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MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are involved in the

modulation of the DNA-damage response (DDR) and upon exposure to ionizing

radiation (IR), their expression fluctuates. In this study, we propose a workflow that

enables the creation of regulatory networks by integrating transcriptomics data as

well as regulatory data in order to better understand the interplay between genes,

transcription factors (TFs), miRNAs, and lncRNAs in the cellular response to IR. We

preprocessed and analyzed publicly available gene expression profiles and then

applied our consensus and integration approach using open source data and tools.

To exemplify the benefits of our proposed workflow, we identified a total of

32 differentially expressed transcripts corresponding to 20 unique differentially

expressed genes (DEGs) and using these DEGs, we constructed a regulatory

network consisting of 106 interactions and 100 nodes (11 DEGs, 78 miRNAs,

1 DEG acting as a TF, and 10 lncRNAs). Overrepresentation analyses (ORAs)

furthermore linked our DEGs and miRNAs to annotations pertaining to the DDR

and to IR. Our results show that MDM2 and E2F7 function as network hubs, and

E2F7, miR-25-3p, let-7a-5p, and miR-497-5p are the four nodes with the highest

betweenness centrality. In brief, our workflow, that is based on open source data

and tools, and that generates a regulatory network, provides novel insights into the

regulatorymechanisms involvingmiRNAs and lncRNAs in the cellular response to IR.
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1 Introduction

Our genome is continuously exposed to exogenous and

endogenous agents that cause DNA damage. Consequently,

several mechanisms have evolved to detect and counteract

DNA damage, collectively termed the DNA-damage response

(DDR) (Jackson and Bartek, 2009). Ionizing radiation (IR)

induces various types of DNA damage e.g. single-strand

breaks (SSBs), double-strand breaks (DSBs), oxidized bases

and abasic sites (Ward, 1994) with the DSB considered the

most critical DNA lesion for the cell. IR induces DNA damage

through direct ionization and through radiation-induced

reactive oxygen species (ROS), which damage the DNA

indirectly (Ward, 1988). DSBs are mainly repaired by two

mechanisms: non-homologous end joining (NHEJ) (Lieber,

2008) or homologous recombination (HR) (San Filippo et al.,

2008). The failure to repair DSBs or an incorrect repair can

lead to mutations, chromosomal rearrangements, genomic

instability, driving oncogenesis or lead to cell death

(Pampfer and Streffer, 1989; Morgan et al., 1996; Ceccaldi

et al., 2016; Murashko et al., 2021).

In recent years, non-coding RNAs (ncRNAs) have

emerged as a crucial component of the DDR. Different

RNA species, including but not limited to, microRNAs

(miRNAs) and long non-coding RNAs (lncRNAs) have

been shown to modulate the DDR, for example, in

repairing DSBs (Thapar, 2018; Ketley and Gullerova, 2020).

Mature miRNAs are single-stranded endogenous RNAs

approximately 22 nucleotides in length that

posttranscriptionally regulate messenger RNAs (mRNAs)

(O’Brien et al., 2018). On the other hand, lncRNAs are

considered to be longer than 200 nucleotides and are often

involved in transcriptional regulation or occasionally function

as a competing endogenous RNA (ceRNA), an RNA transcript

that sequesters miRNAs and therefore inhibits their effects

(St.Laurent et al., 2015; Ma et al., 2019). The importance of

miRNAs and lncRNAs in the DDR is well established (Zhang

and Peng, 2015; Liu et al., 2016; Thapar, 2018; Shaw and

Gullerova, 2021) and several studies have already investigated

changes in gene/mRNA, miRNA, and lncRNA expression

after IR exposure (Lacombe et al., 2018; May et al., 2021;

Jia and Wang, 2022). However, their interplay following IR

exposure has yet to be elucidated.

Many tools have already been developed to integrate

different types of omics data such as transcriptomics,

proteomics, metabolomics, and methylomics (Graw et al.,

2021). Furthermore, the use of network-based approaches

to better understand regulatory mechanisms behind

complex diseases has repeatedly been employed (Boroń

et al., 2022; Noble et al., 2022; Vahabi and Michailidis,

2022). Nonetheless, bioinformatics approaches in

combination with omics data have seldom been used in the

context of ionizing radiation to create regulatory networks.

Using a mouse model of radiation-induced lung injury, Li

et al. (2019) identified a lncRNA-, microRNA- and mRNA-

associated ceRNA network. The analysis of lncRNAs and

mRNAs of mouse peripheral blood mononuclear cells

(PBMCs) exposed to low-dose IR also revealed lncRNA-

mRNA coexpression networks (Qi et al., 2020). Therefore,

regulatory networks incorporating mRNA-, miRNA-, and

lncRNA-derived data are needed to understand the

interplay following IR exposure.

In this study, we developed a generic workflow, that is

applied to a specific used case. Particularly, our workflow is

based on the analysis of transcriptomics data, where

peripheral blood is subjected to IR, and our workflow then

incorporates regulatory information pertaining to TFs,

miRNAs, and lncRNAs to create a regulatory network. Due

to the fact that the generation of omics data using cells

subjected to IR is very expensive and time-consuming, our

methodology focuses on using open source data and tools.

Namely, we obtained publicly available raw microarray

datasets along with their corresponding platform

specifications from the Gene Expression Omnibus (GEO)

database (Edgar et al., 2002). We then preprocessed and

analyzed the transcriptomics data and applied a consensus

approach to uncover differentially expressed mRNAs, which

we refer to as DEGs throughout this manuscript. In order to

construct the regulatory network, we then incorporated TF,

miRNA, and lncRNA regulatory data that we retrieved from

publicly available databases. The construction, visualization

and analysis of the network were performed using open source

tools. We hereby uncovered 20 radio-responsive DEGs that

have the potential to be used as IR biomarkers in terms of

exposure, absorbed dose or dose rate. We also suggested that

MDM2, E2F7, miR-26b-5p, and GADD45A may play an

important role in the DDR since these nodes had the

highest degree. The degree of a node corresponds to the

total number of incoming and outgoing edges associated to

this node. Nodes with high degrees are often referred to as

hubs and are more likely to play an essential role (He and

Zhang, 2006). Similarly, we revealed that E2F7, miR-25-3p,

let-7a-5p, and miR-497-5p are the nodes with the highest

betweenness centrality. Nodes with the highest betweenness

centrality most frequently control information flows in the

network (Abbasi et al., 2012). Moreover, overrepresentation

analyses (ORAs) further supported the involvement of our

uncovered molecules in the DDR in response to IR. In brief,

we suggest that the identified regulatory network containing

DEGs, TFs, miRNAs, and lncRNAs reveals insightful

regulation mechanisms behind the cellular response to IR.

2 Materials and methods

The workflow developed in this study is depicted in Figure 1.
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2.1 Microarray data acquisition and
preprocessing

We downloaded publicly available raw microarray datasets

along with their corresponding platform specifications from the

Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.

gov/geo/, see Table 1. In order to be included in this study, the

original investigations needed to satisfy all of our following

inclusion criteria. Namely, they needed to 1) make use of

peripheral blood from healthy human volunteers; 2) include

non-irradiated control samples; 3) use ex vivo radiation dose

that can be found in the range of 0–8 Gy and that include doses

greater than 1 Gy; and 4) perform the microarray data

acquisition 24 h post-irradiation. We retained the following

datasets: GSE8917, GSE65292, GSE90909, and GSE102971

(Paul and Amundson, 2008; Ghandhi et al., 2015; Broustas

et al., 2017; Park et al., 2017). These studies are based on the

Agilent platform (Whole Human Genome Microarrays with

One-Color (Cyanine-3) labelled cRNA), thus making the

studies especially comparable. Within GSE8917, we kept the

samples where the microarray data acquisition was performed

24 h post-irradiation. Within GSE65292, we kept the samples

that were irradiated with an acute radiation dose-rate and

removed those that were irradiated with a low dose-rate since

the acute dose-rate resembled the dose-rates used in the other

studies. Within GSE90909, we kept the samples that were

irradiated via X-rays and removed those that were irradiated

using neutrons since the other studies used X-rays or γ-rays.
Within GSE102971, we retained the samples where human

peripheral blood was used. All subsequent preprocessing steps

as well as the gene expression analysis, the permutation test, the

target analyses, and the functional enrichment analyses were

performed using R, version 4.1.1 (R Core Team, 2013).

The remaining samples within a dataset were preprocessed in the

following manner. Within a sample, the control features of the raw

data were removed. The background-corrected expression values of

features sharing the same probe name were averaged. The Boolean

values indicating if a feature’s expression value is a non-uniformity

outlier were then averaged for features sharing the same probe name.

Features for which the non-uniform outlier value was greater than

0.5 were assigned an expression value equivalent to “NA”. Likewise,

features for which the average positive and significant value was

smaller than 0.5 were assigned an expression value equivalent to

“NA”. For the remaining samples within a dataset, a feature was

completely removed from further analyses if it was associated with at

least one expression value equivalent to “NA”. Additionally, the

FIGURE 1
Bioinformatics workflow of the current study. This figure illustrates the open source data, tools, and databases employed to uncover the
molecules and interactions of interest, and to create and analyze the final network.

TABLE 1 Microarray gene expression profiles used for the differential gene expression analysis. GEO dataset: Gene Expression Omnibus dataset
(series) are represented by a series accession number beginningwith the letters GSE; Platform: a platform beginningwith the letters GPL, provides
the physical setup of an assay such as an array and is linked to a GEO platform accession number; Number of samples: total number of control and
irradiated samples; Radiation doses (Gy): the samples where irradiatedwith doses given in Gray (Gy), doses irradiated with 0Gy correspond to control
samples.

GEO dataset Platform Number of samples Radiation doses (Gy)

GSE8917 GPL1708 25 0, 0.5, 2, 5, 8

GSE65292 GPL13497 20 0, 0.56, 2.23, 4.45

GSE90909 GPL13497 49 0, 0.1, 0.3, 0.5, 1, 2, 4

GSE102971 GPL10332 100 0, 2, 5, 6, 7
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remaining data within a dataset was afterwards log2-transformed and

quantile normalized using the function normalizeBetweenArrays in

limma (Ritchie et al., 2015). These rigid filtering criteria were chosen

to ensure a high quality of the preprocessed data. For each dataset,

boxplots as well as density curves of the expression values, before and

after quantile normalization, were created in order to eliminate

outliers (data not shown). Upon visual inspection, the samples

GSM2417372, GSM2417385, and GSM2417432 pertaining to

GSE90909 were removed.

2.2 Differential gene expression analysis
and consensus approach

To detect significant radiation-induced transcript expression

changes, we applied a one-way analysis of variance (ANOVA). We

adjusted for multiple testing using the Bonferroni method

(Bonferroni, 1936). Transcripts with an adjusted p < 0.05 were

considered statistically significant. We also did not perform Tukey’s

honestly significance difference test since we were not interested in

identifying pairwise differences in transcript expression between

radiation doses. The probe names of the transcripts were then

converted to HUGO Gene Nomenclature Committee (HGNC)

and RefSeq symbols using biomaRt, version 2.50.3 (Durinck

et al., 2005). All Venn diagrams were plotted with the ggvenn R

package (version 0.1.9; https://CRAN.R-project.org/package=

ggvenn). DEGs, genes that were statistically significantly

differentially expressed (Bonferroni-adjusted p < 0.05), in at least

three of the four datasets were selected for further analysis.

2.3 Permutation test of consensus
approach

To show that our selected transcripts are not a result of a

random selection, we performed a permutation test. For each

dataset, we randomly selected a number of transcripts,

selected from the complete list of transcripts available after

preprocessing without replacements, corresponding to the

number of statistically significantly differentially expressed

(Bonferroni-adjusted p < 0.05) per dataset. We then

determined the number of transcripts that were common in

at least three of the four datasets. We repeated this process

100,000 times and subsequently calculated a p-value.

2.4 Database integration and network
construction

Since we are interested in regulatory interactions between

DEGs, TFs, miRNAs, and lncRNAs, wemade use of the following

databases to construct our regulatory network. Figure 2 illustrates

the different possible types of regulatory interactions that we

searched for, and ultimately, the regulatory network

configuration. Five databases were utilized to find miRNA-

gene interactions. The interaction pairs pertaining to each

database were downloaded in bulk from their respective

website. MiRTarBase, release 8.0 (Hsu et al., 2011), and

TarBase, v8 (Huang et al., 2020), were used to obtain

validated miRNA-gene interactions. We only kept the

interactions that were validated in both databases. TargetScan,

release 8.0 (Lewis et al., 2005), miRDB, v6.0 (Chen and Wang,

2020), and microT-CDS, v4 (Reczko et al., 2012), were on the

other hand used to uncover predicted miRNA-gene interactions.

In TargetScan, interactions with a context score smaller

than −0.48 were retained. In miRDB, interactions with a score

greater to 94 were likewise withheld. Similarly in microT-CDS,

interactions with a miTG score greater than 0.905 were kept. We

only made use of interactions that were predicted in all three

databases after setting the respective cutoffs and filtering

restrictions in an attempt to filter out false positives. Since no

regulation type was provided in these databases, we assumed that

the miRNAs repress their target genes. We next uncovered TF-

miRNA interactions using TransmiR, v2.0 (Tong et al., 2019),

and miRGen, v3 (Georgakilas et al., 2016). Similarly, the

interaction pairs pertaining to these databases were

downloaded in bulk from their respective website. TransmiR

contains validated TF-miRNA interactions, namely we made use

of the interactions curated from the literature. We withheld

interactions where the interaction type exactly matched

“Activation” or “Repression” and searched for interactions

where our uncovered DEGs acted as TFs. Primary miRNA

names were converted to mature miRNAs names using the

FIGURE 2
Illustration of the regulatory network configuration. We used
this configuration to construct the regulatory network presented
in this study. Yellow nodes represent microRNAs (miRNA), light
blue nodes represent differentially expressed genes, dark
blue nodes are differentially expressed genes that act as
transcription factors (TFs), and orange nodes are long non-coding
RNAs (lncRNA). All edges are directed. Repressing edges are red
whereas activating edges are green.
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hsa.gff3 file provided by the miRBase, Release 22.1, website

(https://www.mirbase.org/ftp.shtml) (Griffiths-Jones, 2004). In

contrast, miRGen contains predicted TF-miRNA interactions

and we kept predicted interactions with a p-value < 0.05.

Similarly, the primary miRNA names were converted to

mature miRNAs names using miRBase, Release 22.1. Since the

regulation type in this database was not given, we assumed that

the TFs activated their target miRNAs. We also made use of

TriplexRNA, v2.0 (Schmitz et al., 2014) to expose predicted RNA

triplexes composed of two miRNAs and their mutual

target mRNA.

We afterwards identified experimentally supported lncRNA-

target interactions using the following databases. The interaction

pairs pertaining to each database were downloaded in bulk from

their respective website. lncRNA-miRNA interactions were

found via LncBase, v2 (Paraskevopoulou et al., 2016),

lncRNA-target (miRNAs or DEGs) interactions though

LncRNA2Target v3.0 (Wang et al., 2019), and lncRNA-

chromatin interactions (affecting DEG or miRNA expression,

therefore lncRNA-target interactions) through LnChrom (Yu

et al., 2018). We included the latter since chromatin

remodeling is relevant to the DDR. We first filtered the

LncBase database and removed interactions whose detection

type matched “INDIRECT”. We then kept interactions whose

category corresponded to “Normal/Primary” and we finally kept

interactions validated in “BoneMarrow” tissue since this tissue in

the database is the closest to peripheral blood. We also assumed

that the lncRNAs inhibit their miRNA targets. For the

LncRNA2Target database, we made use of the low throughput

experiments to avoid obtaining too many results. We retained

interactions associated to “DNA damage” and “normal” disease

states, and we removed interactions where experiments were

performed using murine tissue. In LnChrom, we used the

interactions discovered via high- and low-throughput

methods. Since the regulation type in these databases was not

given, we assumed that the lncRNAs repressed their targets. For

the construction of our regulatory network, we kept all

interactions uncovered via LncRNA2Target and LnChrom.

We also kept the interactions common to both LncBase and

LncRNA2Target, and to LncBase and LnChrom, a conservative

approach with the goal of maintaining a moderate regulation

network size.

We finally made use of Cytoscape v.3.9.1 (Shannon et al.,

2003) to visualize the resulting regulatory networks, which

included miRNA-DEG, TF-miRNA, lncRNA-miRNA, and

lncRNA-target interactions.

2.5 Differentially expressed genes and
network analysis

We used the gprofiler2 R package, version 0.2.1 (Raudvere

et al., 2019), in combination with R, version 4.1.1 (R Core Team,

2013) to perform an ORA first using the DEGs and then the

network nodes. We limited the annotations to “Homo sapiens”

and all data sources were selected except for the electronic GO

annotations. The p-values where corrected via the false discovery

rate (FDR) method (Benjamini and Hochberg, 1995) and

annotations with an adjusted p-value < 0.05 were selected.

The same query was run directly in g:GOSt on the g:Profiler

website, https://biit.cs.ut.ee/gprofiler/gost version e105_eg52_

p16_e84549f database updated on 03/01/2022, to retrieve the

DEGs associated to the enriched annotations. We furthermore

carried out an ORA on the miRNAs present in the networks

using the miRNA Enrichment and Annotation tool (miEAA), v.

2.0 (Backes et al., 2016). In the additional parameters, we selected

all the available categories and kept the annotations with an FDR

adjusted p-value < 0.05. The p-values were adjusted for each

category independently and we set the minimum of required hits

per subcategory to 5, a fairly stringent cutoff. The annotations

were also limited to Homo sapiens. We utilized g:Profiler in

combination with miEAA to uncover annotations pertaining to

the DDR and thereby demonstrated that our DEGs and network

nodes (DEGs, TFs, miRNAs, and lncRNAs) are relevant to the

DDR. We specifically searched for overrepresented annotations

directly containing either “damage”, “ionization”, or “radiation”

and filtered out irrelevant annotations. Furthermore, we made

use of NetworkAnalyzer, v.4.4.8, a Cytoscape plugin, to carry out

a network analysis (analyzed as a directed graph) to determine

topological parameters such as the degree of the nodes and the

betweenness centrality (Assenov et al., 2008). Nodes with the

highest degrees or with the highest betweenness centrality may

thus play biologically significant roles in the regulation of the

cellular response to irradiation.

3 Results

3.1 Identification of differentially
expressed genes

Supplementary Table 1 shows the differentially expressed

transcripts (Bonferroni-adjusted p < 0.05), that is, the probe

names of the transcripts and their converted names to RefSeq and

HGNC symbols using biomaRt. Namely, we uncovered

32 unique transcripts corresponding to 20 unique HGNC

symbols which we refer to as DEGs. These transcripts were

differentially expressed in at least three of the four GEO

datasets, see Figure 3. Namely, we found 986, 45, 112, and

0 differentially expressed transcripts in GSE102971,

GSE65292, GSE90909, GSE8917, respectively. A permutation

test supports the notion that these 32 common differentially

expressed transcripts are radio-responsive transcripts (p-value =

0). None of the 32 transcripts were differentially expressed in all

four datasets. An ORA using g:Profiler revealed that

310 annotations with an FDR-corrected p-value < 0.05 were
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enriched. Of these, 17 annotations were directly related to DNA

damage or radiation, see Supplementary Table 2. Nine genes

were associated to these enriched annotations: ASCC3, DDB2,

E2F7, GADD45A, LIG1, MDM2, PCNA, POLH, and RPS27L.

Furthermore, these 9 genes were associated to the gene ontology

term “cellular response to DNA damage stimulus”, term ID GO:

0006974. These results imply that our uncovered DEGs are

affected by IR.

3.2 MiRNAs targeting the differentially
expressed genes

We next identified validated and predicted miRNA-DEG

interactions using the 20 previously determined DEGs. In

total, we detected 89 validated miRNA-DEG interactions and

three predicted miRNA-DEG interactions, see Figure 4. The

validated and predicted interactions did not overlap thus

bringing the total of uncovered miRNA-DEG interactions

to 92. A complete list of these 92 miRNA-DEG interactions

can be found in Supplementary Table 3. A total of 12 DEGs

(ASCC3, CCL27, DDB2, E2F7, FDXR, FHL2, GADD45A, GLS2,

LIG1, MDM2, PCNA, and PHPT1) were targeted by

77 miRNAs. MDM2 was targeted the most, that is,

44 miRNAs targeted this DEG, followed by E2F7, ASCC3,

GADD45A, and PCNA, that were targeted 17, 7, 7, and 6 times,

respectively. The most involved miRNAs were miR-26b-5p,

miR-124-3p, miR-16-5p, miR-26a-5p, miR-27a-3p, miR-30a-

5p, and miR-542-3p targeting a total 8, 3, 3, 2, 2, 2, and

2 DEGs, respectively. Furthermore, out of the 9 DEGs that

were associated to DNA damage or radiation enriched

annotations, see previous section, 7 were targeted by

FIGURE 3
Venn diagram illustrating the number of overlapping differentially expressed transcripts per dataset. One can observe the number of
overlapping differentially expressed transcripts that have a Bonferroni-adjusted p < 0.05 between the GSE102971, GSE65292, GSE8917, and
GSE90909 datasets.
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miRNAs: ASCC3, DDB2, E2F7, GADD45A, LIG1, MDM2, and

PCNA. We did not uncover any RNA triplexes using

TriplexRNA. Altogether, this demonstrates that our

uncovered miRNAs may play a regulatory role in the

cellular response to IR.

3.3 Transcription factors targeting the
miRNAs

We subsequently uncovered regulatory interactions

containing TFs. Namely, TransmiR and miRGen were then

used to identify TFs regulating miRNAs, thus DEGs acting as

TFs. We did not identify any TF-miRNA interactions using

miRGen, however using TransmiR, we did find that E2F7

targets miR-25-3p and miR-25-5p. These findings therefore

imply that E2F7 may contribute to the complexity of the

cellular response to IR.

3.4 lncRNAs targeting the miRNAs

In order to finalize the network, we afterward uncovered

lncRNA-target interactions, where the targets could either be

DEGs or miRNAs, which were exposed in the previous

sections. We identified 779 lncRNA-miRNA interactions

using LncBase, five lncRNA-target interactions using

LncRNA2Target, and seven lncRNA-target interactions

using LnChrom, see Figure 5. Notably, we did not uncover

interactions in LnChrom when using high-throughput

methods. Since our main focus was to demonstrate the

establishment of a workflow that generates a regulation

network using open source data and tools, we used a

conservative approach to determine lncRNA-target

interactions. With this in mind, we excluded

778 interactions identified via LncBase only, and we

retained a total of 12 lncRNA-target interactions, see

Figure 5; Table 2. Namely, 10 lncRNAs accounted for the

12 interactions and they targeted 9 different DEGs or

miRNAs. DDB2 and let-7a-5p were each targeted by

2 different lncRNAs whereas the other targets were only

targeted by a single lncRNA. These results support the

implication of lncRNAs in the context of cellular damage

brought about by irradiation.

3.5 Network construction and analysis

Utilizing the complete list of interactions, see

Supplementary Table 4 that we discovered in the previous

sections, we assembled the final regulatory network.

Specifically, we employed Cytoscape to visualize the final

regulation network, see Figure 6. This network consists of a

total of 106 interactions and 100 nodes (11 DEGs, 78 miRNAs,

1 DEG acting as a TF, and 10 lncRNAs). Using

NetworkAnalyzer, we carried out a network topology

analysis to determine which nodes have the highest degree,

and therefore function as hubs, or the highest betweenness

centrality. The network topology table generated by

NetworkAnalyzer is given in Supplementary Table 5. The

FIGURE 4
Venn diagram showing the number of uncovered microRNA-gene interactions. (A) Venn diagram illustrating the 89 overlapping micorRNA-
gene interaction pairs uncovered usingmiRTarBase and TarBase, two databases containing validatedmicroRNA-gene interactions. (B) Venn diagram
illustrating the three overlapping microRNA-gene interaction pairs found using microT-CDS, miRDB, and TargetScan, three databases containing
predicted microRNA-gene interactions. The validated and predicted interactions did not overlap, therefore we uncovered a total of 92 unique
miRNA-gene interaction pairs.
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list of selected nodes with the highest degree are tabulated in

Table 3. MDM2, E2F7, miR-26b-5p, and GADD45A are of

degree 44, 19, 8, and 8, respectively. These are the four nodes

with the highest degree. On the other hand, E2F7, miR-25-3p,

let-7a-5p, and miR-497-5p are the four nodes with the highest

betweenness centrality with E2F7 having the highest, see

Table 3. All node types (DEG, miRNA, TF, and lncRNA)

are connected to the nodes that have the highest degree or

betweenness centrality. This suggests that the regulation

processes in response to IR are complex and involve

different layers of regulation, for example, by miRNAs,

TFs, and lncRNAs. Furthermore, E2F7 is among the nodes

having the highest degree and the highest betweenness

centrality. This gene may therefore play a particularly

important part in the regulation of DNA damage.

An ORA in g:Profiler using the network nodes also revealed

that 271 annotations, with an FDR-corrected p-value < 0.05, were

enriched. Moreover, 14 of these annotations were directly related

to DNA damage or radiation, see Supplementary Table 6. Seven

genes were connected to these enriched annotations: ASCC3,

DDB2, E2F7, GADD45A, LIG1, MDM2, and PCNA. These genes

were also mainly responsible for the enriched annotations

directly related to DNA damage or radiation in section 3.1.

Additionally, 12 of these 14 enriched annotation terms were

already uncovered in section 3.1. Despite 76 nodes that could not

be included in the g:Profiler query, the network was associated to

enriched annotations directly related to DNA damage or

radiation showing that our network is relevant in the context

of radiation.

We also carried out an ORA on the network miRNAs using

miEAA. 4852 annotations with an FDR-corrected p-value < 0.05,

were enriched. The high number of enriched terms arises from

the fact that we selected all parameters available (28 in total). Of

these overrepresented annotations, 22 were directly related to

DNA damage or radiation, see Supplementary Table 7.

Specifically, 52 of our 78 network miRNAs were related to

these 22 annotations. MiR-26a-5p, miR-185-5p, miR-34a-5p,

miR-124-3p, miR-26b-5p, miR-615-3p, and miR-92a-3p were

present in 10, 8, 8, 6, 6, 6, and 6 DNA damage- or radiation-

related annotations, respectively. This demonstrates that our

network miRNAs are indicative of DDR-regulation processes

and that they may be important DDR modulators. We also

examined if other types of our network nodes were comprised

in the overrepresented miEAA annotations. Specifically, we

inspected annotations pertaining to NPInter, a database of

ncRNAs and biomolecule interactions (Teng et al., 2020). We

examined if any of our network lncRNAs were comprised in

these overrepresented miEAA annotations. Upon inspection, we

observed that 2 of our 10 network lncRNAs, PVT1 and DANCR,

were also found in NPInter associated annotations and

functioned as ncRNAs regulating miRNAs. This additionally

strengthens the concept that our network lncRNAs are

involved in regulating DNA damage responses. Overall, the

complex interplay between genes, TFs, miRNAs, and lncRNAs

in response to exposure to IR may give rise to diverse regulatory

mechanisms behind the DDR and should further be investigated.

FIGURE 5
Venn diagram showing the number of uncovered long non-
coding RNA-target interactions. Venn diagram illustrating the
number of overlapping long non-coding RNA (lncRNA)-target
interaction pairs between LncBase, LncRNA2Target, and
LnChrom, three databases containing lncRNA-target interactions.
The lncRNA targets are either genes or microRNAs. We retained
12 interaction pairs, namely those uncovered using
LncRNA2Target and LnChrom.

TABLE 2 Long non-coding RNAs and their targets. Long non-coding
RNAs (lncRNA) and their targets, either genes or microRNAs,
uncovered in our study are tabulated here.

lncRNA Target

ANRIL GLS2

ANRIL miR-221-3p

CCAT2 miR-20a-5p

DANCR miR-1305

DINO GADD45A

DINO DDB2

ENST00000414355 DDB2

H19 let-7a-5p

HOTAIR let-7a-5p

MALAT1 miR-145-5p

PANDAR PCNA

PVT1 miR-497-5p
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4 Discussion

The interplay between genes, TFs, miRNAs, and lncRNAs

in response to exposure to IR brings about specific regulatory

mechanisms in the DDR that can be studied using openly

available datasets and tools when following the proposed

workflow. In this specific study, we demonstrated how to

analyze microarray transcriptomics and integrate miRNA,

TF, and lncRNA regulatory information such as to create

and investigate a regulatory network regarding the radiation-

induced DDR in response to IR.

Our workflow revealed that our differentially expressed

transcripts originated from three of the four GEO datasets.

We did not uncover any transcripts of interest in GSE8917.

This may be because our preprocessing methods in combination

with the Bonferroni p-value adjustment method were too

FIGURE 6
Visualization of the final regulatory network. All edges are repressing edges (red) and are directed. The yellow nodes represent microRNAs, the
light blue nodes represent differentially expressed genes, the dark blue node corresponds to a differentially expressed gene that acts as transcription
factor, and the orange nodes are long non-coding RNAs. The size of the node is proportional to its degree, i.e., the bigger the node, the more
incoming and outgoing edges the node has.
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stringent for this particular dataset. We opted for a consensus

approach in conjunction with strict preprocessing and data

analysis conditions to uncover relevant DEGs related to

radiation and to overcome variations in the different datasets.

Accordingly, a consensus approach that incorporates several

expression profile studies is likely to improve the accuracy in

identifying relevant transcripts as well as to reduce the

probability of identifying false positives (Freiesleben et al.,

2016). Furthermore, the integration of data from multiple

cohorts is essential to generate robust and reproducible results

(Beuchel et al., 2021). Here, we detected 20 radio-responsive

genes and 17 of these 20 genes (i.e., APOBEC3H, ASCC3, DDB2,

E2F7, FDXR, FHL2, GADD45, LIG1, MDM2, PCNA, PHPT1,

POLH, RPS27L, SLC4A11, TNFSF4, VWCE, and ZNF79) have

been previously identified as IR responsive genes (Kang et al.,

2003; Dressman et al., 2007; Fachin et al., 2007; Gruel et al., 2008;

Meadows et al., 2008; Paul and Amundson, 2008; Henríquez

Hernández et al., 2009; Kabacik et al., 2011; Mayer et al., 2011;

Paul and Amundson, 2011; Paul et al., 2011; Pogosova-

Agadjanyan et al., 2011; Templin et al., 2011; Wen et al.,

2011; Boldt et al., 2012; Knops et al., 2012; El-Saghire et al.,

2013; Nosel et al., 2013; Paul et al., 2013; Versteyhe et al., 2013;

Beer et al., 2014; Vinoth et al., 2014; Ghandhi et al., 2015;

Macaeva et al., 2016; Rouchka et al., 2016; Broustas et al.,

2017; Lacombe et al., 2018; Piotto et al., 2018; Ghandhi et al.,

2019; Cruz-Garcia et al., 2020a; Cruz-Garcia et al., 2020b; Li et al.,

2022). Two of the three remaining DEGs (i.e., CCL27 and GLS2)

have also been described in the context of DNA damage or of

oxidative stress, which is also related to radiation as radiation-

induced reactive oxygen species (ROS). For example, the

increased secretion of CCL27 in the human keratinocyte cell

line HaCaT following X-ray irradiation, was triggered by the

boosted generation of ROS, which was accompanied by the

release of TNF-α (Zhang et al., 2017). Similarly, the

expression of GLS2 was induced in response to DNA damage

or oxidative stress in a p53-dependent manner, and elevated

GLS2 lowered intracellular ROS levels, thus resulted in an overall

decrease in DNA oxidation (Hu et al., 2010; Suzuki et al., 2010).

Moreover, SLC4A11 has also been described in the context of

oxidative stress (Roy et al., 2015). Upon exposure to oxidative

stress, HEK 293 cells transfected with mutant SLC4A11 were

more vulnerable to oxidative and mitochondrial damage

compared to cells containing wild-type SLC4A11 (Roy et al.,

2015). Ultimately, using publicly available expression profiles

jointly with this consensus approach may be an alternative

method to identify transcripts of interest when the production

of experimental data is not possible or limited.

Moreover, we observed that MDM2 and E2F7 function as

network hubs. Nodes with a high degree, also known as hubs,

are more likely to play an essential role (He and Zhang, 2006).

In line with this, multiple review articles have described the

key role of MDM2 in the p53-MDM2-signaling axis as part of

the DDR (Nag et al., 2013; Haronikova et al., 2019; Chen et al.,

2020; Gnanasundram et al., 2021; Okazaki, 2022). In addition,

we found that MDM2 is targeted by 44 different miRNAs. For

example, we showed that MDM2 is targeted by miR-26b-5p,

the miRNA with the highest degree. It was exposed that this

miRNA directly targeted MDM2 (Benderska et al., 2015).

Furthermore, we found that MDM2 is targeted by miR-25-

3p, the node with the second highest betweenness centrality,

and by miR-32-5p. In agreement with this, it was confirmed

that the direct silencing of MDM2 by miR-25 and miR-32 led

to an accumulation of p53, and the overexpression of these

miRNAs in transfected glioblastoma multiforme cells

hampered the growth of glioblastoma multifome cells in

mouse brains (Suh et al., 2012). Our workflow also showed

that MDM2 is targeted by miR-605-5p. In human breast

cancer cells lines, Suh et al. (2012) reported that miR-605

interrupted the p53:MDM2 interaction by

posttranscriptionally repressing MDM2 (Xiao et al., 2011).

The authors further observed that these molecules create a

positive feedback loop that facilitates the response to stress

(Xiao et al., 2011). We furthermore uncovered that miR-143-

3p and miR-145-5p, miRNAs belonging to the same cluster,

repressed MDM2. Correspondingly, it was shown in head and

neck squamous cell carcinomas that these miRNAs negatively

modulated the expression of their target gene, MDM2 (Zhang

et al., 2013). The authors additionally described that these

miRNAs create a feedback loop with MDM2 and p53, and this

feedback loop gives rise to the regulation of cellular apoptosis

in response to DNA damage stress (Zhang et al., 2013). We

also mentioned that E2F7 functions as network hub. It is well

established that the E2F-family of transcriptional regulators

are important controllers of the eukaryotic cell cycle

(Emanuele et al., 2020). In addition to controlling the

timely expression of genes necessary for G1/S transition

and DNA replication, a study further found that

E2F7 contributed to the regulation of DNA repair and

genomic integrity by regulating genes that control DNA

repair pathways (Mitxelena et al., 2018). We revealed that

TABLE 3 Selected nodes with the highest degree or betweenness
centrality. The name of the nodes (microRNAs or differentially
expressed genes) is given in the first column. The second and third
column respectively represent the degree of the node or its
betweenness centrality measurement.

Node Degree Betweenness centrality

MDM2 44 0

E2F7 19 0.2585910652920962

miR-26b-5p 8 0

GADD45A 8 0

miR-25-3p 2 0.08494415807560138

let-7a-5p 3 0.01836340206185567

miR-497-5p 2 0.009879725085910653
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E2F7 is targeted by 17 miRNAs and that it acts as a TF by

regulating two miRNAs. Namely, we uncovered that

E2F7 regulates both miR-25-3p and miR-25-5p. It has been

described in human U2OS osteosarcoma cells that E2F7 is

required for the timely repression of a set of miRNAs

including miR-25, which promote cell proliferation

(Mitxelena et al., 2016). Moreover, we suggested that

E2F7 is targeted by miR-424-5p, the node with the fourth

highest betweenness centrality. This interaction has been

confirmed in human hepatocellular carcinoma (HCC) cells

and the targeting of E2F7 by miR-424-5p regulated the cell

cycle and inhibited the proliferation of HCC cells (Zhao et al.,

2020). Our results underline the substantial importance of

studying the relationship between miRNAs and genes in the

cellular response to IR in order to better understand

regulatory mechanisms behind the DDR. We also exposed

59 miRNAs that were associated to DNA damage- or

radiation-related overrepresented annotations. The most

prominent miRNA, miR-26b-5p, was the miRNA with the

highest degree and was associated to six overrepresented

annotations relating to radiation and DNA damage. In

breast cancer tissue samples of Chernobyl radiation-

exposed female clean-up workers, it was demonstrated that

the expression of miR-26b-5p was increased (Wilke et al.,

2018). Han et al. (2020) reported that miR-26b-5p was the

most downregulated miRNA in lung adenocarcinoma

(LUAD) and that the miR-26b-5p overexpression in LUAD

cells exposed to X-ray radiation led to enhanced

radiosensitivity (Han et al., 2020). Furthermore, they

showed that exosomal miR-26b-5p derived from A549 cells,

and transferred to irradiation-resistant LUAD cells inhibited

the expression of ATF2, a miR-26b-5p target, and promoted

DNA damage, apoptosis, and radiosensitivity (Han et al.,

2020). Although we did not identify the lncRNA DUXAP8

since we used restrictive lncRNA-target identification

methods, the anti-apoptotic function of DUXAP8 in

H1975 and A549 cell was partially reversed by miR-26b-5p,

a target of this lncRNA (Liu et al., 2021). This study, like ours,

shows that the interplay between miRNAs and lncRNAs is

important when investigating regulatory responses. Therefore

in order to create a more accurate and complete regulatory

network involving miRNAs and lncRNAs, one should

particularly pay attention to the filtering criteria used in

publicly available databases when creating such a network.

Another miRNA of interest is let-7a-5p, the miRNA with the

second highest degree and the node with the third highest

betweenness centrality, and it was also associated to two DNA

damage-related overrepresented annotations. Its expression level

was highly upregulated in hematopoietic humanized NSG-SGM3

mice after radiation exposure (Tsogbadrakh et al., 2022). A

miRNA profiling of human carcinoma cell lines HONE1 and

CNE2 revealed that let-7a-5p, along with miR-26a-5p, let-7f-5p,

and miR-20a-5p, other miRNAs also identified through our

study, were differentially expressed after X-ray radiation (Luo

et al., 2022). It was additionally revealed that miR-26a-5p

contributed to X-ray radiation resistance (Luo et al., 2022). A

recent study by Li et al. (2021) showed that the lncRNA

OTDU6B-AS1 maintained the expression of MTDH by

downregulating miR-26a-5p and thereby promoted autophagy

and DNA damage (Li et al., 2021). Similarly, although we did not

identify OTDU6B-AS1 and MTDH, our findings demonstrate

that the complex interplay between lncRNAs and miRNAs may

be behind certain aspects of the DDR.

We furthermore identified miR-124-3p as candidate miRNA

involved in the cellular response to radiation as it was associated to

six overrepresented annotations relating to DNA damage and

radiation. Conducting experiments in CD2F1 mice using lethal

radiation doses, Chakraborty et al. (2020) observed that the anti-

inflammatory miR-124-3p was consistently inhibited across all

phases post-total body irradiation (TBI) (Chakraborty et al.,

2020). We likewise identified miR-27a-3p and miR-30a-5p, and

these miRNAs may also be part of the cellular response to radiation.

One study found that miR-27a-3p, however along miR-30a-3p and

not miR-30a-5p as identified through our analysis, were among a

serum miRNA signature group of five miRNAs able to distinguish

between C57BL/6J mice exposed to sublethal and lethal radiation

doses (Acharya et al., 2015). Another investigation exposed

25 significantly up- or downregulated miRNAs in the irradiated

blood serum of macaques (Fendler et al., 2017). Of these 25, we also

identified six: miR-122-5p, miR-16-5p, miR-30a-5p, miR-34a-5p,

miR-424-5p, andmiR-93-5p. It is evident thatmiRNAs play a role in

regulating the response of cells exposed to irradiation. However,

more studies are needed to understand what role miRNAs play in

the context of a regulatory cellular network regarding the cellular

response to radiation, for instance a radio-protective, anti-oxidant,

anti-inflammatory, or pro-apoptotic role.

As previously mentioned, we purposely used restrictive methods

to detect possible interaction pairs. More permissive methods,

i.e., using the complete results generated by LncBase, resulted in

the identification of 208 additional lncRNAs corresponding to

778 extra interactions (Figure 5). It is consequently very difficult

to filter through these results in order to detect lncRNAs relevant to

irradiation.Moreover, as stated by Yang et al. (2019), the information

demonstrating the role of lncRNAs in the radiation-induced DDR is

highly limited (Yang et al., 2019). Nonetheless, some of our identified

lncRNAs (ANRIL, DINO, ENST00000414355, MALAT1, and

HOTAIR) have been shown to participate in the DDR. For

instance, following DNA damage, ANRIL was transcriptionally

upregulated, and elevated levels of ANRIL suppressed the

expression of NK4a, INK4b and ARF at the late-stage of DNA

damage response, thus allowed cells to return to normal after DNA

repair completion (Wan et al., 2013). Another study found that

DINOwas transcriptionally activated via p53 after DNA damage and

regulated the p53-dependent DNA damage response (Schmitt et al.,

2016). It was observed that the bone marrow plasma cells from

patients withmonoclonal gammopathy of undetermined significance
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or multiple myeloma expressed elevated MALAT1, which was

involved in alternative non-homologous end joining (A-NHEJ)

pathway (Hu et al., 2018). Furthermore, the knockdown of

MALAT1 induced DNA damage and apoptosis in multiple

myeloma (Hu et al., 2018). Additionally, it was demonstrated that

ENST00000414355 negatively modulated the expression DDB2, a

lncRNA-target pair also uncovered in our investigation (Zhou et al.,

2015). The siRNA-mediated knockdown of

ENST00000414355 furthermore inhibited the growth of DNA-

damaged cells (Zhou et al., 2015). The interplay between another

of our lncRNA-target pair,HOTAIR and miR-218-5p, was described

elsewhere (Hu et al., 2019). Namely in response to IR, the knockdown

of HOTAIR inhibited cell survival and increased cell apoptosis, and

this radiosensitizing effect was attributed to the upregulation of miR-

218 (Hu et al., 2019). Although the information concerning lncRNAs

in response to IR is limited, we showed that their interplay with

miRNAs or DEGs could help understand complex regulatory events

regarding the DDR in response to IR.

There is also one main issue in our methodology to be

considered. For instance, we made use of biomaRt to convert

our transcript IDs to up-to-date HGNC symbol. However,

biomaRt did not convert the following probe names of the

transcripts: A_23_P113283, A_24_P88921, A_33_P3214501,

A_33_P3232277, A_33_P3248227, A_33_P3252834,

A_33_P3258452, A_33_P3258612, A_33_P3267410,

A_33_P3345031, A_33_P3357748, A_33_P3361891,

A_33_P3397763. When looking at these transcripts the

GPL10332 platform associated to GSE102971, these could

respectively be associated to the following genes or

pseudogenes: ZMAT3, XPC, AEN, CCNG1, PVT1, PHLDA3,

C12orf5, PCNA, KILLIN, LOC645978, PVT1, TMPRSS7,

TNFSF9. In platform GPL13497 associated to GSE65292 and

GSE90909, all transcripts, except for A_33_P3267410 and

A_33_P3345031, corresponded to the same gene symbols. In

this platform, A_33_P3267410 was associated to KLLN and

A_33_P3345031 could only be associated to a chromosomal

location and a sequence. However, when we tried finding these

transcripts that biomaRt could not convert to up-to-date HGNC

symbols in GPL1708, the platform associated to GSE8917, except

for A_23_P113283 and A_24_P88921 that corresponded to

ZMAT3 and XPC respectively, all other transcript IDs could

not be converted. Although biomaRt is often used for mapping

relevant sets of probe and target molecules, another tool should be

considered to map Agilent Whole Human Genome Microarray

transcript IDs to up-to-date HGNC symbols. Another caveat that

we noticed is that there is a poor overlap in the validated miRNA-

DEG interactions uncovered using miRTarBase and TarBase. This

is further exemplified when looking at the predicted miRNA-DEG

interactions uncovered using TargetScan, miRDB, and microT-

CDS. This may be due to the fact that these three aforementioned

databases use different algorithms to identify novel interaction

pairs. In general, we decided to use overlapping results tominimize

the identification of inaccurate interactions.

In conclusion, the workflow we established in this study was

constructed to uncover regulatory mechanisms behind the cellular

response to IR. To this end, we revealed insightful molecules such as

DEGs, TFs, miRNAs, and lncRNAs, as well as potential regulation

mechanisms involved in the DDR. We also suggested that our

20 radio-responsive DEGs have the potential to be used as IR

biomarkers in terms of exposure, absorbed dose or dose rate. A

specificity of our work is the stringent use of open source data and

tools.We hope tomotivate the reuse of existing resources, which can

save time and effort for generating own data and building own tools.

At the same time, we wish to stress the importance of making own

project data available to domain-specific data bases in high quality

and semantically enriched, for example, using GO terms. We

conclude that our meaningful combination of open source data

and tools is a valuable method to gain a new understanding in the

cellular response to IR.
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