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Astrocytes play an important role in various processes in the brain, including pathological
conditions such as neurodegenerative diseases. Recent studies have shown that the
increase in saturated fatty acids such as palmitic acid (PA) triggers pro-inflammatory
pathways in the brain. The use of synthetic neurosteroids such as tibolone has
demonstrated neuro-protective mechanisms. However, broad studies, with a systemic
point of view on the neurodegenerative role of PA and the neuro-protective mechanisms of
tibolone are lacking. In this study, we performed the integration of multi-omic data
(transcriptome and proteome) into a human astrocyte genomic scale metabolic model
to study the astrocytic response during palmitate treatment. We evaluated metabolic
fluxes in three scenarios (healthy, induced inflammation by PA, and tibolone treatment
under PA inflammation). We also applied a control theory approach to identify those
reactions that exert more control in the astrocytic system. Our results suggest that PA
generates a modulation of central and secondary metabolism, showing a switch in energy
source use through inhibition of folate cycle and fatty acid β-oxidation and upregulation of
ketone bodies formation. We found 25 metabolic switches under PA-mediated cellular
regulation, 9 of which were critical only in the inflammatory scenario but not in the
protective tibolone one. Within these reactions, inhibitory, total, and directional
coupling profiles were key findings, playing a fundamental role in the (de)regulation in
metabolic pathways that may increase neurotoxicity and represent potential treatment
targets. Finally, the overall framework of our approach facilitates the understanding of
complex metabolic regulation, and it can be used for in silico exploration of the
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mechanisms of astrocytic cell regulation, directing a more complex future experimental
work in neurodegenerative diseases.

Keywords: astrocytes, data integration, palmitic acid, computational model, multi-omics, control theory, genome
scale model, neurodegeneration

1 INTRODUCTION

Astrocytes are involved in several functions that are essential to
the maintenance of the brain’s homeostasis, as well as on the
capture and a release of metabolites for neuronal protection
(Buskila et al., 2019); in both physiological and pathological
conditions, astrocytes play a crucial role in synaptogenesis,
neurotransmitter release, neuroinflammation, elimination of
toxic substances, buffering and spatial release of K+, among
others (Volterra and Meldolesi 2005; Cabezas et al., 2012;
Robertson 2018; González et al., 2020). An important role of
the astrocytes and their interaction with neurons, is during the
metabolism of fatty acids (FAs) (de Carvalho and Caramujo,
2018; Hashimoto and Hossain, 2018). One of the most common
and predominant saturated fatty acids in the human body is the
PA which in excess generates lipotoxicity. This metabolic
condition induces the activation of pro-inflammatory
pathways as NF-kB, resulting in an increased expression of
pro-inflammatory cytokines like TNF, IL-1, IL-6. The above
triggers pathological responses such as inflammatory processes,
ceramide formation, oxidative stress (OS), among others (Carta
et al., 2017; Frago et al., 2017; Fatima et al., 2019). In this context,
recent studies have determined the association between PA and
metabolic dysregulation in astrocytes. This generates
modifications in the correct functioning of the central nervous
system by the change of glial environment and increases the risk
of developing dementia, such as amyotrophic lateral sclerosis
(ALS), Alzheimer’s disease (AD), Huntington’s disease (HD),
Parkinson’s disease (PD), among others (Luterman et al., 2000;
Patil et al., 2006; Wong et al., 2014; Melo, Santos, and Ferreira
2019; Ortiz-Rodriguez et al., 2019).

Recent studies have described the crucial role of neuroactive
estrogens, such as tibolone, as beneficial candidates for treating
neurodegenerative diseases (Martin-jiménez and González 2020).
In addition, tibolone has been a helpful treatment for
osteoporosis in postmenopausal women and has had sound
antidepressant effects (Arevalo et al., 2015; Crespo-Castrillo
et al., 2020). Tibolone has been shown to reduce nuclear
fragmentation and the production of reactive oxygen species,
as well as activation of the Akt/GSK3ß signaling pathway that
generates antioxidant activity in neuronal cultures, among other
effects (Dhandapani et al., 2005; Martin-jiménez and González
2020). However, studies of astrocyte metabolism in association
with lipotoxicity and tibolone treatment have focused on
deciphering specific elements through experimental simulation,
ignoring mechanisms that can occur at multiple levels of
biological organization (omics) and creating a lack of
understanding on the metabolic relationship between these
interactions and pathological conditions (Ravindran et al.,
2019). In this aspect, with the increase and availability of

large-scale multi-omic data, there is a huge potential on the
biological insights that can be drawn from integrating these
data (Currais et al., 2015) as it has been done for other
organisms in the study of response to changing environment
conditions (Bardozzo et al., 2018). Therefore, developing a
comprehensive view of the mechanisms implicated in brain
behavior involves systemic approaches, which can be evaluated
through mathematical representations of metabolism, such as
genome-scale metabolic networks (GEMs) (Basler and Nikoloski
2011; Nielsen 2017). These models are typically built from several
data sources (i.e., literature-based evidence, information of
biological databases, among others), and allow the integration
of multi-omics data that aims into the discovery of molecular
pathways and molecular mechanisms affected by a disease state
(Rezola et al., 2015; Ramon et al., 2018; Marttinen et al., 2019;
Wörheide et al., 2021). GEMs have also demonstrated their
efficiency in identifying essential metabolic reactions in a
metabolic system and unraveling cellular control, leading to
the prediction of genotype-phenotype relationships (Sweetlove
and George Ratcliffe, 2011; Basler et al., 2016). However,
conventional methods used to interrogate these models, such
as flow balance analysis and its derivatives have shown to be
usually biased, since they restrict the flow space to a reference
state, and therefore running into an impartial computational
approach (Terzer and Stelling 2008; Basler and Nikoloski 2011).
Therefore, through the application of an unbiased approach, such
as Control Theory, we are able to identify groups of reactions that
are controlled directly or indirectly by the cell in order to further
control its overall activity, without prior knowledge of the cellular
objectives (Basler and Nikoloski 2011; Basler et al., 2016).

This approach allowed us to understand the mechanism in
astrocytic metabolism under lipotoxic conditions and treatment
with tibolone. Additionally, it proved to be key in order to
propose new and better markers of astrocytic activation/injury,
leading to a better understanding of the biological aspects
involved in neuronal degeneration. Despite its usefulness, there
are no previous studies that applied a multi-omic integration and
control theory approach on metabolic networks to elucidate the
mechanisms associated with phenomena of neurodegenerative
diseases in astrocytic GEMs.

This study aimed to identify the controlling reactions for the
human astrocytic response to PA in a multi-omic GEM, through
the update of a published high-quality astrocyte model previously
published by our group (Osorio et al., 2020) and the integration of
transcriptome and proteome data under two treatments (control,
low PA, and under PA/tibolone treatment). We used association
rules and dimensionality reduction to identify reactions that are
activated or deactivated in the context-specific model. We also
applied a control theory approach to identify those controlling
reactions that are key to switch between functional states in the
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system. Our results showed significant changes in cell metabolism
under different treatments, activating inflammatory mechanisms
in the case of PA and possible protective mechanisms in the case
of tibolone. This research will lay the foundations for future
pharmacological research, aimed at creating more effective
therapies, and in the control field, aimed at extending its
applications into the biological phenomena.

2 MATERIALS AND METHODS

2.1 Transcriptome and Proteome Data
Transcriptome and proteome data was obtained by our
laboratory from Lonza’s Normal Human Astrocytes cell line
(NHA). For proteome and transcriptome data, three batches
of NHA were cultivated in Astrocytes Basal Medium (ABM,
Lonza) and were trypsinized. The cells were cultivated under 5%
CO2 and 37 °C conditions until the cells reached a confluence near
80% to be later used under different treatments (palmitic acid,
pretreatment with tibolone plus palmitic acid).

Pretreatment was performed by dissolving tibolone
(Sigma–Aldrich, T0827, St. Louis, MO, United States) in 100%
DMSO as a 40 mM stock solution; further dilutions were made
with serum-free Dulbecco’s Modified Eagle Medium (DMEM)
without phenol red. Concentrations between (100 uM–10 nM)
were tested in cell culture. The optimal time and concentration of
tibolone was 10 nM for 24 h. The final concentration of DMSO
was <0.01%.

After tibolone treatment, cells were washed with 2x PBS1X
and treated with serum-free DMEM containing palmitic acid
(P0500, Sigma, St Louis, MO, United States), BSA (free bovine
serum albumin of fatty acids; Sigma A2153) as a carrier protein
and carnitine (C0283, Sigma, St Louis, MO, United States) to
transport fatty acids to the mitochondrial matrix.

The cells were treated with different concentrations of palmitic
acid (100–2000 µM). The final concentration of palmitic acid
used was 2000 µM and the treatment time was 24 h. The control
group included a final concentration of 1.35% BSA and 2 mM
carnitine ((Martin-jiménez and González 2020).

After pre-treatment with tibolone (24 h) and treatment with
palmitic acid (24 h), protein extraction and quantification were
performed, using a lysis preparation composed of RIPA buffer
(Thermo Scientific, Cat. 89,900) and inhibitor cocktail. of Halt
Thermo 1X proteases (CAT-78425). Subsequently, centrifugation
cycles were performed at 10,000 rpm at 4°C for 10 min to extract
the proteins present in the supernatant. A sample of the
solubilized proteins was used for protein quantification by the
bicinchoninic acid method (BCA1 Sigma-Aldrich kit).

The protein pellet was submitted to UC Davis Proteomics Core
for proteomics identification. For digestion, the samples were treated
with dithiothreitol (DTT) and incubated at 37°C, to then be treated
with iodoacetamide (IAA) and incubated at room temperature. DTT
treatments must be performed to neutralize IAA. AMIC and trypsin
were added to dilute the samples, which were desalted using the
Macro Spin Column (Nest Group) (unpublished). The digested
peptides were analyzed by LC-MS/MS together with Proxeon Easy-
nLC II HPLC and Proxeon nanospray source. Data processing was

carried out using cleavage parameters and a data mapping against
SwissProt database to search for unique peptides. In addition,
Sequest and AMANDA were used for label-free-quantification.
The results were processed with MaxQuant v1.6.10.43 and
Perseus v 1.6.10.45. The transformation of protein intensities was
carried out in R from the variance normalization and stabilization
method (VSN). The data imputation was carried out using k nearest
neighbors (KNN). Differential expression analysis was performed
using the optimized reproducibility test (ROTS), evaluating the
following conditions: PA vs. vehicle, PA with tibolone
pretreatment vs. vehicle, and PA with tibolone pretreatment vs.
PA. The protein functional enrichment analysis was performed
using g:Profiler. Finally, a weighted co-expression network
analysis was performed to visualize protein-protein interactions
given the treatments (unpublished).

Regarding the transcriptome, the libraries were prepared by
extracting total RNA using the RNeasy mini kit (Qiagen,
United States). RNase-free DNAse I was used to prevent
contamination in the samples. Samples were stored at −80°C in a
nuclease-free buffer for RNA sequencing on an Illumina HiSeq
machine with a 2 × 150 bp paired-end configuration, producing a
sequencing depth of ~75 million reads per sample. The quality
control of the sequencing was evaluated through QUARS (QUA of
controlling for RNA-Seq; github.com/tluquez/QUARS). Saturation
plots were made to assess the quality of sequencing. Differential
expression analysis was performed by inspecting the log counts,
using DESeq2 to normalize the library size and reduce the variance.

2.2 Differential Expression and Annotation
Analysis
Differential expression analysis was performed by checking the
record counts, using DESeq2 to normalize the library size and
contract the variance. Differential expression between conditions
(PA versus vehicle, PA with tibolone pretreatment versus vehicle,
and PA with tibolone pretreatment versus PA) was evaluated using
Wald tests with a Bonferroni correction. The gene pool enrichment
analysis was performed using Gene Ontology, WikiPathways, and
Reactome, using 24,893 genes with at least ten reads per treatment.
The construction of a brain-specific gene regulatory network was
made using the transcriptional regulatory network analysis (TReNA)
package (rdrr.io/bioc/TReNA). Moreover, this network was built
using the ENCODE atlas and data from 278 post-mortem temporal
cortex samples from the Mayo Clinic. TReNA enumerates all TF-
target pairs of genes where there is evidence that the TF binds the
proximal promoter and ranks these candidate interactions based on
co-expression evidence and Spearman correlation. The analysis of
the gene regulatory network allowed elucidation of which ascendant
transcription factors are differentially expressed that are potentially
regulating the expressed genes. . The data obtained from the
transcriptome and proteome were experimentally validated and
integrated into the Osorio’s astrocyte model (Osorio et al., 2020),
using the methodology described below.

2.3 Integration: Association Rules
Restriction-based metabolic models, such as the GEM used in this
work, allow in-silico description and prediction of possible
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metabolic states through the mathematical representation of
metabolic reactions in a stoichiometric matrix (S) (Orth et al.
2010; Brunk et al., 2018). The stoichiometric coefficients of these
reactions are used to restrict metabolic flux through the system
(v), ensuring that the principle of mass balance is maintained (Eq.
1). The vector x represents the concentrations of all metabolites.

dx

dt
� 0 or Spv � 0 (1)

In the context of multi-omic data integration, GEMs are ideal
frameworks that allow the association of these type of data with
other layers of biological information such as that derived from
the transcriptome and the proteome(Bordbar et al., 2014; Voillet
et al., 2016; Pinu et al., 2019). In our case, we used the astrocyte
GEM created by Osorio et al. (2020), which represents 1956
metabolites and 2747 metabolic reactions, associated to Gene-
Protein-Reaction (GPR) association rules that play an important
role in the integration of experimental data (transcriptome,
proteome and their relationship with reactions) in the model,
thus increasing the veracity of its predictions (Kim et al., 2016;
Karahalil 2017; Gu et al., 2019).

Describing the GPRs associations into a GEM brings several
advantages for modeling. For instance, they permit gene deletion
simulations and ease the omic data integration. In our case, the
reconstruction carried out by Osorio et al. (2020) excluded the EC
numbers (Enzyme Commission Number), from which one can
generate PR (Protein-Reaction) associations necessary to be
linked with appropriate genes. Therefore, we further updated
Osorio’s model by a manual construction of these associations: 1)
the list of genes associated with the model was obtained, and the
IDs were searched in UniProt (https://www.uniprot.org/
uploadlists/); 2) from the list, the EC numbers were associated
with each of the reactions, using themakeprules function (https://
github.com/gibbslab/GEM-multiomic-integrator); 3) the
mapping of abundance reactions was performed by associating
the abundance values with the EC identifiers for each reaction of
the model. This allowed us to obtain the abundance data for each
scenario. Alternatively, for mapping data expression, the
following methodology was performed: 1) the ID of the
Ensembl reaction was converted to Entrez to map the
expressions; 2) the expressions for each reaction were
extracted using the GPR association, using the mapping gene
expression methodology described below, obtaining the
expression data for each scenario.

2.4 Mapping Gene Expression and Protein
Abundance to Reactions
Association rules (GPR and PR) can include more than one gene
or protein for each reaction. Therefore, reactions with multiple
associations include logical rules (AND and OR) to indicate the
order and essentiality of each association. These logical rules were
used to map the expression and abundance values of the
reactions, taking the minimum values when the associations
were joined by AND and the maximum values when it was
OR. COBRA toolbox was used for association rules and mapping
gene expression and protein abundance (Hyduke et al., 2011).

2.5 Dimensionality Reduction: Principal
Component Analysis
Dimensionality reduction is a mathematical way to reduce the
complexity of a data set while increasing the statistical power of
analysis by reducing the burden of multiple tests (Zierer et al.,
2016; Altenbuchinger et al., 2019; Wörheide et al., 2021), we
accomplished this reduction by means of principal component
analysis (PCA). In our case, PCA was applied to the
transcriptome and proteome data sets, transforming the
unique omic variables into a lower-dimensional subspace that
maximizes the retention of variance within the data by finding
orthogonal linear combinations of the original variables, saving as
much information as possible. In this way, the population’s
behavior can be observed in a smaller set.

The PCA requires that the variables are all quantitative and
normalized, that is, with mean 0 and variance 1 for each variable,
as described in the following equation:

Zi � xi −mean(x)
�������
Var(x)√ (2)

Once all the variables are standardized, the covariance matrix
is calculated, allowing us to observe how the variables are related
to each other. The above is obtained by multiplying the variance
and covariance matrix as shown below:

ZtZ (3)
When the variance and covariance matrix is calculated, then

the values of eigenvectors are estimated, and the principal
components (PCs) are created. The methodology allows the
creation of not correlated PCs, letting the information of
linearly correlated variables to be represented in one PC.
These permit the construction of an estimated biologically
significant variable (Rodríguez-Mier et al., 2021) and provides
a way to limit the potential for overfitting (Wörheide et al., 2021).

2.6 Construction of a Multi-Omic Model
Under Metabolic Scenarios
To test the metabolic effects of PA and tibolone during metabolic
inflammation in astrocytes, we defined three scenarios considering
previously obtained transcriptome and experimental proteome data:
1) a “healthy"/control scenario, which emulates normal metabolic
conditions of astrocytes (Das et al., 2010; Osorio et al., 2020); 2) A
palmitate-induced inflammatory scenario; 3) a treatment scenario
with tibolone was defined after the induction of inflammation by PA.
In order to restrict the GEM with each of this data sets, and thus
obtain a model for each of the aforementioned scenarios, the
Exp2flux algorithm was used (https://github.com/gibbslab/
exp2flux). using the previously information obtained by the PCA
as values for the expression data required for this tool. The limits of
the flow of the exchange reactions were not changed.

2.7 Flux Balance Analysis
Flux balance analysis (FBA) is a linear optimization method that
selects flux values that can optimize (maximize or minimize) the
objective function (Huang et al., 2020; Orth, Thiele, and Palsson
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2010; Orth et al., 2011). Metabolic reactions are represented as S
(stoichiometric matrix), of size m × n, where m represents the
concentrations of all metabolites and n the reactions (Orth et al.,
2010). The entries of S are stoichiometric coefficients of the
metabolites that participate in a reaction. There is a positive
coefficient for each metabolite produced and a negative
coefficient for each metabolite consumed. A coefficient of zero
is used for eachmetabolite that does not participate in a particular
reaction (Osorio et al., 2020). The flux through all reactions in a
network is represented by the vector v, which has a length of n
(Papin et al., 2005; Gianchandani et al., 2010). The steady-state
system of mass balance equations is given as follows:

Spv � 0 (4)
The FBA can be described from the following system of

equations:

Z � CtJ (5)
NJ � 0 (6)

Jmin ≤ J≤ Jmax (7)
Where vector C determines the linear relationship between the
flux values of J, which make the objective function Z. Jmin and
Jmax are vectors of the minimum and maximum values,
respectively (Maarleveld et al., 2013). FBA for studied
scenarios was solved using the R package “SYBIL” (Gelius-
Dietrich et al., 2013).

2.8 Identification of Changes in Metabolic
Flux Between Scenarios
The metabolic flux differences for each reaction between optimized
scenarios weremeasured using themethodology proposed byOsorio
et al. (2020) and Osorio et al. (2016), where the flux difference
function (fluxDifferences) and the fold change function (foldchange)
describe howmuch the flux changes. The function takes as argument
two valid models and a threshold value of −0.5 to 0.5 for reactions
with an absolute change between the metabolic scenarios evaluated
(Osorio et al., 2020).

2.9 Identification of Essential Reactions
An analysis of essential reactions was performed in order to
identify those reactions that were essential for growth and
maintenance of the astrocytic cell, using the principle of
enzymatic functionality by knockout of reactions (Jiang et al.,
2015), modifying each reaction’s upper and lower limits to
become zero Gelius-Dietrich et al. (2013). In order to calculate
all flux distributions on the restricted models that were previously
created, we applied the optimization algorithm lMOMA. This
algorithm unlike regular FBA, simulates all possible suboptimal
states associated with the metabolic model (Segre et al., 2002),
according to equations (8)–(10):

min(v − w)t (v − w) (8)
s.t. Spv � 0, vmin ≤ v≤ vmax (9)

vj � 0, j ∈ A (10)

Wherew is the wild-type (control) flux distribution, andA is a set
of reactions associated with the deleted genes (Shlomi et al.,
2005).

Although gene essentiality analysis is key for the
understanding of the set of genes necessary for cell survival,
there is still a lack of knowledge on the specific mechanisms that
control the underlying predicted cell behaviour. Therefore in the
multi omic model created we identified its control structure by
characterizing 4 key network components: 1) the flow coupling
graph, 2) the set of flow coupling profiles, 3) the driver reactions
and 4) all the possible metabolic switches (Basler et al., 2016).

The flow coupling graph of a metabolic model is a labeled and
directed graph, that uses five flow coupling profiles: complete,
partial, anti, inhibitory, and directional, indicating the type of
coupling between reactions i and j that reflect functional
characteristics of the considered metabolic pathways (Larhlimi
et al., 2012; Basler et al., 2016). Therefore, we use the flow
coupling graph to calculate the control graph, where reactions
i are converted to nodes, and a directed edge (i→j) is set between
nodes according to the flow profile. Therefore it is possible to
determine if i can control the state of j or if j can control the state
of i (Basler et al., 2016). This approach led us to the identification
of driver reactions; it is the set of reactions that control the states
and the activity pattern (in)directly of reactions in the model. It
has been determined that the controlling reactions may have a
divergent role in the control model and the challenged models.
Therefore, the differences in the coupling profile of these
reactions are considered as metabolic switches (Basler et al.,
2016).

2.10 Control of Fluxes in Astrocyte
Multi-Omic Network
Following the methodology proposed by Basler et al. (2016), we
use the Fast Flux Coupling Calculator (F2C2) algorithm within
the MATLAB environment (MATLAB and Statistics Toolbox
Release 2021b, The MathWorks, Inc., Natick, Massachusetts,
United States) to determine coupled reactions (Larhlimi et al.,
2012). The F2C2 algorithm identifies dead-end metabolites,
blocks the corresponding reactions, removes the blocked
reactions from the stoichiometric matrix, and applies the
Trivial Full Coupling (TFC) rule to determine reactions
proportional to each other. The algorithm repeats this step
until a dead-end metabolite cannot be identified and updates
each reaction’s reversibility (Larhlimi et al., 2012). Then, F2C2
applies Trivial Directional Coupling (TDC) and Trivial
Uncoupling (TUC) rules to determine (un)coupled reactions
and determine the coupling flux between (pseudo-)irreversible
reactions using linear programming (LP) (David et al., 2011;
Larhlimi et al., 2012). We restricted the set of feasible flow
distributions and defined anti-coupling according to the
following equation:

F{v ∈ Rn| S v � 0, lb≤ v≤ ub, ∃i ϵ E: vi ≠ 0 } (11)
Where n is the number of reactions, matrix S, ub, lb are the upper
and lower limits, and E is the set of exchange reactions. Flow
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variability analysis (FVA) andmixed-integer linear programming
(MILP) are used to determine anti-coupled or coupled reactions.

Since the flow coupling profile of a network is determined by a
vector v ∈ Rn that represents the frequencies of the five coupling
types given by the flow type of each reaction (R) (directional,
partial, anti, inhibitory, and complete coupling). Since these flow
coupling profiles may reflect important functional characteristics
for the metabolism of the astrocytic cell (Basler and Nikoloski,
2011; Basler et al., 2012; Basler et al., 2016), we applied three
clustering algorithms (hierarchical, k -means and k -medoids)
based on the Euclidean distances over the flux coupling profiles in
the three analyzed networks. The clusters obtained in each
instance were evaluated using a PCA algorithm, and distance
principle through Silhouette, Calinski-Harbasz, and Davies-
Bouldin indices. This was done following the methodology
proposed by Basler et al. (2016). It is important to highlight
the clustering approach for the cumulative singular value spectra
normalized in the lattice to determine whether the clustering of
flow coupling profiles based on the five couplings is a
consequence of structural determinants (Duarte et al., 2007).
The singular values of a matrix S are given by the diagonal input
values D obtained by decomposition (Duarte et al., 2007; Basler
et al., 2016):

S � UDV (12)
The hypothesis test was performed according to the network

restrictions based on the mass balance principle, through the
randomization methodology with replacement of substrates and
products of the network, changing the stoichiometric coefficients
while preserving the mass balance proposed by (Basler and
Nikoloski 2011) and (Basler, Grimbs, and Ebenho 2012).

2.11 Sampling of Reaction Activity Patterns
and Flow Coupling Graph
The sampling of reaction activity patterns was performed
according to the methodology proposed by Basler et al. (2016),
using random sampling of flow distributions in the steady-state,
ensuring non-zero values. A labeled flow coupling graph of the
metabolic network was made:

G � (V, E) (13)
Where V is the set of all unblocked nonessential reactions in the
network, and two vertices i and j are connected by a node
(i, j) ϵ E. Five labels are made (complete, partial, directional,
anti, -and inhibitory), indicating if i is coupled to j or j is
coupled to i by the corresponding coupling type (Basler et al.,
2016).

2.12 Control Graph and Calculation of
Control Reactions
Regarding the control graph for a network with n reactions, a
reaction activity pattern was analyzed to specify active and
inactive reactions. According to the methodology proposed by
Basler et al. (2016), a control graph must be generated containing

a vertex for each reaction i and a connection if i and j are coupled.
The above is specified by the adjacency matrixM, whereMi,j � 1,
if any of the following conditions are met Basler et al. (2016):

1) σi � σj � 1 and L(i, j) ∈ {full, partial, directional}, or
2) σi � 0, σj � 1 and L(i, j) � anti, or
3) σi � 1, σj � 0 and L(i, j) ∈ {inhibitive}, or
4) σi � σj � 0 and L(i, j) ∈ {full, partial}, or
5) σi � σj � 0 and L(i, j) � directional, and Mi,j � 0 otherwise.

Therefore, the calculation of the controlling reactions is given
by a smaller set of reactions (intermittent, critical, and redundant
reactions), whose activities must be specified to activate all the
reactions given the value of σ. To calculate the activity pattern, we
kept following the methodology proposed by Basler et al. (2016).
The overall procedure used to calculate these controlling rections
(Figure 1, part 7) was deployed under a dedicated computational
node using 72 Intel Xeon Gold 6240 CPU cores at 2.60 GHz and
512 GB of RAM.

3 RESULTS AND DISCUSSION

3.1 Astrocyte-Specific Context Networks
We present three context-specific multi-omic models that are a
compilation of 2747 biochemical reactions, of which 1607 belong
to intracellular reactions, 60 correspond to reactions that allow
the intake and out take of metabolites from the environment into
the cell (exchange reactions), and 1080 are transport reactions, it
is reactions that allow the transport of metabolites between cell
compartments. In order to model the toxic effects of palmitic acid
and the protective effect of tibolone at the metabolic level in
astrocytes, we performed an optimization of the model under
three different metabolic scenarios, obtaining a metabolic
phenotype for each scenario (Figure 2).

The metabolic simulation predicts a growth rate for astrocytes
of 0.447,430 mMgWD−1h−1under normal conditions
(supplemented ABM medium), with an activation of 41.17%
of the model reactions, suggesting a preference for an energy-
based metabolism on glucose and fatty acids (Figure 2A). This
energy-based metabolism was observed within the extracellular
transport subsystem, where the metabolites obtained are
associated with the catabolism of glucose and fatty acids.
Furthermore, our model also suggests an energy metabolism
based on fatty acid oxidation, which is consistent with the
results obtained by Osorio et al. (2020). The metabolite release
rate and biomass growth were used as a reference to compare
changes between the three metabolic scenarios.

3.2 Inflammatory Scenario
In this scenario, we used experimental information in which the
cells were cultivated in a microenvironment with an increased
concentration of PA. The calculated growth on this simulation
was 0.472,459 mMgWD−1h−1. Ourmodel showed an activation of
41.68% of the model reactions (Figure 2B), increasing the uptake
of L-asparagine, L-arginine, L-ascorbate, L-carnitine, L-serine,
D-glucose, and L-glutamate. These results are also consistent
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with the results obtained by Osorio et al. (2020) (Figure 3A). This
response is usual in astrocytes under an insult, where the
inflammation generates homeostatic alterations (Bylicky et al.,
2018; Hidalgo-Lanussa et al., 2020).

A decrease in arginine has been associated with inflammation
and oxidative stress. Its reduction was a biomarker of metabolic
inflammation during obesity, showing inverse proportionality
between arginine concentration and IL-6, CRP, and TNF-α in

serum (Niu et al., 2012). Thus, predicted arginine increase uptake
could be related to an anti-inflammatory mechanism activated in
astrocytes under PA treatment (Moncada and Higgs 1993). Like
glutamine, increasing concentrations of L-asparagine have shown
an increased pH in astrocytes, predicting an activation of the H+

exchange transport mechanism (Chaudhry et al., 1999; Chaudhry
et al., 2001). Furthermore, asparagine induces a Ca2+ response
comparable to GABA-induced Ca2+ states (Doengi et al., 2009;

FIGURE 1 | General overview of methodology. 1) Raw data as obtained and deposited by our laboratory was retrieved from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE166500. 2) Transcriptomics and proteomics data dimensionality was reduced and then 3) used to constrain Osorio’s Genome ScaleModel. 4, 5
and 6) Constrained model was subjected to Flux Balance Analysis and other optimization based algorithms. 7) Control reactions on constrained model were identified by
means of control theory, using a three steps approach: creation of flow coupling graph, control graph and then calculation of control reactions.
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FIGURE 2 |Distribution of reactions by subsystems associated with the metabolic phenotype for eachmetabolic model generated. Main activated subsystems are
shown. (A) Metabolic phenotype for the control model, in which 41.17% of the reactions were activated; (B) Metabolic phenotype for the palmitate model, in which
41.68% of the reactions were activated; (C) Metabolic phenotype for the tibolone-palmitate model, in which 41.65% of the reactions were activated.

FIGURE 3 | Summary of metabolites and pathways associated with biochemical reactions that presented high flow variability compared to palmitate. (A) Uptake
rate of metabolites on the inflammatory scenario using the generic biomass reaction included in themulti-omicmodel as the objective function; (B)Reactions activated by
palmitate treatment; (C) Main reactions inactivated by palmitate treatment; (D) Reactions with decreased metabolic flux by palmitate treatment.

Frontiers in Systems Biology | www.frontiersin.org May 2022 | Volume 2 | Article 8962658

Angarita-Rodríguez et al. Multi-Omics Integrative Analysis

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


Schousboe et al., 2013; Osorio et al., 2020). Therefore, this
asparagine uptake could be a feedback mechanism to control
glutamine uptake that would probably be increased in the
extracellular medium, as predicted by our model
(Supplementary Material 1) (Chaudhry et al., 2001).
Moreover, L-carnitine acts on the degradation of fatty acids by
β-oxidation, representing a neuroprotective biomarker, leading
cells to reduce oxidative stress and improve their energy
metabolism (increasing catabolism and the release of lactate
and glucose) (Agostinho et al., 2010; Pardo et al., 2013;
Schousboe et al., 2013). On the other hand, ascorbate is
reported to have an anti-inflammatory effect in neuron/glia
cocultures by inhibiting p38, ERK MAPK signaling, and NF-
κB translocation(Huang et al., 2014).

Our simulations also suggest that astrocytic cells can increase
the glutamate uptake under inflammatory conditions. Although
astrocytes prevent high concentrations of glutamate andmaintain
the metabolic homeostasis of amino acids by converting
glutamate to glutamine for its neuronal absorption (Flott and
Seifert 1991; Haroon et al., 2017; Mahmoud et al., 2019), a high
concentration of glutamate contributes to exocytoxicity and
chronic activation (reactive astrocytosis) (Huang et al., 2014;
Haroon et al., 2017; Mahmoud et al., 2019). Astrocyte survival
mechanisms have been associated with increased L-serine uptake,
described by authors such as Green et al. (2014) and Osorio et al.
(2020). In other words, all the metabolite exchanges that were
differentially obtained in the inflammatory scenario by our model
showed an essential role in homeostasis, which was expected due
to the known function of astrocytes.

In the inflammatory scenario, the metabolic phenotype
activate 1145 reactions where 535 showed a high flow
variability (activation, inactivation or flow change), affecting
the oxidation of fatty acids (11.21%), extracellular transport
(35.14%), mitochondrial transport (8.22%), nucleotide
interconversion (6.36%), endoplasmic reticulum transport
(3.36%), keratan sulfate synthesis (2.06%) and the citric acid
cycle (2.06%). These results are also consistent with findings by
Osorio et al. (2020), who suggested that astrocytes modified the
flow rate of 586 reactions compared to the non-stimulated
scenario. In this sense, it is important to highlight that Osorio
et al. (2020) performed a sensitivity analysis to identify pro-
inflammatory reactions, which by inhibiting them, improved the
cellular metabolism of astrocytes. The two candidate reactions
were associated with formimidoyltransferase cyclodeaminase
(FTCD) and mitochondrial water transport, associated with
aquaporin-9. The role of FTCD in high-fat diets as well as in
the degradation of folate pool, glutamate synthesis and memory
performance in young adults has been previously described
(reviewed in Osorio et al., 2020). It is worth noticing that
consistently in this work we predict this same activation, and
further analysis are needed in order to establish the exact role of
FTCD in the contect of neuroinflamation. Our results also
predicted the activation of additional reactions related to the
keratan sulfate subsystem (Table 1). In response to injury,
reactive astrocytes lead to scar formation (glial scar) by
upregulation of sulfate proteoglycans and keratan sulfate
proteoglycans (KSPG) for the inhibition of axonal growth of

injured neurons (Patil et al., 2007; Hilton et al., 2012; Verkhratsky
and Butt 2018; Dupuis et al., 2019; Li et al., 2019; Li et al., 2020).
Recently it has been determined that the down-regulation of
N-acetylglucosamine 6-O-sulfotransferase (GlcNAc6ST) is
involved in the keratan sulfate pathway in the central nervous
system, leading to the loss of reactive keratan sulfate, causing a
reduction in glial scar formation after injury (Zhang et al., 2006b;
Ito et al., 2010; Zhang et al., 2006a). Therefore, there is a
consistency between our model predictions and the keratan
sulfate subsystem as key reactions during astrocyte
inflamation, whose variation would possibly improve the
astrocyte metabolism during a lipotoxic scenario.

An essentiality analysis was performed to determine which of
the 535 reactions variates during inflammation were vital for cell
survival. We identified 136 essential reactions that may be
associated with pro-inflammatory processes. The majority
reactions belonged to extracellular transport (27.12%),
endoplasmic reticulum transport (10.17%), Fatty acid
oxidation (25.42%) and folate metabolism (3.39%). Within
these reactions, PA generates the activation of 59 reactions
(Figure 3B). Some of them are extracellular transport
reactions associated with the uptake of L-arginine, L-alanine,
L-asparagine, L-threonine, L-methionine, L-isoleucine,
L-phenylalanine, L-valine, and L-histidine. As mentioned above,
many of these metabolites have been previously shown to
participate in the inflammatory response. The increase in
histidine uptake is associated with the uptake of free radicals,
and they are negatively related together with threonine, glycine,
lysine, and serine with IL-6, TNF-α, CRP, and IL-8 secretion (Son
et al., 2005; Niu et al., 2012). Hence, these identified essential
reactions have an experimentally demonstrated importance in
inflammation, being crucial for homeostasis maintenance.

PA scenario simulations generated the inactivation of 46
reactions. The majority of these reactions are associated with:
Golgi apparatus transport (10.87%), monosaccharide metabolism
(2.17%), folate metabolism (2.17%) (Table 2), and degradation of
keratan sulfate (2.17%) (Figure 3C). Folate metabolism supports
carbonmetabolism, which activates and transfers carbon units for
biosynthetic processes (Souders et al., 2021). In astrocytes, both
serine and tetrahydrofolate (THF) decrease induce astrocytic
stress, reducing NADPH synthesis due to NAD+ deficiency
(Balsa et al., 2020; Rose et al., 2020). When the mitochondrial
folate pathway is lost, the directionality of cytosolic carbon flux
reverses to compensate for NADPH synthesis (Field et al., 2014;
Rose et al., 2020). Methylenetetrahydrofolate dehydrogenase
(MTHFD) in healthy or normal tissues of the central nervous
system is low or even absent. However, the expression of MTHFD
in pathological states increases and generates a decrease in the
availability of methyltetrahydrofolate, creating high demand on
the part of the methyl groups’ donors for the formation of
methionine (Coppedè et al., 2006; Coppedè 2021; Shi et al.,
2021). This mechanisms affects neuronal communication and
signaling and antioxidant processes that supports mitochondrial
function in cells (Coppedè et al., 2006; Field et al., 2014; Rose
et al., 2020). As stated above, our model identified folate
metabolism as a set of essential reactions, and the inactivation
of some of them exhibits the stress produced by PA in astrocytic
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metabolism. On the other hand, 24 reactions decreased metabolic
flux, among which the majority are keratan sulfate synthesis
(33.33%), extracellular transport (12.5%), monosaccharide
metabolism (8.33%), and synthesis of CoA (8.33%)
(Figure 3D). As mentioned earlier, the alterations in
metabolism associated with these subsystems are associated
with pro-inflammatory processes. According to our model, the
keratan sulfate pathway was detected in the sensitivity analysis, its
degradation is inhibited, its synthesis is reduced, and high
variability was observed in this group. Our findings highlight
the importance that keratan sulfate may have in the astrocytic
response to PA, making it a potential target for further studies.

3.3 Tibolone-PA Treatment Scenario
Under the tibolone treatment scenario, simulations showed a cell
growth of 0.605,193 mMgWD−1h−1. After tibolone in silico
treatment, the model activated 41.65% of biochemical
reactions (Figure 2C). When contrasting the palmitate model
against the tibolone model, tibolone generated a variation of 747

reactions.We found important metabolic changes associated with
the activation, inactivation or flow change of protective pathways
in astrocytes, which agrees with the simulation carried out by
Osorio et al. (2020). In this scenario was found 374 essential
reactions whose variability may be associated with inflammatory
or protective processes. Within these reactions, the majority is
contemplated in the oxidation of fatty acids (21.93%),
degradation of keratan sulfate (12.03%), synthesis of keratan
sulfate (9.63%), extracellular transport (7.22%), mitochondrial
transport (3.74%) and chondroitin synthesis (3.74%). Of these
reactions, 17 were activated (Supplementary Figure S1A), and 60
increased their flux value (Supplementary Figure S1D) under
tibolone treatment. Among these 60 reactions, the most
representative biological systems are the oxidation of fatty
acids (28.33%), synthesis of keratan sulfate (28.33%), and
extracellular transport (8.33%). Under tibolone treatment,
keratan sulfate synthesis is shown to be upregulated, probably
allowing glial scars to form by activating the glia, microglia, and
oligodendrocytes (Supplementary Table S1) (Jones and

TABLE 1 | Set of down-regulated reactions of Keratan sulfate metabolism after PA treatment.

ID Subsytem Formula Reaction Description

AG13T13G Keratan sulfate synthesis uacgam[g] + ksi_pre27[g] - > h[g] + udp[g] +
ksi_pre28[g]

N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase, Golgi
apparatus

AG13T14G Keratan sulfate synthesis uacgam[g] + ksi_pre30[g] - > h[g] + udp[g] +
ksi_pre31[g]

N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase, Golgi
apparatus

AG13T15G Keratan sulfate synthesis uacgam[g] + ksi_pre33[g] - > h[g] + udp[g] +
ksi_pre34[g]

N-acetyllactosaminide beta-1,3-N-acetylglucosaminyltransferase, Golgi
apparatus

FUCASE2E Keratan sulfate
degradation

h2o[e] + ksi[e] - > fuc_L[e] + ksi_deg1[e] alpha-fucosidase, extracellular

G14T14G Keratan sulfate synthesis udpgal[g] + ksi_pre26[g] - > h[g] + udp[g] +
ksi_pre27[g]

beta-N-acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase,
Golgi

G14T15G Keratan sulfate synthesis udpgal[g] + ksi_pre29[g] - > h[g] + udp[g] +
ksi_pre30[g]

beta-N-acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase,
Golgi

G14T16G Keratan sulfate synthesis udpgal[g] + ksi_pre32[g] - > h[g] + udp[g] +
ksi_pre33[g]

beta-N-acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase,
Golgi

G14T17G Keratan sulfate synthesis udpgal[g] + ksi_pre35[g] - > h[g] + udp[g] +
ksi_pre36[g]

beta-N-acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase,
Golgi

S6T12G Keratan sulfate synthesis ksi_pre28[g] + paps[g] - > h[g] + ksi_pre29[g] +
pap[g]

galactose/N-acetylglucosamine 6-O-sulfotransferase, Golgi apparatus

S6T13G Keratan sulfate synthesis ksi_pre31[g] + paps[g] - > h[g] + ksi_pre32[g] +
pap[g]

galactose/N-acetylglucosamine 6-O-sulfotransferase, Golgi apparatus

S6T14G Keratan sulfate synthesis ksi_pre34[g] + paps[g] - > h[g] + ksi_pre35[g] +
pap[g]

galactose/N-acetylglucosamine 6-O-sulfotransferase, Golgi apparatus

TABLE 2 | Set of reactions of folate metabolism with inflammatory potential and changes, identified through an essentiality and variability analysis on the inflammatory
scenario with palmitate.

ID Subsytem Description V.FLUX
a

P.FLUX
a Foldchange

FOLR2 Folate
metabolism

Folate reductase (methylenetetrahydrofolate reductase) 0 0.63 0.63

R0226 Folate
metabolism

5.6,7,8-Tetrahydrofolate: NADP + oxidoreductase One carbon pool by folate/Folate biosynthesis EC:
1.5.1.3

2,78E-
17

0 −1

MTHFD2M Folate
metabolism

methylenetetrahydrofolate dehydrogenase (NAD) −1.79 1.72 −1.96

MTHFDM Folate
metabolism

methylenetetrahydrofolate dehydrogenase (NADP) 1.65 −1.88 −2.13

aFluxes for vehicle “healthy” scenario (V.Flux) and inflammatory scenario (P.Flux).
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Tuszynski 2002; Zhang et al., 2006a; Zhang et al., 2006b; Rose
et al., 2020). Reactive astrogliosis is proven to be beneficial for
neural protection and regulation of inflammation in multiple
conditions(Sofroniew, 2009). However, our model found the
inactivation of reactions associated with N-acetylglucosamine
6-O-sulfotransferase-1, an enzyme related to the keratan
sulfate synthesis (Zhang et al., 2006a). It is possible that the
tibolone pre-treatment is activating a protective mechanism in
astrocytes in order to compensate for the lipotoxic effect of PA
and that this is a very controlled activation, similar to the
expected in a protective scenario (Sofroniew, 2009).

Additionally, this scenario showed the inactivation of 197
reactions (Supplementary Figure S1B) and decreased flux of 16
reactions (Supplementary Figure S1C), that correspond to
oxidation of fatty acids (31.47%), synthesis of chondroitin
(7.11%), and degradation of keratan sulfate (5.58%) among
others. As with the results obtained by Osorio et al. (2020),
the rate of absorption and release of L-glutamine and L-glutamate
mediated by tibolone was found to be reduced, which is
associated with neuroprotective effects (Flott and Seifert 1991).
Furthermore, as mentioned above, tibolone could positively affect
protective pathways by inhibiting the degradation of keratan,
allowing a possible increase in cell viability by protecting cell
homeostasis. These results suggest that tibolone exerts a
significant modulation on inflammatory reactions by activating
protective pathways. Likewise, it generates the deactivation of
neuroinflammatory pathways, which agrees with experimental
results (Schuller-levis and Park, 2003; Ávila et al., 2014; Hidalgo-
lanussa et al., 2017; Martín-Jiménez et al., 2017; González-giraldo
et al., 2019).

3.4 Driver Reactions in an Astrocyte
Multi-OmicModel AreObtained by Reaction
Activity Patterns and Flux Coupling Graph
The previous results allowed us to have a global vision of the
possible target reactions according to our models. We use control
theory which combines the efficiency of previously performed
methods with the breadth of unbiased approaches by not using
objective functions and thus allows for systematic metabolism
studies. According to the control theory and the principle of
steady-state, the reactions operate through coupling relations and
the state of the reactions (McCloskey et al., 2013). Burgard et al.
(2004) and (Basler et al., 2016) have proposed five flow coupling
relationships: directional, partial, complete, inhibitory, and
anticoupling. The coupling implies that the fluxes can be
controlled by regulating enzyme activities, concentrations, and
the principle of steady-state, which suggests that the gene-
protein-reaction relationship must be coordinated according to
its imposed state (Schuetz et al., 2007; Basler et al., 2016).

To determine if the flow coupling reflects the functional
principles of metabolism of the astrocyte model, we analyzed
the three models studied previously (control, lipotoxic, and
tibolone). For each model, we first compute the five coupling
types and their frequencies according to the flux binding profile
for each model (Figures 4A,B). We found that the coupling
profiles for the three networks are similar. However, the reactions

that participate in each model vary according to the metabolic
characteristics in each scenario, which is consistent with the
previous analysis. According to the results obtained by Basler
et al. (2016), anticoupling is rarely found in this type of model, so
the anticoupling frequencies found (<0.1) for our multi-omics
networks are consistent with their results.

Considering the five coupling relationships, we applied the
methodology used by Basler et al. (2016), in which the activity
patterns are considered, through a control graph. The control
graph indicates which reactions control the state of other
reactions for the activity pattern considering the described
sampling scheme and calculating the average of driver
reactions over 1000 activity patterns (Terzer and Stelling 2008;
Basler et al., 2016). Therefore, we determined that the fraction of
reactions that are drivers of central metabolism for the astrocyte
model is approximately 41.95%. This is consistent with the
fractions ranging from 35.8 to 49.2% for the eukaryotes by
Basler et al. (2016). It is important to highlight that most of
the reactions found are part of the central metabolism, indirectly
controlling secondary metabolism reactions, as observed in our
previous analyses. It is also important to highlight that this is a
time and computer resources consuming step. In our case, for a
network this size and with the hardware resources described in
the Methods section, this analysis took us 2 weeks of dedicated
computing resources to be completed.

3.5 Driver Reactions in a Multi-Omic
Astrocyte Model in a Lipotoxic Scenario
As described above, increased uptake of L-serine, D-glucose,
L-glutamate, and the release of L -glutamine and lactate, is a
usual response to the inflammatory response. As well as the
activation and deactivation of metabolic pathways associated with
inflammation and oxidative stress. However, it remains
challenging to identify the relationship of genes and enzymes
that serve as possible activation factors of the astrocytic lesion in a
lipotoxic scenario and its modulation with tibolone. Therefore,
we analyze the gene-enzyme-reaction associations by classifying
the controller nodes according to their roles in each scenario in
the model (Devkota and Wuchty, 2020), grouping them into
three classes according to the number of activity patterns (critical,
redundant, and intermittent reactions) carried out by Basler et al.
(2016) (Supplementary Figure S2). For the three evaluated
models, we found 84 critical reactions associated with central
metabolism: carbohydrate metabolism (i.e., glycolysis,
gluconeogenesis), pentose phosphate pathways, tricarboxylic
acid cycle, amino acid biosynthesis, and amino acid exchange
pathways (Supplementary Table S2).

To identify flux control patterns that underlie healthy astrocytic
cell metabolism changes, we identified critical driver reactions in the
palmitic acid model, which are redundant or intermittent in the
control model. We refer to these reactions as metabolic switches
because of their divergent role in controlling the lipotoxic effect on
the astrocytic cell but not in healthy metabolism. In total, 25
metabolic switches were found, where the coupling profile differs
between the control and AP models, mainly concerning directional,
inhibitory, and partial couplings (Figure 4C).
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Considering the above, we focused our analysis on the 25
metabolic switches and its influence on astrocytic metabolic
phenotype when modulated by PA (Figure 5). As mentioned
above, astrocytes use glucose through glycolysis as the primary
energy source, generating pyruvate as the main product. Of
course, there was a tight coupling of pyruvate production by
oxidative reactions of glucose in the healthy astrocyte model.
However, in the presence of PA, the reactions associated with
glycolysis: catalysis of glyceraldehyde 3-phosphate to D-glycerate
1,3-bisphosphate (GAPD, EC 0.1.2.1.12) by Glyceraldehyde 3-
phosphate dehydrogenase and catalysis of the reversible transfer
of a phosphate group from 1,3-bisphosphoglycerate to ADP
producing 3-phosphoglycerate and ATP (PGK, EC. 2.7.2.3) by
Phosphoglycerate kinase, they may be partially inhibited,
especially by the active coupling interaction due to their role
in the co-production of pyruvate (Supplementary Figure S4).
This result suggests that PA increasing the dependence of fatty
acid oxidation in astrocytes (Schafer et al., 2004; Fell 2005; Yang
and Vousden 2016; Rose et al., 2020). The inhibitory profiles
described above alter reactions associated with folate metabolism
FTCD (GluForTx, EC. 2.1.2.5; 4.3.1.4) discussed before and the
catalysis reaction of argininosuccinate by argininosuccinate
synthase (ARGSS, EC. 6.3.4.5) associated with urea
metabolism. This confirms the predicted role of these

reactions as a critical driver in a scenario within PA, but not
in the control scenario.

The flux change in the lipotoxic model generates a partial or
total inhibitory modulation of mitochondrial CoA transport
(COAtm), affecting the oxidative decarboxylation of pyruvate
to acetyl-CoA and the esterification of fatty acids (ATP-
dependent process) (Rose et al., 2020). In this process, the
carnitine shuttle needs to cross the mitochondrial membrane
and be oxidized to metabolize fatty acids. Therefore, and as
mentioned above, carnitine represents a biomarker and, at the
same time, it is completely coupled with reactions of the β-
oxidation cycle. This could indicate that reactions associated with
its transport (C4tcx, C4tmc, C4x, and C4CRNCPT2, EC. 2.3.1.21)
are essential in astrocytic metabolism since they can modulate the
coenzyme A thioesters (Acyl-CoA) transport. In the presence of
PA, we found that the reactions associated with carnitine
transport are not completely inhibited, but they generate a
downward modulation of the fully coupled reactions: related
to the β-oxidation of long-chain acids (FAOXC16080x, EC. 2.3
0.1.16; 2.3.1.155; 2.3.1.9), β-oxidation of fatty acids C8- > C6
(FAOXC8C6x, EC. 4.2.1.17; 5.3.3.8; 1.1.1.35), β-oxidation of fatty
acids C6- > C4 (FAOXC6C4x, EC. 1.1.1.n12; 4.2.1.107; 4.2.1.119)
and r0735, thus affecting the oxidation of fatty acids and inducing
their accumulation in the endoplasmic reticulum (Yang et al.,

FIGURE 4 | Clustering of flux coupling profiles and change in coupling frequency of metabolic switches in control vs. lipotoxic models. We used three clustering
methods: hierarchical, k-means, and kmedoids for coupling profile classification. (A) Flux coupling profiles of “healthy”multi-omic model of astrocyte; (B) Flux coupling
profiles of lipotoxic multi-omic model of astrocyte; (C) Box plot showing the comparison of the coupling profiles of critical driver reactions in inflammatory vs. “healthy”/
control scenario. The critical driver reactions in the lipotoxic model and redundant and intermittent reactions in the healthy model are considered metabolic
switches. Negative values indicate a low number of couplings in metabolic models, and positive values indicate many couplings. The number of anti and full couplings of
critical driver reactions in the lipotoxic model is similar in the healthy model, while inhibitory, partial, and directional reactions vary.
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1987; Piccolis et al., 2019; Souza et al., 2019). The preceding leads
to the upregulation of ketone bodies formation through
directional coupling and change in metabolic flow to reactions
associated with mitochondrial enzymes HMG-CoA synthase, in
our case hydroxymethylglutaryl-CoA synthase (HMGCOASim,
EC. 2.3.3.10) and 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) (HMGCOAtm) (Foll and Levin 2016; Farmer
et al., 2020).

On the other hand, the glucose carbons can also be used to
synthesize cysteine, which, together with the glutamate
(Ex_glu_L in the model) used for the synthesis of glutamine,
allows the synthesis of glutathione (GSH), which is essential for
redox buffering(M. Yang and Vousden 2016). Additionally, the

oxidative stress generated by PA can be regulated by repressing
glucose metabolism, decreasing NADPH-dependent extracellular
ROS production (Arnedo et al., 2011; Vicente-Gutierrez et al.,
2019; Rose et al., 2020).

As mentioned before, reactions associated with the folate
pathway have been previously determined to be essential in
the lipotoxic scenario. This pathway supports the transfer of
carbon units from serine for biosynthetic processes. However,
when this pathway is negatively modulated, a decrease in
NADPH biosynthesis is generated due to NAD + deficiency
(Bailey and Gregory 1999; Field et al., 2014). Consistently with
those findings, our model predicts the regulation of formate-
tetrahydrofolate ligase reaction (FTHFLm, EC. 1.1.1.300), which

FIGURE 5 | The presence of 25 metabolic switches in the lipotoxic model allows identifying critical reactions. (1) In astrocytes, glucose is used through glycolysis as
the primary energy source; however, PA negatively regulates reactions associated with this metabolic pathway through GAPD and PGK. It has further been shown that
recurrent exposure to low glucose levels increases astrocyte FAO dependency. In our model, the presence of PA can modulate and alter COAtm, affecting the oxidative
decarbonization of pyruvate. (2) Fatty acids (FA) with less 12-C can enter the mitochondria directly; however, fatty acids with 13–21 carbons need the carnitine
shuttle to pass into the mitochondria. In the presence of PA, the reactions of carnitine transport C4tcx, C4tmc, and C4x showed downregulation. (3) β-oxidation is the
preferable route for AC-CoA synthesis. In the presence of PA, it can be altered by the negative regulation of C4CRNCPT2, which transports carnitine for the final
hydrolysis of fatty acids and modulates the reactions FAOXC16080x, FAOXC6C4x, FAOXC8C6x, and r0735. (4) PA upregulates HMGCOASim and HMGCOAtm,
probably generating a high production of ketone bodies, which act as an alternative fuel. (5) Cysteine Ex_cys_L together with the glutamate Ex_glu_L allows the synthesis
of glutathione (GSH). In the case of the oxidative stress generated by PA, the production of ROS dependent on NADPH is affected, deregulating the redox state. In our
model, the reactions associated with the biosynthesis of RNA pyrimidines, OROTGLUt and r0839, demonstrated a critical role in the presence of PA; Ex_cys_L was
presented as a critical reaction due to its different roles, especially in the production of GSH and palmitoylation. (6) Reactions associated with the folate pathway have
been determined as essential in the lipotoxic stage. These reactions are FTHFLm, MTHFD, and GHMT2r. We also found metabolic switches involved in cell maintenance
that, in the presence of PA, modulate central and secondary metabolic pathways, including EX_pro_L(e), FORt2m (for mitochondrial formate transport), DGTPtn (DGTP
diffusion in the nucleus), and H2O transport.
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participates in the transfer of carbon units, essential for several
biosynthetic pathways. Additionally, it is directly related to the
above-discussed MTHFD, which in the presence of an insult can
affect mitochondrial maintenance functions and cellular
homeostasis (Bailey and Gregory 1999; Coppedè et al., 2006;
Coppedè 2021; Shi et al., 2021).

As we showed previously, one of the metabolic pathways that
has more directional and inhibitory couplings with other pathways
is the folate cycle. Other metabolic switches associated with
different NADPH-dependent metabolic pathways are also
altered, such as the reaction related to GMP reductase (Field
et al., 2014; Rose et al., 2020). GMP reductase catalyzes the
irreversible deamination of GMP for the conversion of
guanosine nucleotides into inosine nucleotides, precursors of
adenosine nucleotides, which maintain intracellular nucleotide
balance (Ipata and Tozzi 2006). We found that the reaction
associated with Glycine hydroxymethyltransferase (GHMT2r,
EC. 2.1.2.1) is represented as critical since it is part of the
polyglutamylation of folate, but it is also fully and directionally
coupled to purine, serine, alanine, and threonine metabolism (Fell
2005; Yin 2015; Rose et al., 2020). Glycine is an important source
for transferring carbon units through folate intermediates because
a downwardmodulation would represent a negative modulation in
the folate cycle (Yang andVousden 2016; Rose et al., 2020). Finally,
other reactions such as EX_pro_L(e), FORt2m (for mitochondrial
formate transport), DGTPtn (Deoxyguanosine-triphosphate
diffusion in the nucleus), and H2O transport are metabolic
pathways that are indirectly modulated by palmitic acid and are
essential for the maintenance of brain homeostasis (Leanza et al.,
2008; Badaut 2010; Nagelhus and Ottersen 2013; Pietzke et al.
2020). It is important to take into account that the intermediates
associated with each metabolic pathway provide precursors for the
biosynthesis of several classes of molecules. Thus, any alteration
that can modify biosynthetic processes alters astrocytic cellular
homeostasis and neuronal-metabolic cooperation processes.

Although or model showed the control role (inhibitory) of the
reactions associated with the glutamate-orotate antiporter
(OROTGLUt), it is important to mention that in eukaryotic cells,
the absence of this antiporter or its modulation prevents the uptake
of orotic acid (OA), demonstrating a limiting capacity to use OA,
and therefore, generating an inhibitory modulation of orotate
transport (r0839) for the biosynthesis of RNA pyrimidines
(Sonnewald et al., 1998; Fumagalli et al., 2017). Our model also
found a modulation of the cysteine exchange (Ex_cys_L), which has

several crucial roles in astrocytic cells by contributing to the
production of GSH and palmitoylation (Young et al., 2012;
Butland et al., 2014). In addition, palmitoylation also allows the
adjustment of protein functions (Young et al., 2012).

Finally, within these 25 metabolic switches, we compared the
metabolic changes between the PA metabolic model and the
astrocytic model under tibolone pre-treatment, i.e., critical driver
reactions in the PA model and redundant ones in the tibolone-
treated cells and healthy astrocytes. In total, we found nine reactions
of this type, including nuclear, peroxisomal, and extracellular
transport, as well as glycolysis/gluconeogenesis and amino acid
metabolism (Table 3). The fact that these reactions could be
controlled by other reactions in the tibolone scenario but not in
the inflammatory one implies that they would be key for protective
treatment. Therefore, the possible role of decreasing inhibitory or
competitive coupling ofmost reactions and the protective capacity of
tibolone probably lay in these nine reactions. However, further
research will be necessary to asses the importance of the
metabolic switches proposed here.

4 CONCLUSION

In this study, we have focused on PA and its regulaory role in
astrocytic cells at the multi-omic level. Updating a previously
published genome-scale metabolic model, we performed an
integration of transcriptomics and proteomics data by anovel
approach. This approach allowed us to identify controller-type
reactions that have previously been experimentally characterized
as critical. These reactions showed an essential role in astrocytic
metabolism, not only at the local level (where they play their
primary function) but also by directly or indirectly controlling
other reactions. We characterized these reactions as metabolic
switches in the lipotoxic model, being key points for astrocyte
homeostasis in a healthy state. These promising results highlight
the feasibility of applying control theory to either postulate
previously identified reactions or suggest new ones as possible
study or treatment targets. This approach facilitated the
understanding of the mechanistic aspects of control inside of
the astrocytic cell, such as the inhibition of energy production
through fatty acids β-oxidation or folate cycle (FTHFL and
MTHFD reactions), switching to the formation of ketone
bodies by upregulation of HMGCOASim, highly described
mechanisms in stress processes generated by PA. Additionally,

TABLE 3 | Set of critical reactions of the PA model that have a divergent role in the healthy and tibolone models.

Reaction PA_model Healthy Model Tibolone Model Subsystem

DGTPtn Critical Intermittent Intermittent Transport, nuclear
EX_glu_L(e) Critical Intermittent Intermittent Exchange/demand reaction
EX_pro_L(e) Critical Intermittent Redundant Exchange/demand reaction
GAPD Critical Intermittent Intermittent Glycolysis/gluconeogenesis
GHMT2r Critical Intermittent Intermittent Glycine, serine, alanine, and threonine metabolism
H2Otp Critical Intermittent Intermittent Transport, peroxisomal
OROTGLUt Critical Intermittent Redundant Transport, extracellular
PGK Critical Intermittent Intermittent Glycolysis/gluconeogenesis
r0839 Critical Intermittent Redundant Transport, extracellular
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we found nuclear, peroxisomal, and extracellular transport, as
well as glycolysis/gluconeogenesis and amino acid metabolism to
be critical only in the PA condition but not in healthy or treated
with tibolone astrocytes. Such information not only would
provide a better understanding of the systemic level of the
astrocytic response to PA and tibolone, but will also lay the
foundations for future pharmacological investigations, guided to
create more effective therapies, and in the control field, aimed to
extend their applications in the biological phenomena,, such as
the possible role of these metabolic switches as effectors of multi-
omics oscillations, as it has been suggested for organisms such as
Escherichia coli (Bardozzo et al., 2018). Finally, our results along
with this study framework can be used for in silico exploring the
mechanisms of astrocytic cell regulation, directing a more
complex future experimental work in neurodegenerative diseases.
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