineering of biological systems at the ecological
scale and below. It is clear that synthetic biology tools have had an
enormous influence on the development of strategies for the design
and optimization of community-level microbial functions. In
particular, a very common strategy has been to assemble

synthetic consortia from the bottom-up, building on the available
phenotypic information of the constituent parts (i.e., the species or
strains). This approach has sometimes been informed by
mechanistic models of ecological interactions, and/or relied on
the genetic engineering of community members. While this is
naturally a reasonable starting point when attempting to engineer
microbiomes, it is also important to acknowledge its limitations.

Communities, like all biological entities, are complex systems, and
thus their properties and functions are often difficult to explain simply
from those of their parts. Applying engineering principles to their
design is therefore nuanced, as in doing so there is an underlying
assumption of modularity and scalability that may often not hold.
This, of course, also applies at the organismal scale and below: a single
cell is a very complex system in itself, and thus combining different
organism types into a community means building complexity on top
of complexity. Synthetic biology has arguably not yet fulfilled its
promise of developing practical solutions for biotechnology on a large
scale. It is thus imperative that we ask whether applying similar
principles at the level of communities will yield better results, or if, on
the other hand, there are fundamental limitations to this approach
when it comes to biological systems.

Top-down strategies, as well as data-driven modeling, could in
principle be more suitable for the task of prediction and optimization.
Their main advantage lies in the fact that these methods do not rely on
mechanistic information. For example, community-level directed
evolution could be implemented without even characterizing the
composition of the community nor the interactions between its
member species. In practice, however, this strategy has only yielded
modest results, and further work is necessary to identify the factors
whichmay have limited its success. Data-drivenmodels have been used
extensively for predicting biological function below the ecological scale,
but more rarely for optimizing microbial community functions. Their
main limitation is the difficulty in extracting relevant biological insights
from them, as these models often tend to operate as “black boxes”. In
any case, this may be a lesser consideration if our primary focus is to
optimize biotechnological processes.

The variety of available strategies for community-level engineering
underscore the importance of choosing the appropriate approach if we
wish to develop practical, viable, and sustainable solutions for open
challenges in biotechnology. Taking inspiration in other areas of biology
beyondmicrobial ecology can be fruitful, but wemust carefully consider
the limitations we may face. Synthetic ecology emerged as an extension
to synthetic biology that promised to alleviate the limitations of the
latter, in particular with respect to scalability and robustness. Yet, the
rational design of microbial consortia has faced similar obstacles,
perhaps because it has been approached using similar bottom-up
thinking. As the field of synthetic ecology develops, it will be
important to devise new optimization strategies that embrace and
deal with the underlying complexity of microbial communities
— and of biological systems at all scales.

Author contributions

MS: Investigation, Methodology, Writing–original draft,
Writing–review and editing. AA: Investigation, Methodology,
Writing–original draft, Writing–review and editing. BB-D:
Investigation, Methodology, Writing–original draft,

Frontiers in Synthetic Biology frontiersin.org09

San Román et al. 10.3389/fsybi.2025.1532846

https://www.frontiersin.org/journals/synthetic-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsybi.2025.1532846


Writing–review and editing. IQ-R: Investigation, Methodology,
Writing–original draft, Writing–review and editing. JD-C:
Funding acquisition, Investigation, Methodology, Supervision,
Visualization, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. MS acknowledges support
from a “Juan de la Cierva” Fellowship (ref. FJC2021-046960-I). JD-C
acknowledges support from the “Ramón y Cajal” program (ref.
RYC2023-045580-I) funded by MICIU/AEI/10.13039/
501100011033 and by FSE+, and from a RyC-MaX Excellence
Grant (ref. 20252MAX002) funded by the Spanish National
Research Council (CSIC).

Acknowledgments

We thank D. Bajic for helpful feedback on the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Aite, M., Chevallier, M., Frioux, C., Trottier, C., Got, J., Cortés, M. P., et al. (2018).
Traceability, reproducibility and wiki-exploration for “à-la-carte” reconstructions of
genome-scale metabolic models. PLOS Comput. Biol. 14 (5), e1006146. doi:10.1371/
journal.pcbi.1006146

Akjouj, I., Barbier, M., Clenet, M., Hachem, W., Maïda, M., Massol, F., et al. (2024).
Complex systems in ecology: a guided tour with large Lotka–Volterra models and
random matrices. Proc. R. Soc. A Math. Phys. Eng. Sci. 480 (2285), 20230284. doi:10.
1098/rspa.2023.0284

Amor, D. R., Ratzke, C., and Gore, J. (2020). Transient invaders can induce shifts
between alternative stable states of microbial communities. Sci. Adv. 6 (8), eaay8676.
doi:10.1126/sciadv.aay8676

Arias-Sánchez, F. I., Vessman, B., Haym, A., Alberti, G., andMitri, S. (2024). Artificial
selection improves pollutant degradation by bacterial communities. Nat. Commun. 15
(1), 7836. doi:10.1038/s41467-024-52190-z

Arias-Sánchez, F. I., Vessman, B., and Mitri, S. (2019). Artificially selecting microbial
communities: if we can breed dogs, why not microbiomes? PLOS Biol. 17 (8), e3000356.
doi:10.1371/journal.pbio.3000356

Arkin, A. P., Cottingham, R. W., Henry, C. S., Harris, N. L., Stevens, R. L., Maslov, S.,
et al. (2018). KBase: the United States department of energy systems biology
knowledgebase. Nat. Biotechnol. 36 (7), 566–569. doi:10.1038/nbt.4163

Arya, S., George, A., and O’Dwyer, J. (2024). The architecture of theory and data in
microbiome design: towards an S-matrix for microbiomes. Ecol. Evol. Biol. doi:10.
32942/X2SD0W

Arya, S., George, A. B., and O’Dwyer, J. P. (2023). Sparsity of higher-order landscape
interactions enables learning and prediction for microbiomes. Proc. Natl. Acad. Sci. 120
(48), e2307313120. doi:10.1073/pnas.2307313120

Aswani, R., Soni, K. B., and Radhakrishnan, E. K. (2024). “Introduction to circular
economy—a unique approach,” in The potential of microbes for a circular economy
(Elsevier), 1–24. doi:10.1016/B978-0-443-15924-4.00011-4

Athamneh, A. I. M., Alajlouni, R. A., Wallace, R. S., Seleem, M. N., and Senger, R. S.
(2014). Phenotypic profiling of antibiotic response signatures in Escherichia coli using
Raman spectroscopy. Antimicrob. Agents Chemother. 58 (3), 1302–1314. doi:10.1128/
AAC.02098-13

Baichman-Kass, A., Song, T., and Friedman, J. (2023). Competitive interactions
between culturable bacteria are highly non-additive. eLife 12, e83398. doi:10.7554/eLife.
83398

Baig, Y., Ma, H. R., Xu, H., and You, L. (2023). Autoencoder neural networks enable
low dimensional structure analyses of microbial growth dynamics. Nat. Commun. 14
(1), 7937. doi:10.1038/s41467-023-43455-0

Barrio-Hernandez, I., Yeo, J., Jänes, J., Mirdita, M., Gilchrist, C. L. M., Wein, T., et al.
(2023). Clustering predicted structures at the scale of the known protein universe.
Nature 622 (7983), 637–645. doi:10.1038/s41586-023-06510-w

Bauer, E., Zimmermann, J., Baldini, F., Thiele, I., and Kaleta, C. (2017). BacArena:
individual-based metabolic modeling of heterogeneous microbes in complex
communities. PLOS Comput. Biol. 13 (5), e1005544. doi:10.1371/journal.pcbi.
1005544

Beck, A. E., Pintar, K., Schepens, D., Schrammeck, A., Johnson, T., Bleem, A., et al.
(2022). Environment constrains fitness advantages of division of labor in microbial
consortia engineered for metabolite push or pull interactions. mSystems 7 (4),
e0005122–22. doi:10.1128/msystems.00051-22

Belcour, A., Frioux, C., Aite, M., Bretaudeau, A., Hildebrand, F., and Siegel, A. (2020).
Metage2Metabo, microbiota-scale metabolic complementarity for the identification of
key species. eLife 9, e61968. doi:10.7554/eLife.61968

Benito-Vaquerizo, S., Diender, M., Parera Olm, I., Martins Dos Santos, V. A. P.,
Schaap, P. J., Sousa, D. Z., et al. (2020). Modeling a co-culture of Clostridium
autoethanogenum and Clostridium kluyveri to increase syngas conversion to
medium-chain fatty-acids. Comput. Struct. Biotechnol. J. 18, 3255–3266. doi:10.1016/
j.csbj.2020.10.003

Bergelson, J., Kreitman, M., Petrov, D. A., Sanchez, A., and Tikhonov, M. (2021).
Functional biology in its natural context: a search for emergent simplicity. eLife 10,
e67646. doi:10.7554/eLife.67646

Blazeck, J., and Alper, H. (2010). Systems metabolic engineering: genome-scale
models and beyond. Biotechnol. J. 5 (7), 647–659. doi:10.1002/biot.200900247

Blouin, M., Karimi, B., Mathieu, J., and Lerch, T. Z. (2015). Levels and limits in
artificial selection of communities. Ecol. Lett. 18 (10), 1040–1048. doi:10.1111/ele.12486

Bonillo-Lopez, L., Rouam-el Khatab, O., Obregon-Gutierrez, P., Florez-Sarasa, I.,
Correa-Fiz, F., Sibila, M., et al. (2024). In vitro metabolic interaction network of a
rationally designed nasal microbiota community. bioRxiv. doi:10.1101/2024.10.23.
619785

Bryson, J. W., Betz, S. F., Lu, H. S., Suich, D. J., Zhou, H. X., O’Neil, K. T., et al. (1995).
Protein design: a hierarchic approach. Science 270 (5238), 935–941. doi:10.1126/science.
270.5238.935

Bull, J. J., and Barrick, J. E. (2017). Arresting evolution. Trends Genet. 33 (12),
910–920. doi:10.1016/j.tig.2017.09.008

Cacace, E., Kim, V., Varik, V., Knopp, M., Tietgen, M., Brauer-Nikonow, A., et al.
(2023). Systematic analysis of drug combinations against Gram-positive bacteria. Nat.
Microbiol. 8 (11), 2196–2212. doi:10.1038/s41564-023-01486-9

Camacho-Zaragoza, J. M., Hernández-Chávez, G., Moreno-Avitia, F., Ramírez-
Iñiguez, R., Martínez, A., Bolívar, F., et al. (2016). Engineering of a microbial
coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb. Cell
Factories 15 (1), 163. doi:10.1186/s12934-016-0562-z

Chan, S. H. J., Simons, M. N., and Maranas, C. D. (2017). SteadyCom: predicting
microbial abundances while ensuring community stability. PLOS Comput. Biol. 13 (5),
e1005539. doi:10.1371/journal.pcbi.1005539

Frontiers in Synthetic Biology frontiersin.org10

San Román et al. 10.3389/fsybi.2025.1532846

https://doi.org/10.1371/journal.pcbi.1006146
https://doi.org/10.1371/journal.pcbi.1006146
https://doi.org/10.1098/rspa.2023.0284
https://doi.org/10.1098/rspa.2023.0284
https://doi.org/10.1126/sciadv.aay8676
https://doi.org/10.1038/s41467-024-52190-z
https://doi.org/10.1371/journal.pbio.3000356
https://doi.org/10.1038/nbt.4163
https://doi.org/10.32942/X2SD0W
https://doi.org/10.32942/X2SD0W
https://doi.org/10.1073/pnas.2307313120
https://doi.org/10.1016/B978-0-443-15924-4.00011-4
https://doi.org/10.1128/AAC.02098-13
https://doi.org/10.1128/AAC.02098-13
https://doi.org/10.7554/eLife.83398
https://doi.org/10.7554/eLife.83398
https://doi.org/10.1038/s41467-023-43455-0
https://doi.org/10.1038/s41586-023-06510-w
https://doi.org/10.1371/journal.pcbi.1005544
https://doi.org/10.1371/journal.pcbi.1005544
https://doi.org/10.1128/msystems.00051-22
https://doi.org/10.7554/eLife.61968
https://doi.org/10.1016/j.csbj.2020.10.003
https://doi.org/10.1016/j.csbj.2020.10.003
https://doi.org/10.7554/eLife.67646
https://doi.org/10.1002/biot.200900247
https://doi.org/10.1111/ele.12486
https://doi.org/10.1101/2024.10.23.619785
https://doi.org/10.1101/2024.10.23.619785
https://doi.org/10.1126/science.270.5238.935
https://doi.org/10.1126/science.270.5238.935
https://doi.org/10.1016/j.tig.2017.09.008
https://doi.org/10.1038/s41564-023-01486-9
https://doi.org/10.1186/s12934-016-0562-z
https://doi.org/10.1371/journal.pcbi.1005539
https://www.frontiersin.org/journals/synthetic-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsybi.2025.1532846


Chang, C., Osborne, M. L., Bajic, D., and Sanchez, A. (2020). Artificially selecting
bacterial communities using propagule strategies. Evolution 74 (10), 2392–2403. doi:10.
1111/evo.14092

Chang, C.-Y., Vila, J. C. C., Bender, M., Li, R., Mankowski, M. C., Bassette, M., et al.
(2021). Engineering complex communities by directed evolution. Nat. Ecol. and Evol. 5
(7), 1011–1023. doi:10.1038/s41559-021-01457-5

Chen, Y., Lin, C.-J., Jones, G., Fu, S., and Zhan, H. (2009). Enhancing biodegradation
of wastewater by microbial consortia with fractional factorial design. J. Hazard. Mater.
171 (1–3), 948–953. doi:10.1016/j.jhazmat.2009.06.100

Chiu, H.-C., Levy, R., and Borenstein, E. (2014). Emergent biosynthetic capacity in
simple microbial communities. PLoS Comput. Biol. 10 (7), e1003695. doi:10.1371/
journal.pcbi.1003695

Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segrè, D., and Marx, C. J. (2011).
Diminishing returns epistasis among beneficial mutations decelerates adaptation.
Science 332 (6034), 1190–1192. doi:10.1126/science.1203799

Chowdhury, S., Castro, S., Coker, C., Hinchliffe, T. E., Arpaia, N., and Danino, T.
(2019). Programmable bacteria induce durable tumor regression and systemic
antitumor immunity. Nat. Med. 25 (7), 1057–1063. doi:10.1038/s41591-019-0498-z

Clark, R. L., Connors, B. M., Stevenson, D. M., Hromada, S. E., Hamilton, J. J.,
Amador-Noguez, D., et al. (2021). Design of synthetic human gut microbiome assembly
and butyrate production. Nat. Commun. 12 (1), 3254. doi:10.1038/s41467-021-22938-y

Coker, J., Zhalnina, K., Marotz, C., Thiruppathy, D., Tjuanta, M., D’Elia, G., et al.
(2022). A reproducible and tunable synthetic soil microbial community provides new
insights into microbial ecology. mSystems 7 (6), e0095122–22. doi:10.1128/msystems.
00951-22

Connors, B. M., Thompson, J., Ertmer, S., Clark, R. L., Pfleger, B. F., and Venturelli, O.
S. (2023). Control points for design of taxonomic composition in synthetic human gut
communities. Cell Syst. 14 (12), 1044–1058.e13. doi:10.1016/j.cels.2023.11.007

Cordero, O. X., and Datta, M. S. (2016). Microbial interactions and community
assembly at microscales. Curr. Opin. Microbiol. 31, 227–234. doi:10.1016/j.mib.2016.
03.015

Cragg, S. M., Beckham, G. T., Bruce, N. C., Bugg, T. D., Distel, D. L., Dupree, P., et al.
(2015). Lignocellulose degradation mechanisms across the tree of life. Curr. Opin.
Chem. Biol. 29, 108–119. doi:10.1016/j.cbpa.2015.10.018

Cravens, A., Payne, J., and Smolke, C. D. (2019). Synthetic biology strategies for
microbial biosynthesis of plant natural products. Nat. Commun. 10 (1), 2142. doi:10.
1038/s41467-019-09848-w

Crocker, K., Lee, K. K., Chakraverti-Wuerthwein, M., Li, Z., Tikhonov, M., Mani, M.,
et al. (2024). Environmentally dependent interactions shape patterns in gene content
across natural microbiomes. Nat. Microbiol. 9 (8), 2022–2037. doi:10.1038/s41564-024-
01752-4

Cruz-Loya, M., Tekin, E., Kang, T. M., Cardona, N., Lozano-Huntelman, N.,
Rodriguez-Verdugo, A., et al. (2021). Antibiotics shift the temperature response
curve of Escherichia coli growth. mSystems, 6(4), e0022821. doi:10.1128/msystems.
00228-21

Dal Bello, M., Lee, H., Goyal, A., and Gore, J. (2021). Resource–diversity relationships
in bacterial communities reflect the network structure of microbial metabolism. Nat.
Ecol. and Evol. 5 (10), 1424–1434. doi:10.1038/s41559-021-01535-8

Deter, H. S., and Lu, T. (2022). Engineering microbial consortia with rationally
designed cellular interactions. Curr. Opin. Biotechnol. 76, 102730. doi:10.1016/j.copbio.
2022.102730

Diaz-Colunga, J., Catalan, P., San Roman, M., Arrabal, A., and Sanchez, A. (2024a).
Full factorial construction of synthetic microbial communities. eLife. 13, RP101906.
doi:10.7554/eLife.101906.1

Diaz-Colunga, J., Lu, N., Sanchez-Gorostiaga, A., Chang, C.-Y., Cai, H. S.,
Goldford, J. E., et al. (2022). Top-down and bottom-up cohesiveness in microbial
community coalescence. Proc. Natl. Acad. Sci. 119 (6), e2111261119. doi:10.1073/
pnas.2111261119

Diaz-Colunga, J., Skwara, A., Vila, J. C. C., Bajic, D., and Sanchez, A. (2024b). Global
epistasis and the emergence of function in microbial consortia. Cell 187 (12),
3108–3119.e30. doi:10.1016/j.cell.2024.04.016

Diener, C., Gibbons, S. M., and Resendis-Antonio, O. (2020). MICOM: metagenome-
scale modeling to infer metabolic interactions in the gut microbiota. mSystems 5 (1),
e00606-19. doi:10.1128/mSystems.00606-19

DiMucci, D., Kon, M., and Segrè, D. (2018). Machine learning reveals missing edges
and putative interaction mechanisms in microbial ecosystem networks.mSystems 3 (5),
001811-18. doi:10.1128/msystems.00181-18

Doulcier, G., Lambert, A., De Monte, S., and Rainey, P. B. (2020). Eco-evolutionary
dynamics of nested Darwinian populations and the emergence of community-level
heredity. eLife 9, e53433. doi:10.7554/eLife.53433

Dukovski, I., Bajić, D., Chacón, J. M., Quintin, M., Vila, J. C. C., Sulheim, S., et al.
(2021). A metabolic modeling platform for the computation of microbial ecosystems in
time and space (COMETS). Nat. Protoc. 16 (11), 5030–5082. doi:10.1038/s41596-021-
00593-3

Eble, H., Joswig, M., Lamberti, L., and Ludington, W. B. (2023). Master regulators of
biological systems in higher dimensions. Proc. Natl. Acad. Sci. 120 (51), e2300634120.
doi:10.1073/pnas.2300634120

Ebrahim, A., Lerman, J. A., Palsson, B. O., and Hyduke, D. R. (2013). COBRApy:
COnstraints-based reconstruction and analysis for Python. BMC Syst. Biol. 7 (1), 74.
doi:10.1186/1752-0509-7-74

Edwards, J. S., and Palsson, B. O. (2000). Metabolic flux balance analysis and the in
silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinforma. 1 (1), 1. doi:10.
1186/1471-2105-1-1

Efsa, S. C., More, S., Bampidis, V., Benford, D., Bragard, C., Halldorsson, T., et al.
(2020). Evaluation of existing guidelines for their adequacy for the microbial
characterisation and environmental risk assessment of microorganisms obtained
through synthetic biology. EFSA J. 18 (10), e06263. doi:10.2903/j.efsa.2020.6263

Eng, A., and Borenstein, E. (2016). An algorithm for designing minimal microbial
communities with desired metabolic capacities. Bioinformatics 32 (13), 2008–2016.
doi:10.1093/bioinformatics/btw107

Estrela, S., Sanchez-Gorostiaga, A., Vila, J. C., and Sanchez, A. (2021). Nutrient
dominance governs the assembly of microbial communities in mixed nutrient
environments. eLife 10, e65948. doi:10.7554/eLife.65948

Fang, H., Kang, J., and Zhang, D. (2017). Microbial production of vitamin B12: a
review and future perspectives. Microb. Cell Factories 16 (1), 15. doi:10.1186/s12934-
017-0631-y

Faust, K., and Raes, J. (2012). Microbial interactions: from networks to models. Nat.
Rev. Microbiol. 10 (8), 538–550. doi:10.1038/nrmicro2832

Frioux, C., Fremy, E., Trottier, C., and Siegel, A. (2018). Scalable and exhaustive
screening of metabolic functions carried out by microbial consortia. Bioinformatics 34
(17), i934–i943. doi:10.1093/bioinformatics/bty588

Fu, F., Tschitschko, B., Hutchins, D. A., Larsson, M. E., Baker, K. G., McInnes, A., et al.
(2022). Temperature variability interacts with mean temperature to influence the
predictability of microbial phenotypes. Glob. Change Biol. 28 (19), 5741–5754.
doi:10.1111/gcb.16330

Gao, Y., Wang, L., and Wang, B. (2023). Customizing cellular signal processing by
synthetic multi-level regulatory circuits. Nat. Commun. 14 (1), 8415. doi:10.1038/
s41467-023-44256-1

García-Jiménez, B., García, J. L., and Nogales, J. (2018). FLYCOP: metabolic
modeling-based analysis and engineering microbial communities. Bioinformatics 34
(17), i954–i963. doi:10.1093/bioinformatics/bty561

George, A. B., and Korolev, K. S. (2023). Ecological landscapes guide the assembly of
optimal microbial communities. PLOS Comput. Biol. 19 (1), e1010570. doi:10.1371/
journal.pcbi.1010570

Giménez-Palomares, F., Fernández De Córdoba, P., Mejuto, J. C., Bendaña-Jácome, R.
J., and Pérez-Guerra, N. (2022). Evaluation and mathematical analysis of a four-
dimensional lotka–volterra-like equation designed to describe the batch nisin
production system. Mathematics 10 (5), 677. doi:10.3390/math10050677

Giordano, N., Gaudin, M., Trottier, C., Delage, E., Nef, C., Bowler, C., et al. (2024).
Genome-scale community modelling reveals conserved metabolic cross-feedings in
epipelagic bacterioplankton communities. Nat. Commun. 15 (1), 2721. doi:10.1038/
s41467-024-46374-w

Goldford, J. E., Lu, N., Bajić, D., Estrela, S., Tikhonov, M., Sanchez-Gorostiaga, A.,
et al. (2018). Emergent simplicity in microbial community assembly. Science 361 (6401),
469–474. doi:10.1126/science.aat1168

Goodnight, C. J. (1990a). Experimental studies of community evolution i: the
response to selection at the community level. Evolution 44 (6), 1614–1624. doi:10.
1111/j.1558-5646.1990.tb03850.x

Goodnight, C. J. (1990b). Experimental studies of community evolution ii: the
ecological basis of the response to community selection. Evolution 44 (6),
1625–1636. doi:10.1111/j.1558-5646.1990.tb03851.x

Gould, A. L., Zhang, V., Lamberti, L., Jones, E. W., Obadia, B., Korasidis, N., et al.
(2018). Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115 (51),
E11951–E11960. doi:10.1073/pnas.1809349115

Gowda, K., Ping, D., Mani, M., and Kuehn, S. (2022). Genomic structure predicts
metabolite dynamics in microbial communities. Cell 185 (3), 530–546.e25. doi:10.1016/
j.cell.2021.12.036

Graham, A. E., and Ledesma-Amaro, R. (2023). The microbial food revolution. Nat.
Commun. 14 (1), 2231. doi:10.1038/s41467-023-37891-1

Großkopf, T., and Soyer, O. S. (2014). Synthetic microbial communities. Curr. Opin.
Microbiol. 18, 72–77. doi:10.1016/j.mib.2014.02.002

Gu, C., Kim, G. B., Kim, W. J., Kim, H. U., and Lee, S. Y. (2019). Current status and
applications of genome-scale metabolic models. Genome Biol. 20 (1), 121. doi:10.1186/
s13059-019-1730-3

Guo, X., and Boedicker, J. (2016). High-order interactions between species strongly
influence the activity of microbial communities. Biophysical J. 110 (3), 143a. doi:10.
1016/j.bpj.2015.11.811

Frontiers in Synthetic Biology frontiersin.org11

San Román et al. 10.3389/fsybi.2025.1532846

https://doi.org/10.1111/evo.14092
https://doi.org/10.1111/evo.14092
https://doi.org/10.1038/s41559-021-01457-5
https://doi.org/10.1016/j.jhazmat.2009.06.100
https://doi.org/10.1371/journal.pcbi.1003695
https://doi.org/10.1371/journal.pcbi.1003695
https://doi.org/10.1126/science.1203799
https://doi.org/10.1038/s41591-019-0498-z
https://doi.org/10.1038/s41467-021-22938-y
https://doi.org/10.1128/msystems.00951-22
https://doi.org/10.1128/msystems.00951-22
https://doi.org/10.1016/j.cels.2023.11.007
https://doi.org/10.1016/j.mib.2016.03.015
https://doi.org/10.1016/j.mib.2016.03.015
https://doi.org/10.1016/j.cbpa.2015.10.018
https://doi.org/10.1038/s41467-019-09848-w
https://doi.org/10.1038/s41467-019-09848-w
https://doi.org/10.1038/s41564-024-01752-4
https://doi.org/10.1038/s41564-024-01752-4
https://doi.org/10.1128/msystems.00228-21
https://doi.org/10.1128/msystems.00228-21
https://doi.org/10.1038/s41559-021-01535-8
https://doi.org/10.1016/j.copbio.2022.102730
https://doi.org/10.1016/j.copbio.2022.102730
https://doi.org/10.7554/eLife.101906.1
https://doi.org/10.1073/pnas.2111261119
https://doi.org/10.1073/pnas.2111261119
https://doi.org/10.1016/j.cell.2024.04.016
https://doi.org/10.1128/mSystems.00606-19
https://doi.org/10.1128/msystems.00181-18
https://doi.org/10.7554/eLife.53433
https://doi.org/10.1038/s41596-021-00593-3
https://doi.org/10.1038/s41596-021-00593-3
https://doi.org/10.1073/pnas.2300634120
https://doi.org/10.1186/1752-0509-7-74
https://doi.org/10.1186/1471-2105-1-1
https://doi.org/10.1186/1471-2105-1-1
https://doi.org/10.2903/j.efsa.2020.6263
https://doi.org/10.1093/bioinformatics/btw107
https://doi.org/10.7554/eLife.65948
https://doi.org/10.1186/s12934-017-0631-y
https://doi.org/10.1186/s12934-017-0631-y
https://doi.org/10.1038/nrmicro2832
https://doi.org/10.1093/bioinformatics/bty588
https://doi.org/10.1111/gcb.16330
https://doi.org/10.1038/s41467-023-44256-1
https://doi.org/10.1038/s41467-023-44256-1
https://doi.org/10.1093/bioinformatics/bty561
https://doi.org/10.1371/journal.pcbi.1010570
https://doi.org/10.1371/journal.pcbi.1010570
https://doi.org/10.3390/math10050677
https://doi.org/10.1038/s41467-024-46374-w
https://doi.org/10.1038/s41467-024-46374-w
https://doi.org/10.1126/science.aat1168
https://doi.org/10.1111/j.1558-5646.1990.tb03850.x
https://doi.org/10.1111/j.1558-5646.1990.tb03850.x
https://doi.org/10.1111/j.1558-5646.1990.tb03851.x
https://doi.org/10.1073/pnas.1809349115
https://doi.org/10.1016/j.cell.2021.12.036
https://doi.org/10.1016/j.cell.2021.12.036
https://doi.org/10.1038/s41467-023-37891-1
https://doi.org/10.1016/j.mib.2014.02.002
https://doi.org/10.1186/s13059-019-1730-3
https://doi.org/10.1186/s13059-019-1730-3
https://doi.org/10.1016/j.bpj.2015.11.811
https://doi.org/10.1016/j.bpj.2015.11.811
https://www.frontiersin.org/journals/synthetic-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsybi.2025.1532846


Hanly, T. J., and Henson, M. A. (2011). Dynamic flux balance modeling of microbial
co-cultures for efficient batch fermentation of glucose and xylose mixtures. Biotechnol.
Bioeng. 108 (2), 376–385. doi:10.1002/bit.22954

Hanly, T. J., Urello, M., and Henson, M. A. (2012). Dynamic flux balance modeling of
S. cerevisiae and E. coli co-cultures for efficient consumption of glucose/xylose mixtures.
Appl. Microbiol. Biotechnol. 93 (6), 2529–2541. doi:10.1007/s00253-011-3628-1

Hansen, J., and Kielland-Brandt, M. C. (1996). Modification of biochemical pathways
in industrial yeasts. J. Biotechnol. 49 (1–3), 1–12. doi:10.1016/0168-1656(96)01523-4

Hanson, A. D., and Lorenzo, V. D. (2023). Synthetic Biology─High time to deliver?
ACS Synth. Biol. 12 (6), 1579–1582. doi:10.1021/acssynbio.3c00238

Harcombe, W. R., Riehl, W. J., Dukovski, I., Granger, B. R., Betts, A., Lang, A. H., et al.
(2014). Metabolic resource allocation in individual microbes determines ecosystem
interactions and spatial dynamics. Cell Rep. 7 (4), 1104–1115. doi:10.1016/j.celrep.2014.
03.070

Heinken, A., Hertel, J., Acharya, G., Ravcheev, D. A., Nyga, M., Okpala, O. E., et al.
(2023). Genome-scale metabolic reconstruction of 7,302 human microorganisms for
personalized medicine. Nat. Biotechnol. 41 (9), 1320–1331. doi:10.1038/s41587-022-
01628-0

Heinken, A., and Thiele, I. (2022). Microbiome Modelling Toolbox 2.0: efficient,
tractable modelling of microbiome communities. Bioinformatics 38 (8), 2367–2368.
doi:10.1093/bioinformatics/btac082

Hu, A., Ren, M., and Wang, J. (2021). Microbial species performance responses to
environmental changes: genomic traits and nutrient availability. Ecology 102 (7),
e03382. doi:10.1002/ecy.3382

Hu, G., Li, Y., Ye, C., Liu, L., and Chen, X. (2019). Engineering microorganisms for
enhanced CO2 sequestration. Trends Biotechnol. 37 (5), 532–547. doi:10.1016/j.tibtech.
2018.10.008

Hu, J., Amor, D. R., Barbier, M., Bunin, G., and Gore, J. (2022). Emergent phases of
ecological diversity and dynamics mapped in microcosms. Science 378 (6615), 85–89.
doi:10.1126/science.abm7841

Jiang, S., Otero-Muras, I., Banga, J. R., Wang, Y., Kaiser, M., and Krasnogor, N.
(2022). OptDesign: identifying optimum design strategies in strain engineering for
biochemical production. ACS Synth. Biol. 11 (4), 1531–1541. doi:10.1021/acssynbio.
1c00610

Jiménez, J., Guardia-Puebla, Y., Romero-Romero, O., Cisneros-Ortiz, M. E., Guerra,
G., Morgan-Sagastume, J. M., et al. (2014). Methanogenic activity optimization using
the response surface methodology, during the anaerobic co-digestion of agriculture and
industrial wastes. Microbial community diversity. Biomass Bioenergy 71, 84–97. doi:10.
1016/j.biombioe.2014.10.023

Johns, N. I., Blazejewski, T., Gomes, A. L., and Wang, H. H. (2016). Principles for
designing synthetic microbial communities. Curr. Opin. Microbiol. 31, 146–153. doi:10.
1016/j.mib.2016.03.010

Jones, J. A., Vernacchio, V. R., Sinkoe, A. L., Collins, S. M., Ibrahim, M. H. A.,
Lachance, D. M., et al. (2016). Experimental and computational optimization of an
Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35,
55–63. doi:10.1016/j.ymben.2016.01.006

Jouhten, P., Konstantinidis, D., Pereira, F., Andrejev, S., Grkovska, K., Castillo,
S., et al. (2022). Predictive evolution of metabolic phenotypes using model-
designed environments. Mol. Syst. Biol. 18 (10), e10980. doi:10.15252/msb.
202210980

Julien-Laferrière, A., Bulteau, L., Parrot, D., Marchetti-Spaccamela, A., Stougie, L.,
Vinga, S., et al. (2016). A combinatorial algorithm for microbial consortia synthetic
design. Sci. Rep. 6 (1), 29182. doi:10.1038/srep29182

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al.
(2021). Highly accurate protein structure prediction with AlphaFold. Nature 596
(7873), 583–589. doi:10.1038/s41586-021-03819-2

Karkaria, B. D., Fedorec, A. J. H., and Barnes, C. P. (2021). Automated design of
synthetic microbial communities. Nat. Commun. 12 (1), 672. doi:10.1038/s41467-020-
20756-2

Karlsen, E., Schulz, C., and Almaas, E. (2018). Automated generation of genome-scale
metabolic draft reconstructions based on KEGG. BMC Bioinforma. 19 (1), 467. doi:10.
1186/s12859-018-2472-z

Kehe, J., Kulesa, A., Ortiz, A., Ackerman, C. M., Thakku, S. G., Sellers, D., et al. (2019).
Massively parallel screening of synthetic microbial communities. Proc. Natl. Acad. Sci.
116 (26), 12804–12809. doi:10.1073/pnas.1900102116

Kehe, J., Ortiz, A., Kulesa, A., Gore, J., Blainey, P. C., and Friedman, J. (2021). Positive
interactions are common among culturable bacteria. Sci. Adv. 7 (45), eabi7159. doi:10.
1126/sciadv.abi7159

Khalil, A. S., and Collins, J. J. (2010). Synthetic biology: applications come of age. Nat.
Rev. Genet. 11 (5), 367–379. doi:10.1038/nrg2775

Khandelwal, R. A., Olivier, B. G., Röling, W. F. M., Teusink, B., and Bruggeman, F. J.
(2013). Community flux balance analysis for microbial consortia at balanced growth.
PLoS ONE 8 (5), e64567. doi:10.1371/journal.pone.0064567

Kikot, P., Viera, M., Mignone, C., and Donati, E. (2010). Study of the effect of pH and
dissolved heavy metals on the growth of sulfate-reducing bacteria by a fractional

factorial design. Hydrometallurgy 104 (3–4), 494–500. doi:10.1016/j.hydromet.2010.
02.026

Kirwan, L., Connolly, J., Finn, J. A., Brophy, C., Lüscher, A., Nyfeler, D., et al. (2009).
Diversity–interaction modeling: estimating contributions of species identities and
interactions to ecosystem function. Ecology 90 (8), 2032–2038. doi:10.1890/08-1684.1

Kong, W., Meldgin, D. R., Collins, J. J., and Lu, T. (2018). Designing microbial
consortia with defined social interactions.Nat. Chem. Biol. 14 (8), 821–829. doi:10.1038/
s41589-018-0091-7

Krause, S., Le Roux, X., Niklaus, P. A., Van Bodegom, P. M., Lennon, J. T., Bertilsson,
S., et al. (2014). Trait-based approaches for understanding microbial biodiversity and
ecosystem functioning. Front. Microbiol. 5, 251. doi:10.3389/fmicb.2014.00251

Kucharzyk, K. H., Crawford, R. L., Paszczynski, A. J., Soule, T., and Hess, T. F. (2012).
Maximizing microbial degradation of perchlorate using a genetic algorithm: media
optimization. J. Biotechnol. 157 (1), 189–197. doi:10.1016/j.jbiotec.2011.10.011

Kwok, R. (2010). Five hard truths for synthetic biology. Nature 463 (7279), 288–290.
doi:10.1038/463288a

Lajoie, G., and Kembel, S. W. (2019). Making the most of trait-based approaches for
microbial ecology. Trends Microbiol. 27 (10), 814–823. doi:10.1016/j.tim.2019.06.003

Lalejini, A., Dolson, E., Vostinar, A. E., and Zaman, L. (2022). Artificial selection
methods from evolutionary computing show promise for directed evolution of
microbes. eLife 11, e79665. doi:10.7554/eLife.79665

Laurent, J. M., Jain, A., Kan, A., Steinacher, M., Enrriquez Casimiro, N., Stavrakis, S.,
et al. (2024). Directed evolution of material-producing microorganisms. Proc. Natl.
Acad. Sci. 121 (31), e2403585121. doi:10.1073/pnas.2403585121

Lázár, V., Snitser, O., Barkan, D., and Kishony, R. (2022). Antibiotic combinations
reduce Staphylococcus aureus clearance. Nature 610 (7932), 540–546. doi:10.1038/
s41586-022-05260-5

Lechón-Alonso, P., Clegg, T., Cook, J., Smith, T. P., and Pawar, S. (2021). The role of
competition versus cooperation in microbial community coalescence. PLOS Comput.
Biol. 17 (11), e1009584. doi:10.1371/journal.pcbi.1009584

Leonard, E., Nielsen, D., Solomon, K., and Prather, K. J. (2008). Engineering microbes
with synthetic biology frameworks. Trends Biotechnol. 26 (12), 674–681. doi:10.1016/j.
tibtech.2008.08.003

Lewontin, R. C. (1970). The units of selection. Annu. Rev. Ecol. Syst. 1 (1), 1–18.
doi:10.1146/annurev.es.01.110170.000245

Li, C., Han, Y., Zou, X., Zhang, X., Ran, Q., and Dong, C. (2024). A systematic
discussion and comparison of the construction methods of synthetic microbial
community. Synthetic Syst. Biotechnol. 9 (4), 775–783. doi:10.1016/j.synbio.2024.06.006

Li, T., Chen, X., Chen, J., Wu, Q., and Chen, G. (2014). Open and continuous
fermentation: products, conditions and bioprocess economy. Biotechnol. J. 9 (12),
1503–1511. doi:10.1002/biot.201400084

Li, X., Zhou, Z., Li, W., Yan, Y., Shen, X., Wang, J., et al. (2022). Design of stable and
self-regulated microbial consortia for chemical synthesis. Nat. Commun. 13 (1), 1554.
doi:10.1038/s41467-022-29215-6

Ling, H., Teo, W., Chen, B., Leong, S. S. J., and Chang, M. W. (2014). Microbial
tolerance engineering toward biochemical production: from lignocellulose to products.
Curr. Opin. Biotechnol. 29, 99–106. doi:10.1016/j.copbio.2014.03.005

Machado, D., Andrejev, S., Tramontano, M., and Patil, K. R. (2018). Fast automated
reconstruction of genome-scale metabolic models for microbial species and
communities. Nucleic Acids Res. 46 (15), 7542–7553. doi:10.1093/nar/gky537

Machado, D., Maistrenko, O. M., Andrejev, S., Kim, Y., Bork, P., Patil, K. R., et al.
(2021). Polarization of microbial communities between competitive and cooperative
metabolism. Nat. Ecol. and Evol. 5 (2), 195–203. doi:10.1038/s41559-020-01353-4

Mahadevan, R., Edwards, J. S., and Doyle, F. J. (2002). Dynamic flux balance analysis
of diauxic growth in Escherichia coli. Biophysical J. 83 (3), 1331–1340. doi:10.1016/
S0006-3495(02)73903-9

Marsland, R., Cui, W., Goldford, J., and Mehta, P. (2020a). The Community
Simulator: a Python package for microbial ecology. PLOS ONE 15 (3), e0230430.
doi:10.1371/journal.pone.0230430

Marsland, R., Cui, W., and Mehta, P. (2020b). A minimal model for microbial
biodiversity can reproduce experimentally observed ecological patterns. Sci. Rep. 10 (1),
3308. doi:10.1038/s41598-020-60130-2

Maulud, D., and Abdulazeez, A. M. (2020). A review on linear regression
comprehensive in machine learning. J. Appl. Sci. Technol. Trends 1 (2), 140–147.
doi:10.38094/jastt1457

McCarty, N. S., and Ledesma-Amaro, R. (2019). Synthetic biology tools to engineer
microbial communities for biotechnology. Trends Biotechnol. 37 (2), 181–197. doi:10.
1016/j.tibtech.2018.11.002

McEnany, J., and Good, B. H. (2024). Predicting the first steps of evolution in
randomly assembled communities. Nat. Commun. 15 (1), 8495. doi:10.1038/s41467-
024-52467-3

McKay, L. L., and Baldwin, K. A. (1990). Applications for biotechnology: present and
future improvements in lactic acid bacteria. FEMS Microbiol. Lett. 87 (1–2), 3–14.
doi:10.1111/j.1574-6968.1990.tb04876.x

Frontiers in Synthetic Biology frontiersin.org12

San Román et al. 10.3389/fsybi.2025.1532846

https://doi.org/10.1002/bit.22954
https://doi.org/10.1007/s00253-011-3628-1
https://doi.org/10.1016/0168-1656(96)01523-4
https://doi.org/10.1021/acssynbio.3c00238
https://doi.org/10.1016/j.celrep.2014.03.070
https://doi.org/10.1016/j.celrep.2014.03.070
https://doi.org/10.1038/s41587-022-01628-0
https://doi.org/10.1038/s41587-022-01628-0
https://doi.org/10.1093/bioinformatics/btac082
https://doi.org/10.1002/ecy.3382
https://doi.org/10.1016/j.tibtech.2018.10.008
https://doi.org/10.1016/j.tibtech.2018.10.008
https://doi.org/10.1126/science.abm7841
https://doi.org/10.1021/acssynbio.1c00610
https://doi.org/10.1021/acssynbio.1c00610
https://doi.org/10.1016/j.biombioe.2014.10.023
https://doi.org/10.1016/j.biombioe.2014.10.023
https://doi.org/10.1016/j.mib.2016.03.010
https://doi.org/10.1016/j.mib.2016.03.010
https://doi.org/10.1016/j.ymben.2016.01.006
https://doi.org/10.15252/msb.202210980
https://doi.org/10.15252/msb.202210980
https://doi.org/10.1038/srep29182
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41467-020-20756-2
https://doi.org/10.1038/s41467-020-20756-2
https://doi.org/10.1186/s12859-018-2472-z
https://doi.org/10.1186/s12859-018-2472-z
https://doi.org/10.1073/pnas.1900102116
https://doi.org/10.1126/sciadv.abi7159
https://doi.org/10.1126/sciadv.abi7159
https://doi.org/10.1038/nrg2775
https://doi.org/10.1371/journal.pone.0064567
https://doi.org/10.1016/j.hydromet.2010.02.026
https://doi.org/10.1016/j.hydromet.2010.02.026
https://doi.org/10.1890/08-1684.1
https://doi.org/10.1038/s41589-018-0091-7
https://doi.org/10.1038/s41589-018-0091-7
https://doi.org/10.3389/fmicb.2014.00251
https://doi.org/10.1016/j.jbiotec.2011.10.011
https://doi.org/10.1038/463288a
https://doi.org/10.1016/j.tim.2019.06.003
https://doi.org/10.7554/eLife.79665
https://doi.org/10.1073/pnas.2403585121
https://doi.org/10.1038/s41586-022-05260-5
https://doi.org/10.1038/s41586-022-05260-5
https://doi.org/10.1371/journal.pcbi.1009584
https://doi.org/10.1016/j.tibtech.2008.08.003
https://doi.org/10.1016/j.tibtech.2008.08.003
https://doi.org/10.1146/annurev.es.01.110170.000245
https://doi.org/10.1016/j.synbio.2024.06.006
https://doi.org/10.1002/biot.201400084
https://doi.org/10.1038/s41467-022-29215-6
https://doi.org/10.1016/j.copbio.2014.03.005
https://doi.org/10.1093/nar/gky537
https://doi.org/10.1038/s41559-020-01353-4
https://doi.org/10.1016/S0006-3495(02)73903-9
https://doi.org/10.1016/S0006-3495(02)73903-9
https://doi.org/10.1371/journal.pone.0230430
https://doi.org/10.1038/s41598-020-60130-2
https://doi.org/10.38094/jastt1457
https://doi.org/10.1016/j.tibtech.2018.11.002
https://doi.org/10.1016/j.tibtech.2018.11.002
https://doi.org/10.1038/s41467-024-52467-3
https://doi.org/10.1038/s41467-024-52467-3
https://doi.org/10.1111/j.1574-6968.1990.tb04876.x
https://www.frontiersin.org/journals/synthetic-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsybi.2025.1532846


Mendoza, S. N., Olivier, B. G., Molenaar, D., and Teusink, B. (2019). A systematic
assessment of current genome-scale metabolic reconstruction tools. Genome Biol. 20
(1), 158. doi:10.1186/s13059-019-1769-1

Mickalide, H., and Kuehn, S. (2019). Higher-order interaction between species
inhibits bacterial invasion of a phototroph-predator microbial community. Cell Syst.
9 (6), 521–533.e10. doi:10.1016/j.cels.2019.11.004

Morin, M. A., Morrison, A. J., Harms, M. J., and Dutton, R. J. (2022). Higher-order
interactions shape microbial interactions as microbial community complexity increases.
Sci. Rep. 12 (1), 22640. doi:10.1038/s41598-022-25303-1

Morris, A., Meyer, K., and Bohannan, B. (2020). Linking microbial communities to
ecosystem functions: what we can learn from genotype–phenotype mapping in
organisms. Philosophical Trans. R. Soc. B Biol. Sci. 375 (1798), 20190244. doi:10.
1098/rstb.2019.0244

Muir, W. M. (1996). Group selection for adaptation to multiple-hen cages: selection
program and direct responses. Poult. Sci. 75 (4), 447–458. doi:10.3382/ps.0750447

Müller, I. E., Rubens, J. R., Jun, T., Graham, D., Xavier, R., and Lu, T. K. (2019). Gene
networks that compensate for crosstalk with crosstalk. Nat. Commun. 10 (1), 4028.
doi:10.1038/s41467-019-12021-y

Neal, M., Brakewood, W., Betenbaugh, M., and Zengler, K. (2024). Pan-genome-scale
metabolic modeling of Bacillus subtilis reveals functionally distinct groups. mSystems 9
(11), e0092324–24. doi:10.1128/msystems.00923-24

O’Brien, E. J., Lerman, J. A., Chang, R. L., Hyduke, D. R., and Palsson, B. Ø. (2013).
Genome-scale models of metabolism and gene expression extend and refine growth
phenotype prediction. Mol. Syst. Biol. 9 (1), 693. doi:10.1038/msb.2013.52

Okano, H., Hermsen, R., Kochanowski, K., and Hwa, T. (2019). Regulation underlying
hierarchical and simultaneous utilization of carbon substrates by flux sensors in Escherichia
coli. Nat. Microbiol. 5 (1), 206–215. doi:10.1038/s41564-019-0610-7

Olivier, B. (2018). SystemsBioinformatics/cbmpy-metadraft: metaDraft is now
available (Version v0.9.0-rc.1). Zenodo. [Computer software]. doi:10.5281/ZENODO.
2398336

Orth, J. D., Fleming, R. M. T., and Palsson, B. Ø. (2010a). Reconstruction and use of
microbial metabolic networks: the core Escherichia coli metabolic model as an
educational guide. EcoSal Plus. 4(1), doi:10.1128/ecosalplus.10.2.1

Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010b). What is flux balance analysis? Nat.
Biotechnol. 28 (3), 245–248. doi:10.1038/nbt.1614

Otwinowski, J. (2018). Biophysical inference of epistasis and the effects of mutations
on protein stability and function. Mol. Biol. Evol. 35 (10), 2345–2354. doi:10.1093/
molbev/msy141

Pacheco, A. R., and Segrè, D. (2021) An evolutionary algorithm for designing
microbial communities via environmental modification. J. R. Soc. Interface. 18:
20210348. doi:10.1098/rsif.2021.0348

Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., and Kao-Kniffin, J. (2015).
Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9
(4), 980–989. doi:10.1038/ismej.2014.196

Park, H., Patel, A., Hunt, K. A., Henson, M. A., and Carlson, R. P. (2020). Artificial
consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and
biofuel synthesis. Npj Biofilms Microbiomes 6 (1), 59. doi:10.1038/s41522-020-00170-8

Park, Y.-K., Peng, H., Hapeta, P., Sellés Vidal, L., and Ledesma-Amaro, R. (2024).
Engineered cross-feeding creates inter- and intra-species synthetic yeast communities
with enhanced bioproduction. Nat. Commun. 15 (1), 8924. doi:10.1038/s41467-024-
53117-4

Peng, H., Darlington, A. P. S., South, E. J., Chen, H.-H., Jiang, W., and Ledesma-
Amaro, R. (2024). A molecular toolkit of cross-feeding strains for engineering synthetic
yeast communities. Nat. Microbiol. 9 (3), 848–863. doi:10.1038/s41564-023-01596-4

Perrino, G., Hadjimitsis, A., Ledesma-Amaro, R., and Stan, G.-B. (2021). Control
engineering and synthetic biology: working in synergy for the analysis and control of
microbial systems. Curr. Opin. Microbiol. 62, 68–75. doi:10.1016/j.mib.2021.05.004

Pignon, E., Holló, G., Steiner, T., Van Vliet, S., and Schaerli, Y. (2024). Engineering
microbial consortia: uptake and leakage rate differentially shape community
arrangement and composition. doi:10.1101/2024.07.19.604250

Pinto, T., Grimalt-Alemany, A., Flores-Alsina, X., Gavala, H. N., Gernaey, K. V., and
Junicke, H. (2022). Shaping an open microbiome for butanol production through
process control. Fermentation 8 (7), 333. doi:10.3390/fermentation8070333

Prasad, R. K., Chatterjee, S., Mazumder, P. B., Gupta, S. K., Sharma, S., Vairale, M. G., et al.
(2019). Bioethanol production from waste lignocelluloses: a review on microbial degradation
potential. Chemosphere 231, 588–606. doi:10.1016/j.chemosphere.2019.05.142

Qureshi, A. S., Khushk, I., Naqvi, S. R., Simiar, A. A., Ali, C. H., Naqvi, M., et al.
(2017). Fruit waste to energy through open fermentation. Energy Procedia 142, 904–909.
doi:10.1016/j.egypro.2017.12.145

Ratzke, C., and Gore, J. (2018). Modifying and reacting to the environmental pH can drive
bacterial interactions. PLOS Biol. 16 (3), e2004248. doi:10.1371/journal.pbio.2004248

Reetz, M. T., Zonta, A., Schimossek, K., Jaeger, K., and Liebeton, K. (1997). Creation
of enantioselective biocatalysts for organic chemistry by in vitro evolution. Angewandte
Chemie Int. Ed. Engl. 36 (24), 2830–2832. doi:10.1002/anie.199728301

Roell, G. W., Zha, J., Carr, R. R., Koffas, M. A., Fong, S. S., and Tang, Y. J. (2019).
Engineering microbial consortia by division of labor. Microb. Cell Factories 18 (1), 35.
doi:10.1186/s12934-019-1083-3

Romano, P., Soli, M. G., Suzzi, G., Grazia, L., and Zambonelli, C. (1985).
Improvement of a wine Saccharomyces cerevisiae strain by a breeding program.
Appl. Environ. Microbiol. 50 (4), 1064–1067. doi:10.1128/aem.50.4.1064-1067.
1985

Romero, P. A., Krause, A., and Arnold, F. H. (2013). Navigating the protein fitness
landscape with Gaussian processes. Proc. Natl. Acad. Sci. 110 (3), E193–E201. doi:10.
1073/pnas.1215251110

Sailer, Z. R., Shafik, S. H., Summers, R. L., Joule, A., Patterson-Robert, A., Martin, R.
E., et al. (2020). Inferring a complete genotype-phenotype map from a small number of
measured phenotypes. PLOS Comput. Biol. 16 (9), e1008243. doi:10.1371/journal.pcbi.
1008243

Salimi, F., Zhuang, K., and Mahadevan, R. (2010). Genome-scale metabolic modeling
of a clostridial co-culture for consolidated bioprocessing. Biotechnol. J. 5 (7), 726–738.
doi:10.1002/biot.201000159

Sánchez, Á., Arrabal, A., San Román, M., and Díaz-Colunga, J. (2024). The
optimization of microbial functions through rational environmental manipulations.
Mol. Microbiol. 122 (3), 294–303. doi:10.1111/mmi.15236

Sanchez, A., Bajic, D., Diaz-Colunga, J., Skwara, A., Vila, J. C. C., and Kuehn, S.
(2023). The community-function landscape of microbial consortia. Cell Syst. 14 (2),
122–134. doi:10.1016/j.cels.2022.12.011

Sánchez, Á., Vila, J. C. C., Chang, C.-Y., Diaz-Colunga, J., Estrela, S., and Rebolleda-
Gomez, M. (2021). Directed evolution of microbial communities. Annu. Rev. Biophysics
50 (1), 323–341. doi:10.1146/annurev-biophys-101220-072829

Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F., and Sanchez, A.
(2019). High-order interactions distort the functional landscape of microbial consortia.
PLOS Biol. 17 (12), e3000550. doi:10.1371/journal.pbio.3000550

San León, D., and Nogales, J. (2022). Toward merging bottom–up and top–down
model-based designing of synthetic microbial communities. Curr. Opin. Microbiol. 69,
102169. doi:10.1016/j.mib.2022.102169

Schmidt-Dannert, C., and Arnold, F. H. (1999). Directed evolution of industrial
enzymes. Trends Biotechnol. 17 (4), 135–136. doi:10.1016/S0167-7799(98)01283-9

Schoustra, S., Hwang, S., Krug, J., and De Visser, J. A. G. M. (2016). Diminishing-
returns epistasis among random beneficial mutations in a multicellular fungus. Proc. R.
Soc. B Biol. Sci. 283 (1837), 20161376. doi:10.1098/rspb.2016.1376

Segrè, D., Vitkup, D., and Church, G. M. (2002). Analysis of optimality in natural and
perturbed metabolic networks. Proc. Natl. Acad. Sci. 99 (23), 15112–15117. doi:10.1073/
pnas.232349399

Senne De Oliveira Lino, F., Bajic, D., Vila, J. C. C., Sánchez, A., and Sommer, M.
O. A. (2021). Complex yeast–bacteria interactions affect the yield of industrial
ethanol fermentation. Nat. Commun. 12 (1), 1498. doi:10.1038/s41467-021-
21844-7

Sgobba, E., Stumpf, A. K., Vortmann, M., Jagmann, N., Krehenbrink, M., Dirks-
Hofmeister, M. E., et al. (2018). Synthetic Escherichia coli-Corynebacterium
glutamicum consortia for l-lysine production from starch and sucrose. Bioresour.
Technol. 260, 302–310. doi:10.1016/j.biortech.2018.03.113

Shafiei, M., Dunn, K. A., Boon, E., MacDonald, S. M., Walsh, D. A., Gu, H., et al.
(2015). BioMiCo: a supervised Bayesian model for inference of microbial community
structure. Microbiome 3 (1), 8. doi:10.1186/s40168-015-0073-x

Shafiei, M., Dunn, K. A., Chipman, H., Gu, H., and Bielawski, J. P. (2014). BiomeNet: a
bayesian model for inference of metabolic divergence among microbial communities.
PLoS Comput. Biol. 10 (11), e1003918. doi:10.1371/journal.pcbi.1003918

Shibasaki, S., and Mitri, S. (2020). Controlling evolutionary dynamics to optimize
microbial bioremediation. Evol. Appl. 13 (9), 2460–2471. doi:10.1111/eva.13050

Shlomi, T., Berkman, O., and Ruppin, E. (2005). Regulatory on/off minimization of
metabolic flux changes after genetic perturbations. Proc. Natl. Acad. Sci. 102 (21),
7695–7700. doi:10.1073/pnas.0406346102

Shong, J., Jimenez Diaz, M. R., and Collins, C. H. (2012). Towards synthetic microbial
consortia for bioprocessing. Curr. Opin. Biotechnol. 23 (5), 798–802. doi:10.1016/j.
copbio.2012.02.001

Silverstein, M. R., Bhatnagar, J. M., and Segrè, D. (2024). Metabolic complexity drives
divergence in microbial communities. Nat. Ecol. and Evol. 8 (8), 1493–1504. doi:10.
1038/s41559-024-02440-6

Silverstein, M. R., Segrè, D., and Bhatnagar, J. M. (2023). Environmental microbiome
engineering for the mitigation of climate change. Glob. Change Biol. 29 (8), 2050–2066.
doi:10.1111/gcb.16609

Skonieczny, M. T., and Yargeau, V. (2009). Biohydrogen production from wastewater
by Clostridium beijerinckii: effect of pH and substrate concentration. Int. J. Hydrogen
Energy 34 (8), 3288–3294. doi:10.1016/j.ijhydene.2009.01.044

Skwara, A., Gowda, K., Yousef, M., Diaz-Colunga, J., Raman, A. S., Sanchez, A., et al.
(2023). Statistically learning the functional landscape of microbial communities. Nat.
Ecol. and Evol. 7 (11), 1823–1833. doi:10.1038/s41559-023-02197-4

Frontiers in Synthetic Biology frontiersin.org13

San Román et al. 10.3389/fsybi.2025.1532846

https://doi.org/10.1186/s13059-019-1769-1
https://doi.org/10.1016/j.cels.2019.11.004
https://doi.org/10.1038/s41598-022-25303-1
https://doi.org/10.1098/rstb.2019.0244
https://doi.org/10.1098/rstb.2019.0244
https://doi.org/10.3382/ps.0750447
https://doi.org/10.1038/s41467-019-12021-y
https://doi.org/10.1128/msystems.00923-24
https://doi.org/10.1038/msb.2013.52
https://doi.org/10.1038/s41564-019-0610-7
https://doi.org/10.5281/ZENODO.2398336
https://doi.org/10.5281/ZENODO.2398336
https://doi.org/10.1128/ecosalplus.10.2.1
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1093/molbev/msy141
https://doi.org/10.1093/molbev/msy141
https://doi.org/10.1098/rsif.2021.0348
https://doi.org/10.1038/ismej.2014.196
https://doi.org/10.1038/s41522-020-00170-8
https://doi.org/10.1038/s41467-024-53117-4
https://doi.org/10.1038/s41467-024-53117-4
https://doi.org/10.1038/s41564-023-01596-4
https://doi.org/10.1016/j.mib.2021.05.004
https://doi.org/10.1101/2024.07.19.604250
https://doi.org/10.3390/fermentation8070333
https://doi.org/10.1016/j.chemosphere.2019.05.142
https://doi.org/10.1016/j.egypro.2017.12.145
https://doi.org/10.1371/journal.pbio.2004248
https://doi.org/10.1002/anie.199728301
https://doi.org/10.1186/s12934-019-1083-3
https://doi.org/10.1128/aem.50.4.1064-1067.1985
https://doi.org/10.1128/aem.50.4.1064-1067.1985
https://doi.org/10.1073/pnas.1215251110
https://doi.org/10.1073/pnas.1215251110
https://doi.org/10.1371/journal.pcbi.1008243
https://doi.org/10.1371/journal.pcbi.1008243
https://doi.org/10.1002/biot.201000159
https://doi.org/10.1111/mmi.15236
https://doi.org/10.1016/j.cels.2022.12.011
https://doi.org/10.1146/annurev-biophys-101220-072829
https://doi.org/10.1371/journal.pbio.3000550
https://doi.org/10.1016/j.mib.2022.102169
https://doi.org/10.1016/S0167-7799(98)01283-9
https://doi.org/10.1098/rspb.2016.1376
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.1038/s41467-021-21844-7
https://doi.org/10.1038/s41467-021-21844-7
https://doi.org/10.1016/j.biortech.2018.03.113
https://doi.org/10.1186/s40168-015-0073-x
https://doi.org/10.1371/journal.pcbi.1003918
https://doi.org/10.1111/eva.13050
https://doi.org/10.1073/pnas.0406346102
https://doi.org/10.1016/j.copbio.2012.02.001
https://doi.org/10.1016/j.copbio.2012.02.001
https://doi.org/10.1038/s41559-024-02440-6
https://doi.org/10.1038/s41559-024-02440-6
https://doi.org/10.1111/gcb.16609
https://doi.org/10.1016/j.ijhydene.2009.01.044
https://doi.org/10.1038/s41559-023-02197-4
https://www.frontiersin.org/journals/synthetic-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsybi.2025.1532846


Slusarczyk, A. L., Lin, A., and Weiss, R. (2012). Foundations for the design and
implementation of synthetic genetic circuits. Nat. Rev. Genet. 13 (6), 406–420. doi:10.
1038/nrg3227

Smith, P., and Schuster, M. (2019). Public goods and cheating in microbes. Curr. Biol.
29 (11), R442–R447. doi:10.1016/j.cub.2019.03.001

Song, B., Shang, S., Cai, F. M., Liu, Z., Fang, J., Li, N., et al. (2023). Microbial resistance
in rhizosphere hotspots under biodegradable and conventional microplastic
amendment: community and functional sensitivity. Soil Biol. Biochem. 180, 108989.
doi:10.1016/j.soilbio.2023.108989

Statnikov, A., Henaff, M., Narendra, V., Konganti, K., Li, Z., Yang, L., et al. (2013). A
comprehensive evaluation of multicategory classification methods for microbiomic
data. Microbiome 1 (1), 11. doi:10.1186/2049-2618-1-11

Stein, R. R., Tanoue, T., Szabady, R. L., Bhattarai, S. K., Olle, B., Norman, J. M., et al.
(2018). Computer-guided design of optimal microbial consortia for immune system
modulation. eLife 7, e30916. doi:10.7554/eLife.30916

Stolyar, S., Van Dien, S., Hillesland, K. L., Pinel, N., Lie, T. J., Leigh, J. A., et al. (2007).
Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3 (1), 92.
doi:10.1038/msb4100131

Sun, X., Favier, A., Folmar, J., Pyenson, N. C., Sanchez, A., and Rebolleda-Gómez, M.
(2024). Metabolic plasticity shapes microbial communities across a temperature
gradient. Am. Nat. 204 (4), 381–399. doi:10.1086/731997

Swenson, W., Arendt, J., and Wilson, D. S. (2000a). Artificial selection of microbial
ecosystems for 3-chloroaniline biodegradation. Environ. Microbiol. 2 (5), 564–571.
doi:10.1046/j.1462-2920.2000.00140.x

Swenson, W., Wilson, D. S., and Elias, R. (2000b). Artificial ecosystem selection. Proc.
Natl. Acad. Sci. 97 (16), 9110–9114. doi:10.1073/pnas.150237597

Taghavi, N., Singhal, N., Zhuang, W.-Q., and Baroutian, S. (2021). Degradation of
plastic waste using stimulated and naturally occurring microbial strains. Chemosphere
263, 127975. doi:10.1016/j.chemosphere.2020.127975

Tareen, A., Kooshkbaghi, M., Posfai, A., Ireland, W. T., McCandlish, D. M., and
Kinney, J. B. (2022). MAVE-NN: learning genotype-phenotype maps from multiplex
assays of variant effect. Genome Biol. 23 (1), 98. doi:10.1186/s13059-022-02661-7

Thompson, J., Johansen, R., Dunbar, J., and Munsky, B. (2019). Machine learning to
predict microbial community functions: an analysis of dissolved organic carbon from
litter decomposition. PLOS ONE 14 (7), e0215502. doi:10.1371/journal.pone.0215502

Thompson, J. C., Zavala, V.M., andVenturelli, O. S. (2023). Integrating a tailored recurrent
neural network with Bayesian experimental design to optimize microbial community
functions. PLOS Comput. Biol. 19 (9), e1011436. doi:10.1371/journal.pcbi.1011436

Tonner, P. D., Pressman, A., and Ross, D. (2022). Interpretable modeling of
genotype–phenotype landscapes with state-of-the-art predictive power. Proc. Natl.
Acad. Sci. 119 (26), e2114021119. doi:10.1073/pnas.2114021119

Tzamali, E., Poirazi, P., Tollis, I. G., and Reczko,M. (2011). A computational exploration of
bacterial metabolic diversity identifying metabolic interactions and growth-efficient strain
communities. BMC Syst. Biol. 5 (1), 167. doi:10.1186/1752-0509-5-167

Vandecasteele, F. P. J., Crawford, R. L., and Hess, T. F. (2008). Using a genetic
algorithm to drive a microbial ecosystem in a desirable direction. Environ. Microbiol. 10
(7), 1823–1830. doi:10.1111/j.1462-2920.2008.01603.x

Van Den Berg, N. I., Machado, D., Santos, S., Rocha, I., Chacón, J., Harcombe, W., et al.
(2022). Ecological modelling approaches for predicting emergent properties in microbial
communities. Nat. Ecol. and Evol. 6 (7), 855–865. doi:10.1038/s41559-022-01746-7

Van Vliet, S., Hauert, C., Fridberg, K., Ackermann, M., and Dal Co, A. (2022). Global
dynamics of microbial communities emerge from local interaction rules. PLOS Comput.
Biol. 18 (3), e1009877. doi:10.1371/journal.pcbi.1009877

Varma, A., and Palsson, B. O. (1994). Stoichiometric flux balance models
quantitatively predict growth and metabolic by-product secretion in wild-type
Escherichia coli W3110. Appl. Environ. Microbiol. 60 (10), 3724–3731. doi:10.1128/
aem.60.10.3724-3731.1994

Venkataram, S., and Kryazhimskiy, S. (2023). Evolutionary repeatability of emergent
properties of ecological communities. Philosophical Trans. R. Soc. B Biol. Sci. 378 (1877),
20220047. doi:10.1098/rstb.2022.0047

Wade, M. J. (1976). Group selections among laboratory populations of Tribolium.
Proc. Natl. Acad. Sci. 73 (12), 4604–4607. doi:10.1073/pnas.73.12.4604

Wade, M. J. (1977). An experimental study of group selection. Evolution 31 (1),
134–153. doi:10.1111/j.1558-5646.1977.tb00991.x

Wagner, A. (2022). Competition for nutrients increases invasion resistance during
assembly of microbial communities. Mol. Ecol. 31 (15), 4188–4203. doi:10.1111/mec.
16565

Walls, L. E., Otoupal, P., Ledesma-Amaro, R., Velasquez-Orta, S. B., Gladden, J. M.,
and Rios-Solis, L. (2023). Bioconversion of cellulose into bisabolene using
Ruminococcus flavefaciens and Rhodosporidium toruloides. Bioresour. Technol. 368,
128216. doi:10.1016/j.biortech.2022.128216

Walsh, C., Stallard-Olivera, E., and Fierer, N. (2024). Nine (not so simple) steps: a
practical guide to using machine learning in microbial ecology. mBio 15 (2),
e0205023–23. doi:10.1128/mbio.02050-23

Wang, H., Marcišauskas, S., Sánchez, B. J., Domenzain, I., Hermansson, D., Agren, R., et al.
(2018). RAVEN2.0: a versatile toolbox formetabolic network reconstruction and a case study on
Streptomyces coelicolor. PLOS Comput. Biol. 14 (10), e1006541. doi:10.1371/journal.pcbi.
1006541

Wang, J., Gao, M., Wang, Q., Zhang, W., and Shirai, Y. (2016). Pilot-scale open
fermentation of food waste to produce lactic acid without inoculum addition. RSC Adv.
6 (106), 104354–104358. doi:10.1039/C6RA22760K

Wang, J., Jiang, L., and Sun, H. (2021). Early evidence for beer drinking in a 9000-
year-old platform mound in southern China. PLOS ONE 16 (8), e0255833. doi:10.1371/
journal.pone.0255833

Wang, L., Zhang, X., Tang, C., Li, P., Zhu, R., Sun, J., et al. (2022a). Engineering
consortia by polymeric microbial swarmbots. Nat. Commun. 13 (1), 3879. doi:10.1038/
s41467-022-31467-1

Wang, M., Chen, X., Liu, X., Fang, Y., Zheng, X., Huang, T., et al. (2022b). Even
allocation of benefits stabilizes microbial community engaged in metabolic division of
labor. Cell Rep. 40 (13), 111410. doi:10.1016/j.celrep.2022.111410

Wasner, D., Schnecker, J., Han, X., Sun, Y., Frossard, A., Zagal Venegas, E., et al. (2024).
Environment andmicrobiome drive differentmicrobial traits and functions in themacroscale
soil organic carbon cycle. Glob. Change Biol. 30 (8), e17465. doi:10.1111/gcb.17465

Wu, S., Zhou, Y., Dai, L., Yang, A., and Qiao, J. (2024). Assembly of functional
microbial ecosystems: from molecular circuits to communities. FEMS Microbiol. Rev.
48, fuae026. doi:10.1093/femsre/fuae026

Wünsche, A., Dinh, D. M., Satterwhite, R. S., Arenas, C. D., Stoebel, D. M., and
Cooper, T. F. (2017). Diminishing-returns epistasis decreases adaptability along an
evolutionary trajectory. Nat. Ecol. and Evol. 1 (4), 0061. doi:10.1038/s41559-016-0061

Xie, L., and Shou, W. (2021). Steering ecological-evolutionary dynamics to improve
artificial selection of microbial communities. Nat. Commun. 12 (1), 6799. doi:10.1038/
s41467-021-26647-4

Xie, L., Yuan, A. E., and Shou, W. (2019). Simulations reveal challenges to artificial
community selection and possible strategies for success. PLOS Biol. 17 (6), e3000295.
doi:10.1371/journal.pbio.3000295

Yang, Y. (2021). Emerging patterns of microbial functional traits. Trends Microbiol.
29 (10), 874–882. doi:10.1016/j.tim.2021.04.004

Yano, T., Oue, S., and Kagamiyama, H. (1998). Directed evolution of an aspartate
aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. 95 (10),
5511–5515. doi:10.1073/pnas.95.10.5511

Yeh, P., Tschumi, A. I., and Kishony, R. (2006). Functional classification of drugs by
properties of their pairwise interactions. Nat. Genet. 38 (4), 489–494. doi:10.1038/ng1755

You, L., and Arnold, F. H. (1996). Directed evolution of subtilisin E in Bacillus subtilis
to enhance total activity in aqueous dimethylformamide. Protein Eng. Des. Sel. 9 (1),
77–83. doi:10.1093/protein/9.1.77

Zakeri, B., and Carr, P. A. (2015). The limits of synthetic biology. Trends Biotechnol.
33 (2), 57–58. doi:10.1016/j.tibtech.2014.10.008

Zelezniak, A., Andrejev, S., Ponomarova, O., Mende, D. R., Bork, P., and Patil, K. R.
(2015). Metabolic dependencies drive species co-occurrence in diverse microbial
communities. Proc. Natl. Acad. Sci. 112 (20), 6449–6454. doi:10.1073/pnas.1421834112

Zhang, J., Hansen, L. G., Gudich, O., Viehrig, K., Lassen, L. M.M., Schrübbers, L., et al.
(2022). A microbial supply chain for production of the anti-cancer drug vinblastine.
Nature 609 (7926), 341–347. doi:10.1038/s41586-022-05157-3

Zhao, Y., Cordero, O. X., and Tikhonov, M. (2024). Linear-regression-based
algorithms can succeed at identifying microbial functional groups despite the
nonlinearity of ecological function. PLOS Comput. Biol. 20 (11), e1012590. doi:10.
1371/journal.pcbi.1012590

Zheng, X., and Li, D. (2016). Interaction of Acidithiobacillus ferrooxidans, Rhizobium
phaseoli and Rhodotorula sp. in bioleaching process based on Lotka–Volterra model.
Electron. J. Biotechnol. 22, 90–97. doi:10.1016/j.ejbt.2016.06.004

Zhou, H., Gao, X., Wang, S., Zhang, Y., Coulon, F., and Cai, C. (2023). Enhanced
bioremediation of aged polycyclic aromatic hydrocarbons in soil using immobilized
microbial consortia combined with strengthening remediation strategies. Int. J. Environ.
Res. Public Health 20 (3), 1766. doi:10.3390/ijerph20031766

Zhu, H., Meng, H., Zhang,W., Gao, H., Zhou, J., Zhang, Y., et al. (2019). Development
of a longevous two-species biophotovoltaics with constrained electron flow. Nat.
Commun. 10 (1), 4282. doi:10.1038/s41467-019-12190-w

Zhu, M., and Dai, X. (2024). Shaping of microbial phenotypes by trade-offs. Nat.
Commun. 15 (1), 4238. doi:10.1038/s41467-024-48591-9

Zhuang, K., Izallalen, M., Mouser, P., Richter, H., Risso, C., Mahadevan, R., et al. (2011).
Genome-scale dynamic modeling of the competition between Rhodoferax and Geobacter in
anoxic subsurface environments. ISME J. 5 (2), 305–316. doi:10.1038/ismej.2010.117

Ziesack, M., Gibson, T., Oliver, J. K. W., Shumaker, A. M., Hsu, B. B., Riglar, D. T., et al.
(2019). Engineered interspecies amino acid cross-feeding increases population evenness in a
synthetic bacterial consortium. mSystems 4. doi:10.1128/mSystems.00352-19

Zomorrodi, A. R., and Maranas, C. D. (2012). OptCom: a multi-level optimization
framework for the metabolic modeling and analysis of microbial communities. PLoS
Comput. Biol. 8 (2), e1002363. doi:10.1371/journal.pcbi.1002363

Frontiers in Synthetic Biology frontiersin.org14

San Román et al. 10.3389/fsybi.2025.1532846

https://doi.org/10.1038/nrg3227
https://doi.org/10.1038/nrg3227
https://doi.org/10.1016/j.cub.2019.03.001
https://doi.org/10.1016/j.soilbio.2023.108989
https://doi.org/10.1186/2049-2618-1-11
https://doi.org/10.7554/eLife.30916
https://doi.org/10.1038/msb4100131
https://doi.org/10.1086/731997
https://doi.org/10.1046/j.1462-2920.2000.00140.x
https://doi.org/10.1073/pnas.150237597
https://doi.org/10.1016/j.chemosphere.2020.127975
https://doi.org/10.1186/s13059-022-02661-7
https://doi.org/10.1371/journal.pone.0215502
https://doi.org/10.1371/journal.pcbi.1011436
https://doi.org/10.1073/pnas.2114021119
https://doi.org/10.1186/1752-0509-5-167
https://doi.org/10.1111/j.1462-2920.2008.01603.x
https://doi.org/10.1038/s41559-022-01746-7
https://doi.org/10.1371/journal.pcbi.1009877
https://doi.org/10.1128/aem.60.10.3724-3731.1994
https://doi.org/10.1128/aem.60.10.3724-3731.1994
https://doi.org/10.1098/rstb.2022.0047
https://doi.org/10.1073/pnas.73.12.4604
https://doi.org/10.1111/j.1558-5646.1977.tb00991.x
https://doi.org/10.1111/mec.16565
https://doi.org/10.1111/mec.16565
https://doi.org/10.1016/j.biortech.2022.128216
https://doi.org/10.1128/mbio.02050-23
https://doi.org/10.1371/journal.pcbi.1006541
https://doi.org/10.1371/journal.pcbi.1006541
https://doi.org/10.1039/C6RA22760K
https://doi.org/10.1371/journal.pone.0255833
https://doi.org/10.1371/journal.pone.0255833
https://doi.org/10.1038/s41467-022-31467-1
https://doi.org/10.1038/s41467-022-31467-1
https://doi.org/10.1016/j.celrep.2022.111410
https://doi.org/10.1111/gcb.17465
https://doi.org/10.1093/femsre/fuae026
https://doi.org/10.1038/s41559-016-0061
https://doi.org/10.1038/s41467-021-26647-4
https://doi.org/10.1038/s41467-021-26647-4
https://doi.org/10.1371/journal.pbio.3000295
https://doi.org/10.1016/j.tim.2021.04.004
https://doi.org/10.1073/pnas.95.10.5511
https://doi.org/10.1038/ng1755
https://doi.org/10.1093/protein/9.1.77
https://doi.org/10.1016/j.tibtech.2014.10.008
https://doi.org/10.1073/pnas.1421834112
https://doi.org/10.1038/s41586-022-05157-3
https://doi.org/10.1371/journal.pcbi.1012590
https://doi.org/10.1371/journal.pcbi.1012590
https://doi.org/10.1016/j.ejbt.2016.06.004
https://doi.org/10.3390/ijerph20031766
https://doi.org/10.1038/s41467-019-12190-w
https://doi.org/10.1038/s41467-024-48591-9
https://doi.org/10.1038/ismej.2010.117
https://doi.org/10.1128/mSystems.00352-19
https://doi.org/10.1371/journal.pcbi.1002363
https://www.frontiersin.org/journals/synthetic-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsybi.2025.1532846

	Towards synthetic ecology: strategies for the optimization of microbial community functions
	1 Introduction
	2 Trait-based approaches
	3 Community-level directed evolution
	4 Environmental engineering
	5 Modeling and computer-aided design
	5.1 Mechanistic models
	5.1.1 Metabolic models

	5.2 Data-driven models and machine learning

	6 Discussion and outlook
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


