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The liver is the body’s primary metabolic organ and its functions operate at multiple

time and spatial scales. Here we employ multiscale modelling techniques to describe

these functions consistently, based on methods originally developed to describe

reactive fluid flow processes in naturally-fractured geological sediments. Using a fully

discretized idealized lobule model for flow and metabolism, a dual continuum

approach is developed in two steps: 1) Two interacting continua models for tissue

andsinusoidsproperties, followedby2) furtherupscaleddual continuamodels leading

to an averaged lobule representation. Results (flows, pressures, concentrations, and

reactions) from these two approaches are compared with our original model,

indicating the equivalences and approximations obtained from this upscaling for

flow, diffusion, and reaction parameters. Next, we have generated a gridded dual

continuummodel of the full liver utilizing an innovative technique, based onpublished

liver outline and vasculature employing a vasculature generation algorithm. The inlet

and outlet vasculature systems were grouped into five generations each based on

radius size. With a chosen grid size of 1mm3, our resulting discretizedmodel contains

3,291,430 active grid cells. Of these cells, a fraction is occupied vasculature, while the

dominant remaining fraction of grid cells approximates liver lobules. Here the largest

generations of vasculature occupy multiple grid cells in cross section and length. The

lobule grid cells are represented as a dual continuum of sinusoid vasculature and

tissue. This represents the simplest gridded dual continuum representation of the full

liver organ. With this basic model, numerous full liver drug metabolism simulations

were run. A non-reactive PAC (paclitaxel) injection case including only convective

transfer between vasculature and tissue was compared with including an additional

diffusive transfer mechanism. These two cases were then rerun with tissue reaction,

converting injected PAC to PAC-OH (6-hydroxypaclitaxel). There was little transfer of

PAC from vasculature to tissuewithout the addition of diffusive transfer, and this had a

significant observable effect on internal PAC distribution in the absence of reaction,

and also on the distribution of PAC-OH for the reactive cases.

KEYWORDS

computational fluid dynamics, dual continuum model, liver organ, liver vasculatures,
drug distribution and reaction, diffusion

OPEN ACCESS

EDITED BY

Luis Mendoza,
National Autonomous University of
Mexico, Mexico

REVIEWED BY

Muhammad Sahimi,
University of Southern California,
United States
Ehsan Taghizadeh,
University of California, Los Angeles,
United States

*CORRESPONDENCE

Dennis Coombe,
dennis.coombe@cmgl.ca

SPECIALTY SECTION

This article was submitted to Multiscale
Mechanistic Modeling,
a section of the journal
Frontiers in Systems Biology

RECEIVED 23 April 2022
ACCEPTED 26 September 2022
PUBLISHED 02 November 2022

CITATION

Coombe D, Rezania V and Tuszynski JA
(2022), Dual continuum upscaling of
liver lobule flow and metabolism to the
full organ scale.
Front. Syst. Biol. 2:926923.
doi: 10.3389/fsysb.2022.926923

COPYRIGHT

© 2022 Coombe, Rezania and
Tuszynski. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Systems Biology frontiersin.org01

TYPE Original Research
PUBLISHED 02 November 2022
DOI 10.3389/fsysb.2022.926923

https://www.frontiersin.org/articles/10.3389/fsysb.2022.926923/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.926923/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.926923/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2022.926923&domain=pdf&date_stamp=2022-11-02
mailto:dennis.coombe@cmgl.ca
https://doi.org/10.3389/fsysb.2022.926923
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2022.926923


1 Introduction

The liver is the body’s primary metabolic organ and its

functions operate at multiple time and spatial scales. From the

most general anatomical point of view, the liver can be viewed as

comprising three vascular trees: two supply trees that originate

from the portal vein and hepatic artery and one collecting tree

that drains into the portal artery. These blood vessels undergo

several steps of bifurcation down to the terminal arterioles and

venules, which are organized into portal tracts along with a

terminal bile duct. Liver cells, called hepatocytes, radiate outward

from the terminal vessels. These plates of hepatocytes are

interspersed by sinusoids, which play the role of the capillary

in the liver, and the spaces of Disse, which represent the

extravascular spaces of the liver. Finally, the blood is collected

and removed by the hepatic venules.

At the microscopic level of its functioning, the liver is the

major site of biotransformation of xenobiotic substances,

including drugs, participating in their removal from the body.

Its main role is to prevent accumulation of various chemical

compounds circulating in the bloodstream by converting them

into a form suitable for elimination. Such vital processes,

however, can potentially damage liver tissue and hence liver

functionality. Studies of hepatic clearance demonstrated that

substance extraction can not only be limited by damaged

hepatocytes, but also by the intrinsic (enzymatic) ability to

eliminate the drug, by the resistance to drug transport from

blood to eliminating tissue cells, and by the hepatic blood flow

itself. Indeed, perturbations in the hepatic flow patterns (e.g., due

to diseases such as cirrhosis or as a result of aging) can

significantly alter the systemic clearance of these harmful

substances. Consequently, a quantitative understanding of the

relationship between liver structure and its function, which can

be achieved by computational model development, is of great

value. In silico modeling of liver performance and its structural

integrity can assist, for example in the prediction of the

hepatoxicity of drug candidates. Due to its complex

architecture, model development for blood flows in the liver is

not a trivial task and requires the use of multi-scale approaches.

Fluid flow effects range from input/output large vasculature

conduits (portal vein-hepatic artery to hepatic vein) to small

sinusoidal capillary networks. Temporal process variations range

from milliseconds for metabolic process changes (O2 and

glucose) to drug metabolism and enzyme changes over

minutes to hours, to liver structural changes (fibrosis,

steatosis, and hepatitis) over days and months. In silico

techniques offer the promise to quantify such processes and

rationally connect them over these multiple scales in a seamless

manner.

This work is motivated by issues presented in our earlier full-

liver scale simulation model, White et al. (2016) for the dog liver

in a pseudo-2D approximation, now applied to a 3Dmodel of the

human liver. Here, we employ multiscale modelling techniques

to describe these functions consistently, based on well-

established methods originally developed to describe reactive

fluid flow processes in naturally-fractured geological sediments.

Other researchers who have attempted upscaling concepts when

modeling the liver include (Xie et al., 2015; Schwen et al., 2015;

Schwen et al., 2016; Schwen et al., 2017; Berndt et al., 2018; Sluka

et al., 2018; Lorente et al., 2020; Lorente et al., 2020).

Most often, researchers use averaged single continuum

models for upscaled fluid flow or mechanics simulations.

Here, a single continuum or single porosity (SP) region is

defined as one discretized grid cell for a selected region of

space. However, often a given region of space is

microscopically (sub-grid size) heterogeneous. In such cases,

the use of SP models is appropriate only at later timescales

after a change of conditions when mass transfer between sub-

regions have come to pseudo equilibrium.

In contrast, here we will utilize a computationally efficient

algorithm to upscale these results to the tissue and full organ

scales. This algorithm is termed dual continuum modeling,

such that each averaged spatial location property is

represented by both one averaged tissue property value,

and one averaged vasculature property value. This holds

for both static properties such as porosity, permeability as

well as dynamic properties such as component

concentrations. These two continua are dynamically linked

within and between each averaged region, and this algorithm

is often termed a dual permeability (DK) method, as

permeability provides the dominant coupling mechanism.

A simpler computational version of dual continuum

modelling has been termed dual porosity (DP), which

ignores some permeability coupling.

The algorithm was originally developed to model fluid

production from fine-scaled fractures in geological

heterogeneous media (Oballa et al., 1993). Subsequent

extensions and improvements of this method have been

developed, and this approach has been continuously employed

to model realistic field reservoirs (e.g., Cipolla et al., 2009), and

complex recovery processes (Herbas et al., 2009). This latter

application (reactive gel placement in fractured reservoirs) can be

viewed as a potential analogue of fibrosis formationmodelling. In

our application, we apply an equivalence of the terms “fracture”

and “matrix” to represent “sinusoids (or upscaled vasculature)”

and “tissue (or upscaled effective tissue)”. As in our previous

work, we utilize the term “hydraulic permeability” or

“permeability” to characterize the convective (Darcy) flow

parameters, following standard engineering

terminology. Permeability in mD is approximately equivalent

to 1.0e–15 m2.

Similar dual continuum concepts have been utilized by other

authors to represent dynamic processes occurring in the lung

(Erbertseder et al., 2012), the heart (Michler et al., 2012) or the

brain (Cassot et al., 2006; Peyrounette et al., 2018 and in tumours

Shipley and Chapman, (2008), Shipley and Chapman, (2010).
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2 Materials and methods

The form of the dual continuum flow equations solved in our

method are outlined in Supplementary Material, Supplementary

Appendix SA. SB gives details of the dual continuum

representation of the ideal lobule. Computational details on

the conversion of constrained constructive optimization

(CCO) data to grid-based structures are presented in

Supplementary Appendix SC, which has been applied to the

Schwen et al. (2015) vasculature in the main body of this paper.

Convection-diffusion-reaction flow calculations are

performed utilizing the STARS advanced process simulator,

CMG Ltd, (2021), as described in our earlier papers.

3 Results

During the last few years, we have developed and studied

several basic computational models to understand transport and

metabolism of drugs in the liver lobule. We use basic physics laws

for liver transport and enzymatic reactions (Poiseuille’s law and

Darcy flow, Carmen-Kozeny permeability estimates, Stokes-

Einstein diffusion, and Michaelis-Menten kinetics) to provide

useful fundamental insight to all the processes of interest. Spatial

effects are dominated by standard physics vasculature network

characterization and modification by disease (ideal-space filling

versus fractals, diffusion-limited aggregation (DLA), tortuosity

and percolation).

3.1 Lobule scale—Mechanistic flow and
metabolism

3.1.1 Basic lobule scale reactive-flow models
We began with a simple idealized-lattice model for the lobule

(Rezania et al., 2013a; Rezania et al., 2013b), which is the smallest

structural unit that can independently serve all of the organ’s

functions. This idealized model was extended to consider

structural and spatial variability of the lobule in two and three

dimensions (Rezania et al., 2016; Rezania et al., 2020). Here, a

hexagonal-based model with supplying and draining structures

to represent a typical liver lobule was developed. To capture even

more realistic structures, we implemented a novel sequential

diffusion-limited aggregation (DLA) method to construct a

morphological sinusoid network in the lobule. A 3D model of

the lobule constructed with stacks of multiple 2D sinusoid

realizations was explored to study the effects of 3D structural

variations. The role of liver zonation on drug metabolism in the

lobule was also addressed, based on flow-based predicted steady-

state O2 profiles used as a zonation indicator.

Figure 1 shows the basic conceptual unit adopted in our

model. This consists of a single cell unit surrounded by ECM, and

a local portion of an idealized sinusoid network surrounding this.

Volumes are calculated using a 3-μm grid size for the sinusoid

and a 24-μm grid size for liver tissue. Basic physics concepts are

used to estimate physical properties for this unit. The sinusoid

porosity and permeability are estimated via a circular tube with a

radius fitted inside a square cross section of side dimension 2R

(Poiseuille’s law, Bird et al., 2000). The tissue permeability uses a

Carmen-Kozeny correlation as a function of porosity. This was

originally developed for packed beads (Dullien, 1992), but has

been found appropriate for soft fibrous media as well (Zhu et al.,

2017). It is noted that diffusion in sinusoids is assumed to be free

diffusion (based on particle size and the Stokes-Einstein

equation) while diffusion in tissue grid cells is less, due to

restricted motion around collagen fibers (e.g., Ogston et al.,

1973; Ho and Strieder, 1981; Gu et al., 2004). Metabolic

reactions are assumed to follow Michaelis-Menten kinetics

formulation (Michaelis et al., 2011).

Basic flow properties of this unit are summarized in Table 1

and form the basis of all our upscaling procedures. This element

is a 27-grid cell model and allows the possibility of 27 grid cell

values for any dynamic property such as pressures or

concentrations. Later upscaling will assume average values for

the tissue and vasculature subsystems.

Next, we construct an idealized lobule by combining 50 ×

50 × 50 units from our basic element, the result of which is shown

in Figure 2. Note that, because the sinusoids and tissue regions

are separately discretized, the fully discretized idealized lobule

model consists of (101 × 101 × 101) grid cells. Such an approach

was first outlined in our earlier papers (Rezania et al., 2013a;

Rezania et al., 2013b), but for a ¼ element in 2D. Here, there are

4 inlet (portal) ports and one per-central outlet port, as illustrated

in Figure 2. As numerical run times typically scale with the

number of grid cells (and not necessarily with grid size), we will

emphasize the change/reduction in the number of grid cells

throughout this paper, achieved via upscaling methods.

With this model, we develop computer simulations of O2

utilization and paclitaxel drug metabolism, utilizing Michaelis-

Menten kinetics. Our earlier two papers discuss this in greater

detail (but for 2D models). All simulations are conducted at a

fixed pressure drop between periportal and pericentral inlet/

outlet.

Figure 3 illustrates the predicted lobule flow responses at a

selected periportal inlet (this is essentially identical at all inlet

ports) and pericentral outlet for this idealized model, which are

the characteristics we wish to preserve with any upscaling

method. Figure 3A illustrates the very short timeframe

required to attain steady flow behaviour, which is dominated

by convective mass transfer and estimates of sinusoid and tissue

permeabilities. This will be the first property required for

upscaling, as discussed below. Non-reacted paclitaxel (PAC)

profiles determined by convective-diffusive flows can then be

predicted. Once upscaled convection properties are matched, this

profile can be used to adjust upscaled diffusion parameters (case

run but not shown). Finally, predicted reactive PAC and its
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metabolite 6-hydroxypaclitaxel (PAC-OH) profiles are calculated

(Figure 3B) which are a consequence of convection-diffusion-

reaction processes. Once upscaled convection and diffusion

properties are matched, these profiles will be used to adjust

upscaled reaction rates (see below) in principle. The example

given here shows a very rapid reaction, such that almost all

injected PAC reacts to form PAC-OH, which is then produced.

Because of this limit, the equivalent non-reacted PAC profile case

mentioned above essentially follows the reacted PAC-OH profile

shown in this figure.

For completeness, Figure 4 illustrates the spatial distribution

of reactive PAC and PAC-OH at 1 min and the evolution of

PAC-OH spatially over time.

Lobule zonation is a further aspect of reactive lobule

modelling that needs to be considered. We have previously

shown predicted reactive O2 flow behaviour with the idealized

lobule. As the resulting oxygen distribution is believed to affect

the zonal expression of cytochrome C (CYP) enzymes, we utilize

the steady state O2 distributions to estimate drug-metabolizing

(paclitaxel) enzymes across the lobule (Rezania et al., 2016;

FIGURE 1
Base case flow element: sinusoid local network (with flow properties) surrounding cell + extracellular matrix cube (with different flow
properties).

TABLE 1 Base case flow and metabolism parameters.

Parameter Characteristic unit STARS unit

Sinusoid porosity 0.7854 0.7854

Sinusoid permeability 1.125 μm2 1.140 Darcy

Sinusoid effective diffusion 4.2e-10 m2/s 2.5e-4 cm2/min

Tissue porosity (ideal) 0.4764 0.4764

Tissue permeability (ideal) 1.230 μm2 1.246 Darcy

Tissue porosity (base) 0.2382 0.2382

Tissue permeability (base) 7.35e-2 μm2 7.45e-2 Darcy

Tissue porosity (ECM) 0.1191 0.1192

Tissue permeability (ECM) 6.883e-2 μm2 6.97e-2 Darcy

Tissue effective diffusion 4.2e-11 m2/s 2.5e-5 cm2/min

Maximum rate vmax 0.06 μM/min 1.08e-9 molefrac/min

Half saturation constant km 10.0 μM 1.8e-7 molfrac

Linear rate Vmax/Km 6.0e min−1 6.0e-3 min−1

Blood viscosity 3.5 × 10−3 Pa-sec 3.5 cpoise

(1 Darcy = 0.9869 μm2 in engineering permeability units).

*Paclitaxel kinetic elimination Michaelis-Menten parameters converted from Vaclavikova et al. (2004), their Table 4.
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Rezania et al., 2020) to calculate these zonal distributions.

Fibrosis modifications of flow can be expected to further effect

zonation. The treatment of zonation and its upscaling will be left

to future work.

Using similar techniques, we have generalized our ideal

lobule model to a more realistic hexagonally-shaped lobule

with distorted sinusoidal flow paths generated via a diffusion

-limited aggregation (DLA) algorithm (Rezania et al., 2016).

Figure 5 shows an example of this model, indicating

6 bounding portal vein inflow ports and one central hepatic

vein outlet port. Both modelling approaches generate flow

volumes, patterns, and reactivities consistent with natural

individual human lobule variability. In particular, the 4 inlet

ideal model inflows can be adjusted to match the 6 inlet

hexagonal inflow rates and volumes, and both lobule volumes

and reactivities can also be adjusted to equivalence (our non-

published results). Lorente et al. (2020) have established such

equivalence in their ideal versus realistic models of liver tissue.

The paper of Rezania et al. (2016) also demonstrates the DLA-

lobule equivalent metabolic process couplings just described above

for the ideal lobule. This includes a treatment of zonation.

The overall idea of this section is to present the coupled

nature of flow and various metabolisms at the lobule scale, and

indicate factors (e.g., disease), which can further impact this

coupling. We then explore if/how upscaling methods can capture

aspects of these couplings.

3.1.2 Dual continuum representation of lobule
flow at the same scale (upscaling 1)

This section describes an equivalent dual continuum

representation of the idealized liver lobule. Here, the dual

continuum model chosen is termed “dual permeability” and

follows the approach of reference of Oballa et al. (1993) which

developed such a technique for naturally-fractured geological

materials. In this previous application, the fractured system was

idealized as a “sugar cube” system such that intersecting planes of

fractures surrounded the matrix material. As illustrated in Figure 1,

the present application has a somewhat different “fracture”

(i.e., sinusoid) structure, which impacts on the exact numerical

conversion formulae utilized, as discussed below.

The equivalent dual continuum model is a 50 × 50 × 50 grid

with uniform block sizes of 0.0030 cm (= 0.0003 + 0.0024 + 0.0003)

comprising the full matrix (tissue) block and half of each

surrounding fracture (sinusoid) block. Figure 1 also shows that

the fracture (or sinusoid) spacing is 0.0006 cm in each dimension.

This upscaling reduces the total number of grid cells to 1.25e+5

(from the original 1.03e+6) but doubles the number of unknowns

(tissue and vascular property) per grid cell.

FIGURE 2
Base case idealized 3D flow network structure: Lobule lattice with individual sinusoid and tissue grids.
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As discussed in Oballa et al. (1993) and summarized in the

Supplementary Appendix SA, each dual continuum grid block is

separated into effective sinusoidal and tissue properties and so

flow equations and flow variables are solved for each continuum.

Here, we must distinguish between the true fracture and matrix

properties (i.e., those assigned to the separate regions in the fine

grid single continuum model discussed previously) and the

averaged effective properties, which govern the flow in the

FIGURE 3
Idealized lobule flow characteristics compared with dual continuummodelling. (A) Injection/production flow rates approach to steady flow. (B)
Injected/Produced PAC and PAC-OH (reactive case) up to 1 min.
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FIGURE 4
3D PAC and PAC-OH distribution levels for Basic case idealized lobule model. (A) PAC distribution for Basic lobule model at 1 min (B) PAC-OH
distribution for Basic lobule model at various times.

FIGURE 5
Hexagonal DLA-patterned lobule model with 6 portal (PV) inlet flows and one central (HV) outlet flows.
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TABLE 2 Dual continuum data. (a) Idealized Liver Lobule Model.

Reservoir grid data (cartesian 50 × 50 × 50) DI, DJ, DK 0.0030 cm

Sinusoid pore volume fraction 0.277

Tissue pore volume fraction 0.723

Reservoir data (effective sinusoid network) Porosity 0.0817

Reservoir data (effective hepatocyte tissue) Permeability 55.45 mD

Porosity 0.2134

Permeability 65.02 mD

Initial/well operating conditions Initial Pressure 101.5 kPa

PV Pressure 103.0 kPa

HV Pressure 101.8 kPa

Injected PAC concentration 1.8e-8 (1 μM)

Simulation time 1.0 min

FIGURE 6
3D Upscaled dual continuum idealized lobule models showing tissue effective properties surrounded by sinusoid effective properties (A) 50 ×
50 × 50, (B) 5 × 5 × 5, and (C) 3 × 3 × 3 grids.
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FIGURE 7
Idealized dual continuum lobule flow characteristics—(A) Injection/production flow rates approach to steady flow (DK models 50 vs. 5 vs. 3 vs.
1 blk). (B) Injected/Produced PAC and PAC-OH (reactive case) up to 1 min (DK models 50 vs. 5 vs. 3 vs. 1 blk).
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dual continuummodel. For porosity, these are related via straight

volume averaging as follows

ϕp
f � ϕf

Vf

Ve
(1)

ϕp
m � ϕm

Vm

Ve
(2)

Vf � Ve − Vm (3)

where f andm represent fractured and matrix components and

p denotes effective quantities. For the permeabilities (in

mD), these effective properties are area weighted averages,

namely

kpf � kf
Af

Ae
(4)

kpm � km
Am

Ae
(5)

where Ae and Ve are the total element area and volume,

respectively. In principle, these permeability weightings could

be different in different directions if the fracture spacing differs in

the orthogonal directions.

Furthermore, these two continua interact (i.e., fluid can be

transferred between each continuum) and this local, inter-

continua transfer term (in mD-cm) is governed by the local

fracture spacing and a harmonic averaging of the matrix and

fracture permeabilities

σp � 4⎡⎢⎢⎢⎢⎢⎣Afm,xkmf,x

(Lf + Lm)x +
Afm,ykmf,y

(Lf + Lm)y +
Afm,zkmf,z

(Lf + Lm)z
⎤⎥⎥⎥⎥⎥⎦ V

Ve
(6)

Here Afm,x and kmf,x are the area for matrix-fracture transfer

and the harmonic average of the matrix and fracture

permeabilities, respectively. Also Lm and Lf are the matrix

size and fracture width, respectively. Supplementary Appendix

FIGURE 8
Schwen vasculature discretized on a cubic grid. (A) PV vasculature (first 4 generations), (B)HV vasculature (first 4 generations), (C) Complete PV
and HV vasculatures (5 generations each).
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SB reviews these terms and derivations in more detail. We

emphasize again, for our current application “fracture”

implies sinusoid properties while “matrix” represents tissue

properties.

Table 2 summarizes the parameters of the equivalent dual

continuum model at the lobule scale.

The spatial visualization of dual continuum models requires

some comment. We provide two visualization options (the actual

calculations are unchanged). Figure 6A shows one possible

visualization option with the fracture continuum superimposed on

the matrix grid. Note this does not represent the individual sinusoid

(fracture) paths (see Figure 2) but rather provides a way to visualize

static and dynamic properties simultaneously on one plot.

Alternatively, the static and dynamic properties of each

continuum can be presented as separate plots, as will be

illustrated below. We note the spatial distribution of zonation is

better represented using the 6 inlet (DLA) lobule model rather than

the 4 inlet (ideal) lobule model.

With this representation of the liver lobule, the dynamic

simulations of the base case model can be re-run and examined.

Figure 3 shown above compares the single continuum and dual

continuum injection/production behaviours, and illustrates their

consistency. A comparison of the dimensions of the gridded

models (101 × 101 × 101 single continuum versus 50 × 50 ×

50 dual continuum) demonstrates that the dual continuum

models run approximately 8 times faster. Further upscaling

will result in even faster run times.

3.1.3 Single block representation of lobule flow
(upscaling 2)

Once the dual continuum model parameters have been

established for the (50 × 50 × 50) dual continuum lobule model,

it is a relatively straight-forward task to generate further upscaling of

the same 1 mm3 lobule volume of interest. Conceptually several

upscaling steps could be considered, although issues of preserving

zonation need consideration. These are:

FIGURE 9
Portal Vasc. + Hepatic Vasc. + overlap from generations 3, 4, and 5. The color bar represents the number of vasculatures occupying one grid
cell. (A) 0–15, (B) 16–31, (C) 32–47, and (D) 48–63.
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(a) A “next stage” upscaling creating a (5 × 5 × 5) grid for the

complete lobule.

(b) A “zoned lobule” model based on a (3 × 3 × 3) grid for the

complete lobule.

(c) A “pseudo-1D” lobule based on a (1 × 1 × 1) grid for the

complete lobule.

The first two are illustrated in Figures 6B,C while the third

(ultimate) case is discussed in detail in what follows. These

visualizations show the tissue property values per grid cell,

with the sinusoid properties shown as surrounding each tissue

grid cell value—these dual continuum visualizations are different

than the basic similar continuum representations with only one

value for each surrounding sinusoid property, rather than

9 independent values.

Note all the upscaling here represents a significant reduction

in resolution of the lobule and its metabolic processes [125 grid

cells, 27 grid cells, 1 grid cell, respectively, but with double the

number of unknowns (tissue and vascular property per grid

cell)]. The first two reductions still should capture zonation in a

discretized sense, with some grid cells representing near portal

and some near central properties. However, it is the third

upscaling, a one dual continuum grid block representation a

1 mm3 lobule which is of interest in this work, as we wish to

incorporate this into a full organ scale model. It is emphasized

that any dual continuum representation (even a single block

model) provides a clear separation of tissue metabolism and

sinusoid flow processes.

Figure 7 illustrates the predicted dual continuum lobule flow

responses at a periportal inlet and pericentral outlet for this

idealized model, for various upscaling levels. Figure 7A illustrates

the very short timeframe required to attain steady flow behaviour

for various grids, which is dominated by convective mass transfer

and estimates of sinusoid and tissue permeabilities. This will be

the first property required for upscaling, as discussed below.

Figure 7B shows predicted reactive (PAC-OH) profiles for the

same grid cases, which are a consequence of convection-

diffusion-reaction processes. The example given here shows a

very rapid reaction, such that almost all injected PAC reacts to

form PAC-OH which is then produced. The use of effective

diffusion and effective reaction rates tomatch production profiles

is seen to be warranted, but not explored further here.

The spatial property distributions (spatial resolution) are

increasingly averaged with each increased level of upscaling.

This has important implications for zonation modelling. Most

particularly, the issue of capturing zonation within a single cell

lobule model might be addressed analytically via a radial

averaging. Alternatively, a 3-layer hybrid grid option (also

available in our software) might be considered with a central

portion for the pericentral port. Such an approach would involve

increasing the total number of grid cells by a factor of three.

These issues are left for future work.

3.1.4 Representation of DLA lobule flow
(upscaling 2)

We turn now to some comments on upscaling of the DLA

lobule. Although the above idealized model has allowed an

“analytic” dual continuum upscaling protocol, a more direct

practical lobule upscaling can be determined for any fine-scale

model. This should be addressed via a stage-wise fitting process

in a stepwise fashion, using the fine-scale results as a basis for the

upscaled constants.

The first criterion is that involving equal volumes—the

volumes of sinusoid and tissue are summed to define effective

FIGURE 10
Full organ dual continuum permeabilities—cross sectional view (A) Gridded vasculature permeabilities (areal view, layer 80) and (B) Gridded
effective tissue permeabilities (areal view, layer 80).
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TABLE 3 Dual continuum data. (b) Full Liver Organ Model.

Reservoir grid data (cartesian 227 × 170 × 175) DI, DJ, DK 0.1 cm

Effective vasculature PV fraction 0.404

Effective tissue PV fraction 0.596

Reservoir data act(effective vasculature network) Porosity 0.7858

Reservoir data (effective sinusoid network) Permeability 2.73e+7 mD

Reservoir data (effective tissue) Porosity 0.0817

Permeability 207 mD

Porosity 0.2134

Permeability 61.0 mD

Initial/well operating conditions Initial Pressure 101.5 kPa

PV Pressure 103.0 kPa

HV Pressure 101.8 kPa

Injected PAC concentration 1.8e-8 (1 μM)

Simulation time 1.0 min

FIGURE 11
Steady-state pressure distribution in vasculature after 10 min: (A) full pressure range, (B) rescaled inlet pressure range, (C) rescaled outlet
pressure range.
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porosities for each continuum. The second criterion concerns

overall fluid flow, which involves setting effective permeabilities.

Short-term initial fluid flow is determined solely by vasculature

permeability while later steady fluid flow is determined by a

combination of vasculature and tissue permeabilities. Normally

this latter is only of concern to liver process models, except

perhaps when flow is interrupted by surgical procedures and a

short-time flow change is of concern. Non-reactive component

production profiles can be used to set effective diffusion

constants, where typically standard free diffusion constants

may be assumed for vasculature, and effective tissue diffusion

is used fit profiles. Reactive flow processes (e.g., drugmetabolism)

leading to metabolite production profiles can be used to fit

effective reaction constants. Here, the fact that metabolism

occurs only in tissue implies only one effective parameter is of

concern per reaction. Multiple species coupled reactions require

more complex fitting algorithms.

The result is an upscaled DLA model, which is entirely

equivalent to an upscaled ideal lobule, as both base cases

reduce to the same upscaled description, but with different

effective parameter choices), Lorente et al. (2020) have also

described the equivalence of cubic and hexagonal models of

liver lobules quantitatively.

The upscaling steps just outlined also illustrate issues on

visualization of capillary networks and their corresponding dual

continuum representations. We have presented two explicit and

different representations of these networks at a fine scale, but

visualization at the dual continuum scale just presents (for any

property) one average result for each continuum, and would be

visualized in the same way (but with different property values).

There are exact parallels in the visualization of naturally fractured

reservoirs at the fine scale versus dual continuum upscaling.

3.1.5 Inclusion of missing intermediate scale
vasculature (upscaling 3)

Finally, we consider the effects of the missing higher

generation vasculature not generated by Schwen’s protocol.

Here, we invoke some analytic assessments of their

contribution to overall flow surrounding a capillary bed as

developed by other authors (Herman et al., 2011; Lorente

et al., 2020). This procedure essentially rescales the sinusoid

contribution to the average lobule flow. Using their assumed

scaling of tube radii and lengths based on data from Debbaut

et al. (2011), we have estimated this rescaling to be approximately

a factor of 3. The impact of this missing contribution to the full

liver organ simulations is assessed further below.

A future investigation should address this issue via a

discretized upscaling approach similar to what we have just

outlined for a single lobule upscaling. Here, we would consider

a tissue scale model consisting of an array of coupled lobules

connected by the intermediate scale vasculature generated by an

CCO algorithm. Using a selected grid size similar to our individual

lobule-based case model, we would then upscale this base case

result to an adjusted average 1 mm3 lobule, whose flows quantify

the effects of the missing higher generation vasculature.

3.2 Full organ scale–vasculature
algorithms

In a previous study (White et al., 2016), the portal and

hepatic vasculatures were generated via a CCO algorithm in

both 2D and pseudo-3D to represent vasculatures for the full

liver organ (We will call this paper’s method pseudo-2D.) The

method is an iterative multi-scale approach to constructing

FIGURE 12
Reactive PAC and PAC-OH distributions in dual continuum model (no diffusion). (A) Reactive PAC distributions in fracture after 10 min. (B)
Reactive PAC-OH distributions in matrix after 10 min.
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physiologically-driven 3D arterial tree models that are optimized

based on specific metabolic and morphology constraints of the

embedding tissue. In a true 3D model, portal and hepatic

vasculatures have to be created simultaneously without

crossing each other. This is not possible in the 2-dimensional

model. As an extension, we wrote a global optimization program

(Global Constructive Optimization, GCO) that uses our 2D code

output as the input (unpublished ongoing work).

For this paper, we have generated a gridded dual continuum

model of the full liver, based on the liver outline and vasculature

generated by Schwen et al. (2015), who employed a CCO

vasculature generation algorithm. The PV and HV vasculature

provided by Schwen was grouped into 5 generations each based

on radius size (Their original 7 generations were grouped into

5 generations for ease of interpretation of individual generation

contributions in a 1 mm sized grid block). The root radius for PV

is 3.2 mm while the root radius for HV is 2.8 mm. It is

emphasized that Schwen et al. did not extend their algorithm

to further generations of smaller radii. For reference, the ultimate

expected sinusoid radius is approximately 3 μm (3e-3 mm), see

our lobule description above.

Supplementary Appendix SC Outlines the method we

employed to convert the CCO schwen et al. Data to our grid-

based model.

3.2.1 Visualization of generation and overlap
occupancy for combined PV and HV
vasculatures

In principle, the grid-based structures can be generated for

any chosen grid scale. Once a grid size is selected, vasculature of

varying radii must be incorporated into these grids. Two limits

occur: 1) Radii of dimensions greater than the chosen grid size,

and 2) radii of dimensions smaller than the chosen grid size. The

treatment of the first limit is obvious, with several continuous

grid blocks representing the large vasculature. The treatment of

the second limit is more complicated, as multiple vasculatures of

multiple radii can occur within a single grid block. This will be

treated via dual continuum modeling. Here we must specify: 1)

The location of grid blocks having vasculature of a given

size, as well as 2) the density of each vasculature in each grid

block.

Here, we propose an innovative method to characterize

and summarize the first issue, utilizing a binary-to-decimal

conversion of vasculature sizes occurring within all grid cells

of the full liver. This allows specifying which vasculature sizes

occur in which grid cell and the overlap of varying vasculature

sizes in a given grid block. To illustrate this method, we utilize

the data generated for both portal vein (PV) vasculature and

hepatic vein (HV) vasculature, starting from root radii “Rmax”

of 3.6840 mm (PV) and 2.8035 mm (HV). From scaling

arguments based on expected lobule size, we have selected a

grid size of 1 mm3. Using a method developed

here, we first subdivide the vasculature into 5 generations

defined as:

Gen1: r > ½ Rmax;

Gen2: ¼ Rmax < r < ½ Rmax;

Gen3: 1/8 Rmax < r < ¼ Rmax;

Gen4: 1/16 Rmax < r < 1/8 Rmax;

Gen5: r < 1/16 Rmax

As indicated above, this provides a convenient method to

subdivide data. We next populate our full liver grid (227 ×

170 × 175 = 6,753,250 grid blocks) with grid size 1 mm3 for

FIGURE 13
Reactive PAC and PAC-OH distributions in dual continuum model (no diffusion). (A) Reactive PAC distributions in fracture after 10 min. (B)
Reactive PAC-OH distributions in matrix after 10 min.
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each generation of PV and HV vasculature. (Note that not all

grid cells are “active” due to the boundary shape of the full

liver model—1,645,715 active grid blocks). The result is

10 indicator arrays (5 arrays for PV generations and

5 arrays for HV generations) which represent the input

information for our method. Note each array consists of

values [0, 1] indicating which grid cells contain vasculature

of a given generation.

Supplementary Table SC1 summarizes the vasculature

statistics for all generations of both PV and HV

vasculature. It is worth noting that the total of all such

vasculature blocks is 210,677 blocks, implying that the

vasculature fraction of active blocks is 0.128. The remaining

number of active blocks is 1,435,038 which can be viewed as

lobule blocks. Both the vasculature fraction (0.13) and lobule

number (1.4e+6) are within accepted ranges for human liver

characterization.

In general, representation of full liver vasculature within a

grid-based model of fixed grid size has scaling issues. Figure 8

summarizes views of the generated vasculatures discretized on

a grid of size 1 mm3. Here we use a colour coding spatial

visualization technique with colours 1-5 representing the 5 PV

generations (Figure 8A shows the first 4 generations), and

colours 6–10 representing the 5 HV generations (Figure 8B

shows the first 4 generations). Figure 9C shows visually

the complete combined generations, using a colour

coding 1–10.

This colour coding concept can be extended to illustrate

vasculature overlaps within the 1 mm3 grid blocks. Figure 9

shows a summary 3D plot of 0–63 binary overlap states of the

PV + HV vasculature from generations 3, 4, and 5. Figure 9A

shows a summary 3D plot of the first 15 binary states of the PV

+ HV vasculature described in Supplementary Table SC1. This

is equivalent to gen5p, gen5h, gen4p, and gen4h plus their

overlaps. Figure 9B shows an equivalent plot of gen3p

vasculature plus its overlaps, while the combination of

Figures 9C,D shows gen3h vasculature plus its overlaps.

Although the files also contain information on generations

1 and 2 of portal and hepatic vasculatures and their overlaps,

this would be difficult to visualize and hence these figures

are not shown. The values on the color

bar indicate the number of vasculatures that go through a

grid cell.

This information is later on converted to a volume fraction

occupancy data that provides the fraction of volume occupied

by a vasculature branch for all grid cells, see for example

Supplementary Table SC1 that shows the volume fractions for

the Rmax hepatic vasculature branch for different grid cells. A

similar calculation has been done for the

total of branches for both portal and hepatic

vasculatures. (x, y, z) are coordinates information for a

grid cell.

3.3 Full organ scale–dual continuum flow
simulations

3.3.1 Full organ dual continuum flow
model—concepts

With a chosen grid size of 1 mm3, our resulting discretized

model is 227 × 170 × 175 = 7,653,250 cubic grid cells, but with

only 3,291,430 active grid cells. Of these cells, a fraction is

occupied by the Schwen vasculature, while the dominant

remaining fraction of grid cells approximates liver lobules.

With our chosen grid size of 1 mm, the largest generations of

Schwen vasculature occupy multiple grid cells in cross section

and length. The lobule grid cells are represented as a dual

continuum of sinusoid vasculature and tissue. This represents

the simplest gridded dual continuum representation of the full

liver organ. Further improvements to this basic model include 1)

upscaling liver lobule properties to account for the impact of

missing fine scale vasculature; 2) adjusting the gridded Schwen

vasculature to for partial occupancy of a 1 mm3 grid cell. A first

attempt at assessing 1) has also been attempted here. The

observation that liver vasculature is fractal (see Hahn et al.,

2003; Hahn et al., 2005; Debbaut et al., 2011; Hermann et al.,

2011) will be an important consideration in this future

development.

Physical properties such as porosity, permeability, water

saturation, diffusion coefficients can be established for each

grid type. The upscaled dual continuum single grid block

lobule properties have been discussed in detail above. For

vasculature containing grid blocks (of 1 mm3 size), the

porosity and permeability are set as a tube model

(equivalent to that employed for ideal sinusoid blocks) but

recognizing the grid block size difference (1 mm versus 6 μm).

The porosity, ϕ, water saturation, Sw, diffusion coefficients, D,

are set the same as sinusoid properties (ϕ = 0.7854, Sw = 1.0,

D = D0). The permeability, however, is dramatically different,

based on kb = Rb
2/8 = 3.125e+4 μm2 = 3.166e+7 mD for Rb =

0.5 mm tube inside a 1 mm3 block (from Table 1, 1 mD =

0.987e-3 μm2 = 0.987e-3 mm2). Note vasculatures greater

than a 0.5 mm radius are represented by multiple grid

blocks. As an example, for a tube radius of Rt = 3 mm, the

expected permeability is kt = Rt
2/8 = 1.125e+9 μm2 =

1.1.4e+9 mD. This is represented by a 6 × 6 array of

1 mm3 blocks, yielding a permeability of kt = 36 × kb =

1.140e+9 mD, establishing an approximate equivalence.

Because these high permeabilities result in extremely high

flows relative to those in lobule blocks, timing for pressure

equilibration and component delivery to tissue is only shifted

by an extremely small degree (microseconds) by any. We have

further chosen to rescale our basic vasculature permeability

somewhat (0.7 factor: 2.235e+7 mD instead of 3.166e+7 mD)

to allow the small pressure drop effects to be better quantified and

visualized.
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Vasculature blocks are represented as pure vasculature (no

tissue) versus lobule blocks which are dual continuum. Figure 10

shows a cross-sectional view of organ permeability, illustrating

these points. Table 3 summarizes the organ dual continuum

properties.

3.3.2 Full organ dual continuum flow
model—results

With this basic model, several first-pass drug perfusion flow

simulations were performed. These flows with the generated

vasculature-DK lobular system and a flow rate of 980 cm3/min

generates an organ scale pressure distribution, as shown in

Figure 11A. The predicted pressure gradient is from the PV

inlet to HV outlet. Figures 11B,C rescale this pressure profile to

illustrate the near inlet upstream and near outlet downstream

profiles. These plots are shown for the fracture (i.e., vasculature)

pressures. The matrix (effective tissue) pressure profiles are

essentially identical after a very short time pressure

equilibration period, except for a small shift in maximum

inlet and minimum outlet pressures, which ensures flows go

from inlet vasculature to tissue to outlet vasculature. It is

emphasized that non-reactive and reactive cases discussed

here will produce the same pressure drops and pressure

profiles, as the reactions of interest do not generate porosity/

permeability changes. (This would contrast with reaction models

simulating fibrosis, for example.)

A non-reactive PAC injection case including only convective

transfer between vasculature and tissue was compared with a case

including an additional diffusive transfer mechanism. These can

be viewed as representative limiting cases of large nanoparticle

drug injection versus molecular drug injection strategies. These

two cases were then rerun with tissue reaction, converting

injected PAC to PAC-OH. Note that no consideration was

paid to possible upscaling of the diffusive and reactive terms

used in these models. The parameters from our lobule-scale

models were used directly. Re-assessing this is an important area

of future work (see Baish et al., 2011; Ben-Avraham and Havlin,

2011)

There was little observed difference in produced PAC

dynamics with the non-reactive runs (produced PAC reached

injected levels after 2 min, and no produced PAC-OH was

observed in the reactive cases up to 10 min. There was little

transfer of PAC from vasculature to tissue without the addition of

diffusive transfer, and this had a significant observable effect on

internal PAC distribution in the absence of reaction, and also on

the distribution of PAC-OH for the reactive cases. An interesting

result of the reaction-plus-diffusion case is that PAC is found

100% in the vasculature (none in tissue) while PAC-OH

concentrations are almost identical in vasculature and tissue

continua locally.

More particularly, for the no diffusion case, Figure 12A

shows unreacted PAC in the vasculature after 10 min while

12b shows reacted PAC-OH in the tissue at the same time.

Because both the large vasculature and the lobule’s vasculature

contribute to the vasculature dual continuum, we can see two

distinct distributions of PAC in the vasculature (i.e., a high

concentration distribution and a low concentration

distribution, found in the large vasculature and sinusoidal

vasculature, respectively). Figure 12B shows minimally-reacted

PAC-OH in the tissue at the same time point. Not shown are

reacted PAC-OH in the vasculature and unreacted PAC in tissue,

but both concentrations are essentially zero.

This behavior is dramatically altered in the reaction with

diffusive transfer case, as shown in Figure 13. The additional

(i.e., dominant) diffusive transfer to tissue results in the lower

PAC concentrations being completely removed from the

vasculature (Figure 13A) resulting in large conversion to

PAC-OH in tissue (Figure 13B). Not shown are the

negligible amount of PAC in the tissue continua, and the

almost identical concentration of PAC-OH in vasculature to

that in tissue for this highly reactive case (as mentioned

above).

We then considered “upscaling” lobule dynamics trying

to account for the missing higher order vasculature

generations. This was done by increasing the assumed

sinusoid radius from 3 μm to 5 μm, resulting in porosity

and permeability changes for the lobule grid cells, which

gives the expected order of magnitude convection change

caused by the missing vasculature. However, repeating the

same four cases did not significantly change observed

differences in spatial distribution and production

behavior. For example, the total reacted PAC values for

the reaction cases were found as:

NoScale_rx: 1.42e–12 mol (factor 1.00).

NoScale_rxdisp: 1.15e–08 mol (factor 8100).

Scaled_rx: 3.26e–12 mol (factor 3.26).

Scaled_rxdisp: 6.22e–08 mol (factor 43,803)Where ‘rx’ and

‘rxdisp’ denote “reaction without dispersion” and “reaction with

dispersion” cases, respectively. It is clear that dispersion levels

have a dramatic effect on the amount reacted at a fixed time

point, while inclusion of missing vasculature leads to further

increased reaction levels. Detailed exploration of the effects of

missing vasculature is warranted.

4 Discussion

This paper has presented details of a computationally

efficient algorithm to upscale liver metabolic processes and

flows from the lobule scale to the full organ scale, and

substantially extends our previous work. Here, we have

emphasized the applicability of dual continuum techniques

(separate upscaled elements for effective tissue and multi-level

effective vasculature) when applying this upscaling. We have

indicated specific issues associated with this upscaling—which

mechanisms are retained and which are averaged by upscaling.
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Indeed, future issues include refinements of vasculature

representation in grid-cell-based models including partial

vasculature occupancy of grid cells, and rigorous

representation of sub-grid scale vasculature as well as

reaction upscaling and lobule zonation. Efficient analytic

methods to address upscaling issues can be considered.

Alternatively, numerical methods for fitting effective

properties can always be employed to connect one gridded

scale to the next level in a stepwise fashion. As mentioned

above, our choice of reaction parameters led to fast rates and

imply one upscaling limit. A more extensive examination of

slower reaction processes (e.g., some drug metabolism

reactions) and varying Damkohler numbers appears

warranted. This will have upscaling implications as the

ratio of convective, diffusive, and reaction flows changes.

The resulting full organ computational model size

(approximately one million grid size) allows extensive

investigations of liver full organ processes with reasonable/

practical simulation run times (<½ day for current standard

workstation computing power or faster with parallel

processing options). Note a dual continuum approach

essentially doubles the number of grid cells used for

property calculations (one for fracture/one for matrix)

while accounting for the effects of non-equilibrium inter-

continuum transfer. An equivalent average single

continuum approach ignores these non-equilibrium effects,

while explicitly representing all microvasculature would

increase the number of grid cells by possibly 1 million

times (based on capillary network density). As the total

number of grid cells is an approximate estimate of

comparative run times, it is clear that a dual continuum

approach represents an attractive tradeoff to preserve

modelling the process physics. Liver processes of interest at

multiple scales include: 1) Disease (e.g., steatosis, fibrosis,

cirrhosis): and 2) Drug metabolism in heathy tissue and

tumors. In particular, fibrosis as a result of liver disease will

be our focus for further modelling using the above techniques.

Fibrosis affects or is affected by the disease states of steatosis,

cirrhosis, and cancer and furthermore impacts the ability and

feasibility of drug treatments. Fibrosis can be expected to delay

and change effective metabolic/drug rate processes. At the full

organ scale, contrasting regions of healthy liver and fibrotic

liver can be examined and evaluated, and a critical fibrotic

fraction for liver failure can be determined mechanistically.

In summary, efficient computational modelling allows

process experiments conducted at multiple scales to be put

into a consistent theoretical framework (from single cell to

lobule; from lobule to full liver), using rigorous upscaling (or

multi-scaling) techniques in time and space. Indeed, this is a

fruitful way to combine points of view from any multi-

disciplinary approach. This paper presents a practical tool to

accomplish these goals.
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