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Themicrobiota of silage is a key determinant of its quality. Although commercial

inoculants are often used to improve silage quality, studies to analyze their

impact on the microbiota of preserved forage at farm-scale facilities are scarce.

We assessed the diversity of viable bacterial communities of hay (unfermented

dry forage) and grass or legume (GL) and corn (C) silage to deepen our

knowledge of how inoculant addition drives microbial occurrence patterns

on dairy farms. Forage samples were collected from 24 dairy farms over two

sampling periods. Samples were analyzed by high-throughput sequencing and

quantitative PCR after being treated with propidium monoazide to account for

viable cells. We found consistent significant differences between hay and silage

community structures across sampling periods. Silage was generally dominated

by lactic acid bacteria (LAB), while Pantoea and Sphingomonas were the main

co-dominant genera in hay. The GL silage dominated by Pediococcus,

Weissella, and Bacillus was phylogenetically different from C silage enriched

in Acetobacter. The use of inoculants including Lentilactobacillus buchneri

either alone or in combination with Lactiplantibacillus plantarum,

Lacticaseibacillus casei, Pediococcus pentosaceus, or Enterococcus faecium

did not systematically prevent the occurrence of undesirable bacteria,

especially when corn-based, probably because of factors that can mitigate

the effect of inoculation on themicrobiota. The core Lactobacillales constituted

the dominant LAB in silage with up to 96% relative abundance, indicating either

the ubiquity of inoculants or the high competitiveness of epiphytes. Silage

chemical profiles varied inconsistently with sampling periods and the use of

inoculants. Multivariate multi-table analyses allowed the identification of

bacterial clusters mainly driven by moisture and magnesium content in hay,

while pH, lactic, and fatty acids were the main drivers for silage. Bacterial

network analyses showed considerable variations in the topological roles with

the use of inoculants. These results may help evaluate the effectiveness of

forage management practices implemented on dairy farms and, therefore, are
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useful for fine-tuning the search for new additives. Such knowledge can be used

by forage makers to adjust processing routines to improve the hygienic quality,

nutritional potential, and aerobic stability of preserved forage.

KEYWORDS

dairy farm, preserved forage, commercial inoculant, microbiota, viable bacteria, co-
occurrence patterns, qPCR, silage quality

Introduction

Forage preservation is critical to ensure proper yearlong

availability of feed for dairy cattle. This is particularly

important in cold-weather areas characterized by rough

winter conditions and limited growing seasons such as

those prevailing in many parts of North America

(Bernardes et al., 2018). Although the origin and patterns

of the phyllosphere community assembly are unclear (Rastogi

et al., 2013), the fate of microorganisms dwelling on fresh

plants throughout the preservation processes contributes to

the quality of preserved forage and determines associated

potential risks to animal and human health (Driehuis et al.,

2018). Due to the development and the application of

molecular techniques to gain insight into the microbiome

associated with preserved forage (McAllister et al., 2018),

management systems have gained substantial upgrades

intended to improve safety and production yields, as well

as beneficial effects for animals (Dunière et al., 2013; Ogunade

et al., 2018a; Borreani et al., 2018; Muck et al., 2018; Ávila and

Carvalho, 2020). Management practices and environmental

factors (Bernardes et al., 2018) unavoidably alter the microbial

content of preserved forage. These feeds therefore constitute

important vehicles for various microorganisms, including

bacteria and fungi from the growing fields to dairy barns

and, ultimately, to milk and dairy products (Julien et al., 2008;

Driehuis, 2013; Dunière et al., 2013).

Hay and silage are the main forms of forage preservation in

dairy production systems (Muck and Shinners, 2001). Although

haymaking consists of drying forage crops to suppress enzymatic

and microbial activities, hay still harbors a viable microbiota, for

which the composition and structure are not well known

(Daniels et al., 2020; Moore-Colyer et al., 2020). On the other

hand, ensiling is based on the fermentative properties of

epiphytic microorganisms, particularly lactic acid bacteria

(LAB), which metabolize water soluble carbohydrates (WSC)

into organic acids under anaerobic conditions where the rapid

decline in pH is a key determinant of silage quality. The genera

Lactiplantibacillus, Lacticaseibacillus, Lentilactobacillus

(formerly Lactobacillus), other lactobacilli, Pediococcus,

Weissella, Leuconostoc, Enterococcus, Streptococcus, and

Lactococcus are generally associated with silage (Dunière et al.,

2013; Ávila and Carvalho, 2020).

However, not all LAB strains can induce a fast pH decrease

during the early stages of fermentation, and in naturally

fermenting forage crops, they may be outcompeted by

undesirable acid-tolerant bacteria including Enterobacteriaceae,

acetic acid bacteria (AAB), and spore-forming bacteria associated

with poor quality silage (Borreani et al., 2018; Ávila and

Carvalho, 2020). Microbial additives encompassing

homofermentative or facultative heterofermentative LAB

(Lactiplantibacillus plantarum, Lacticaseibacillus casei, and

Pediococcus spp.), obligate heterofermentative LAB

(Lentilactobacillus buchneri and Lentilactobacillus hilgardii),

combination inoculants, and non-LAB inoculants (Bacillus

subtilis) have been proposed to enhance forage crop

fermentation and improve the aerobic stability of silage, as

well as its safety and nutritional value (Muck et al., 2018;

Ávila and Carvalho, 2020). From a microbiological viewpoint,

the efficacy of these commercial inoculants, either as single or as

multi-species formulae, has been generally assessed in controlled

laboratory conditions that do not mimic the various

management practices and changing environmental factors

observed in large-scale ensiling (Muck and Shinners, 2001;

Kraut-Cohen et al., 2016; Ni et al., 2017). Consequently, few

studies have evaluated the microbial communities populating

silage stored in farm-scale silo types (Kraut-Cohen et al., 2016;

Dos Santos et al., 2020), and none of this kind has focused on

associations between physicochemical characteristics and the

viable microbiota at feed-out, while contrasting uninoculated

versus inoculated silage.

Gagnon et al. (2020) recently used a culture-based

approach to analyze LAB communities occurring in hay

and grass/legume and corn silage produced with and

without inoculation at selected dairy farms. They revealed

that while L. casei (or Lacticaseibacillus paracasei) and L.

plantarum were common among all forage types, Enterococcus

mundtii, Lactiplantibacillus pentosus, Companilactobacillus

tucceti, Lactococcus lactis, and Leuconostoc mesenteroides

(or Leuconostoc pseudomesenteroides) were only identified

in hay, whereas the L. buchneri group was specific to silage

regardless of the type and inoculation status. The current

study complements that from Gagnon et al. (2020) by

implementing a viability high-throughput sequencing

approach combined with viability-PCR (Nocker et al., 2010;

Kennang Ouamba et al., 2020) on the same samples to provide

a comparative analysis of the microbial ecology of hay and

grass/legume or corn silage produced with or without

inoculants. Therefore, this study aimed to assess the

diversity of microbial communities occurring in three types
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of preserved forage and gain insight into how inoculants shape

the microbiota of mature silage in commercial settings.

Materials and methods

Dairy farm selection and sample collection

Farm recruitment and sampling were carried out as

previously described (Gagnon et al., 2020). Briefly, the

24 tie-stall herds from the province of Quebec (Canada)

were selected based on the forage harvested as hay or

silage. Accordingly, farms were grouped into five feeding

typologies comprising herds fed with either hay as the

unique type of forage (H) or silage as the main forage

source, the latter including grass/legume silage (GL), grass/

legume silage with corn silage (C) as supplement, grass/

legume silage with corn silage inoculated at harvest (CI) as

supplement, and grass/legume silage inoculated at harvest

(GLI) with CI as supplement.

Sampling of the five feed types (H, GL, GLI, C, and CI) was

carried out twice: in fall 2015 and spring 2016. Silage samples

were collected after at least 45 days of fermentation. On each

farm, forage samples were collected during the same visit as

previously described (Gagnon et al., 2020). Within the farms

enrolled in the study, eight storage forms or silo types

included loose and baled hay as well as wrapped square/

round bales, concrete-stave silo, oxygen-limiting silo,

pressed bag silo, bunker silo, and stack silo for silage

(Table 1). For inoculated silage, the commercial inoculants

included 11C33, 11CFT, and 11G22 (Pioneer, Johnston, and

IA), as well as Biotal Buchneri 500 and Biotal Supersile

(Lallemand Animal Nutrition, Milwaukee, WI). From the

500 g of each forage sample collected, a subsample was sent

to Lactanet Laboratories (Sainte-Anne-de-Bellevue, Qc,

Canada) for infrared quantification of organic compounds,

moisture, pH, and minerals, as well as the estimation of

fermentation acids when applicable. All the above-

mentioned sample and farm information composed the

sample metadata that were further integrated in the dataset

and used where applicable as categorical or quantitative

variables for data analysis.

DNA extraction and quantitative PCR

For forage samples, 30 g of each were homogenized in 270 ml

of peptone buffer solution, as previously described (Gagnon et al.,

2020). Aliquots of 2 ml immediately taken from the suspension

were centrifuged at 12,000 × g for 15 min at 4°C. The pellets were

washed twice with 1 ml sucrose buffer (sucrose 12% [w/v],

25 mM Tris-HCl pH 8.0). Half of the cell suspension was

treated with propidium monoazide (PMA) to account for

viable cells, as previously described (Kennang Ouamba et al.,

2020). All PMA-free and PMA-treated cells were stored at –80°C.

Genomic DNA was then extracted using the DNeasy PowerFood

Microbial Kit (QIAGEN, Hilden, Germany) combined with

enzymatic lysis with mutanolysin from Streptomyces

(MilliporeSigma), lysozyme (MilliporeSigma), and proteinase

K (MilliporeSigma) following the steps previously described

(Kennang Ouamba et al., 2020).

Quantitative polymerase chain reaction (qPCR) was

performed to determine copy numbers of specifically

targeted genes of L. buchneri, L. plantarum, total LAB,

AAB, Enterobacteriaceae, Pseudomonas, total bacteria, and

total fungi in all PMA-free and PMA-treated forage, using

specific primer pairs as previously described (Kennang

Ouamba et al., 2020). Amplification reactions were carried

out in duplicate using a ViiA7 system (Thermo Fisher

Scientific, Burlington, ON, Canada). Each reaction mixture

of a total volume of 10 µL was composed of 3.6 μL UltraPure

DNAse and RNAse-free distilled water (Thermo Fisher

Scientific), 5 μL PowerUp SYBR Green master mix (Thermo

Fisher Scientific), 0.2 μL of each primer at 10 nM, and 1 μL

DNA template. Bacterial loads were reported as gene copy

number per Gram of forage.

TABLE 1 Distribution of forage storage forms and silo types.

Feed
groupa

Storage form/silo type

Loose Small
bale

Wrapped square/
round bale

Concrete-stave
silo

Oxygen-limiting
silo

Pressed
silo

Bunker
silo

Stack
silo

H 2 10

GL 11 10 2 4 2

GLI 14 2

C 4 2 2

CI 14 2

aH, hay; GL, non-inoculated grass/legume silage; GLI, inoculated grass/legume silage; C, non-inoculated corn silage; CI, inoculated corn silage.
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High-throughput sequencing of the 16S
rRNA gene pool and bioinformatic and
statistical analyses

Sequencing was performed in a single run on IlluminaMiSeq at

the Plateforme d’Analyses Génomiques, Université Laval (Québec,

Canada). Primer pairs 347 F (5′-GGAGGCAGCAGTRRGGAAT)/
803R (5′-CTACCRGGGTATCTAATCC) were used to amplify the

V3-V4 region of the 16S rRNA gene.

Cutadapt (version 2.3) software (Martin, 2011) was used to

remove adapters and primers from demultiplexed sequences.

Sequencing reads were modeled and denoised using the DADA2

(version 1.14) pipeline (Callahan et al., 2016a) developed for R.

After constructing the merged sequence table and removing

chimeras, the Silva version 132 DADA2-formatted reference

databases (down to genus and species levels) were used for

taxonomy assignment. Sequence alignment and phylogenetic

tree construction were performed using the DECIPHER

(version 2.14.0) package (Wright, 2015) and phangorn

(version 2.5.5) package (Schliep, 2011), respectively, as

previously described (Callahan et al., 2016b). The resulting

amplicon sequence variants (ASVs) and phylogenetic tree

were further processed using the phyloseq (version 1.30.0)

package (McMurdie and Holmes, 2013) for alpha- and beta-

diversity analyses of the forage microbiota.

As a preprocessing step in the data analysis, community

differences between PMA-free and PMA-treated samples were

compared, as well as between sampling periods, by computing

alpha- and beta-diversity measures using the phyloseq

package. The centered log-ratio (CLR) and phylogenetic

isomeric log-ratio transform (PhILR) were applied to the

ASV table prior to beta-diversity analyses for which

Aitchison and Euclidean distances were used, respectively,

to account for the compositional nature of microbial data

(Gloor et al., 2017; Silverman et al., 2017).

Microbial communities in forage types were characterized by

assessing and comparing alpha-diversity measures, including

Chao1, Shannon, and inverse Simpson indices, and beta-

diversity measures, including the sample local contribution to

beta-diversity (LCBD), principal coordinate analysis (PCoA),

and principal component analysis (PCA). LCBD is another

way of assessing the beta-diversity that provides comparative

indicators of the uniqueness of a community profile in a single

sample among groups (Legendre and De Cáceres, 2013). LCBD

indices were computed on Hellinger-transformed data using the

microbiomeSeq R package (Ssekagiri et al., 2020). PCA was

performed on CLR and PCoA on PhILR normalized data as

described earlier to assess the dissimilarities of community

structures among forage types. Significant differences were

determined at a threshold of 0.05 from false discovery rate

(FDR) corrected p-values after a Kruskal–Wallis test was

computed using the R package ggpubr (Kassambara, 2018).

Microbial differential abundance testing was performed for

paired combinations between uninoculated and inoculated

forage types using the R package ALDEx2 4.0 (Fernandes

et al., 2014). The functional metagenomic content of forage

samples was predicted using Piphillin software (Narayan et al.,

2020) through the Piphillin online server (http://piphillin.

secondgenome.com/). The differential abundance of microbial

functional features was computed using ALDEx2, as described

earlier. The abundance and effect size of differentially abundant

taxa or functional features between uninoculated and inoculated

forage types were visualized using a heatmap constructed using

the package ComplexHeatmap 2.4.2 (Gu et al., 2016).

Categorical and quantitative metadata related to farms

and forage samples were selectively integrated in multivariate

multi-table analyses based on sparse partial least squares

regression (sPLS) and canonical correspondence analysis

(CCpnA) to determine their association with microbial

features. The analysis scheme was partially inspired from a

previously described study (Ingham et al., 2019). Relevant

metadata variables were selected for multivariate multi-table

analyses by permutational multivariate analysis of variance

(adonis) on CLR normalized data. The function adonis2()

from the vegan (version 2.5–6) R package (Jari et al., 2019) was

used on the Aitchison distance matrix computed in the

phyloseq package. Significant variables (p < 0.05) identified

using adonis test were retained for sPLS-based analyses

performed using the MixOmics (version 6.1.1) R package

(Rohart et al., 2017). To complement the sPLS approach,

general linear models implemented in the

MaAsLin2 R package (https://github.com/biobakery/

MaAsLin2) were also used to determine multivariate

associations between forage metadata and ASVs based on

CLR normalized data. For MaAslin2 analyses, ASVs

significantly associated with adonis selected variables were

limited to those for which BH corrected p-values were lower

than 0.25. CCpnA analysis of each forage type was performed,

as previously described (Ingham et al., 2019) on a

corresponding dataset reduced to all ASVs resulting from

both sPLS and MaAsLin2, as well as all variables selected

based on adonis test. In addition to the CCnpA triplot result

that illustrates how microbiome patterns are related to farm

and forage metadata, prevalence, abundance, and distribution

of all selected ASVs among each forage type were visualized in

a heatmap constructed using the ComplexHeatmap package.

Microbial communities in uninoculated and inoculated

forage (grass/legume and corn silage) were further

characterized by investigating co-occurrence patterns using

network analyses. The network inference was performed by

constructing the phylogenetic molecular ecological networks

(pMENs) using the online molecular ecological network

analysis pipeline (MENAP, http://ieg4.rccc.ou.edu/mena) as

previously described (Zhou et al., 2011; Deng et al., 2012). For

pMEN construction, only ASVs with at least 40% prevalence

within a silage group were considered. The similarity matrix
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that measures the degree of concordance between the

abundance profiles of ASVs across samples was obtained

based on Pearson correlation coefficients calculated from

CLR-transformed data. Depending on the structure of the

dataset corresponding to each silage group, the random

matrix theory–based approach (Luo et al., 2006, Luo et al.,

2007) was used to automatically determine the appropriate

threshold value for the network structure. The fast greedy

modularity optimization procedure (Clauset et al., 2004) was

used to detect network modules defined as a group of highly

interconnected nodes that share few or no connections with

other nodes outside the group. In the built network, each node

corresponds to a single ASV. The Maslov–Sneppen approach

(Maslov and Sneppen, 2002) was used to generate

100 randomly rewired networks for each pMEN obtained.

Global network and individual node properties were

calculated based on similarity matrices. Node topological

roles for a given network were determined based on

within-module connectivity (Zi) and among-module

connectivity (Pi) indices and visualized with a scatterplot

constructed using the ggplot2 (version 3.3.0) R package

(Wickham, 2009). Accordingly, nodes were assigned four

different topological roles including module hubs, network

hubs, peripherals, and connectors, as previously defined

(Olesen et al., 2007). Peripheral ASVs, also considered as

specialists, have both low Zi and low Pi indices (Zi ≤ 2.

5 and Pi ≤ 0.62) and are characterized by few links, almost

always with other ASVs within their module. ASVs assigned

the connector role have low Zi and high Pi indices (Zi ≤ 2.5 and

Pi > 0.62) and are highly connected to several modules.

Module hubs have high Zi and low Pi indices (Zi > 2.5 and

Pi ≤ 0.62) and are highly connected to several ASVs within

their module. Connectors and module hubs are both

considered generalist species. Network hubs, also defined as

super-generalists, have high Zi and high Pi indices (Zi > 2.

5 and Pi > 0.62), thus playing both connector and module hub

roles. Habitat generalists refer to species, in this study, ASVs,

which are largely distributed across samples within a group,

thus having high prevalence, while habitat specialists are

restricted to few samples in the group they belong to, thus

having low prevalence, but occur at high relative abundance

(Barberán et al., 2012). Module hubs, network hubs, and

connectors that have high values of either Zi or Pi, or both

high connectivity indices, are generally considered keystone

species.

In addition to functional analyses, phenotypic traits of

forage microbiome were predicted and compared using the

BugBase tool (Ward et al., 2017). BugBase’s algorithm relies

on software such as PICRUSt (Langille et al., 2013), IMG

(Chen et al., 2019), KEGG (Kanehisa et al., 2012), and

PATRIC (Snyder et al., 2007) to predict phenotypes and

corresponding microbial contributors at the phylum level.

Phenotypic traits including biofilm formation, Gram

staining, oxygen tolerance, pathogenic potential, mobile

element content, and oxidative stress tolerance were then

predicted from CLR-transformed data. Prior to BugBase

analyses, chimera-free sequences derived from the

DADA2 pipeline were mapped to the Greengenes 97%

reference database for format compatibility requirements.

Results

Bacterial diversity in forage types

A total of 81 forage samples were collected from 24 dairy

farms over two sampling periods (fall and spring). During both

periods, H samples exhibited significantly higher Chao1,

Shannon, and inverse Simpson indices (p < 0.01) than other

forage types which did not significantly differ from each other

(Figures 1A,B). However, inconsistent diversity trends were

observed between uninoculated and inoculated silage across

sampling periods.

Forage collected in the fall season (Figures 1C,D) exhibited

highly dissimilar community structures between types (p < 1e-

04). While there was a clear separation between H and silage, the

taxonomic compositions of GL and C were significantly different

from those of their inoculated counterparts. Principal coordinate

analysis (PCoA) based on PhILR-transformed data revealed

significant differences between uninoculated silage and

inoculated counterparts (Figure 1D), indicating that taxa

occurring in the compared habitats were not phylogenetically

related. In contrast, silage microbial communities from the

spring season were compositionally similar (Figure 1E) and

phylogenetically related (Figure 1F), while being almost all

significantly different from H.

Taxonomic profiles were assessed at the genus level,

concomitantly with sample LCBD indices. The H samples

collected across both periods (Figures 2A,B) showed high

LCBD indices. The genera Pantoea, Sphingomonas,

Curtobacterium, Methylobacterium, and Pseudomonas were

variably dominant across both sampling periods. Among GL

samples collected in fall, four showed highly distinctive

microbial profiles, with communities variably co-dominated

by Bacillus and Saccharopolyspora,Weissella and Pediococcus,

or Pediococcus, Methylobacterium, and Enterococcus. Most of

the other GL samples were dominated by Lactobacillus,

Weissella, Pediococcus, or Lactococcus. In spring, GL

samples with high LCBD indices showed dominance of

Serratia, Pseudomonas, and an unclassified

Enterobacteriaceae or Pediococcus and Weissella

(Figure 2B). Other samples were generally dominated by

Lactobacillus, Weissella, and Enterococcus. For GLI samples

collected in fall, the most distinctive ones showed dominance

of either Bacillus or Pediococcus or co-dominance of

Lactobacillus, Corynebacterium, and Staphylococcus,
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compared with a few other samples showing Lactobacillus as

the sole dominant genus (Figure 2A).

In spring samples, Lactobacillus was the most abundant

genus, followed by Pediococcus. Samples with high LCBD

indices were dominated by Pediococcus, either alone or in

co-dominance with Serratia and Weissella (Figure 2B). C

samples collected in fall were the most homogenous with

Lactobacillus as the main dominant genus, although

Serratia often occurred with considerable relative

abundance (Figure 2A). Among C samples collected in

spring, one exhibited high abundance of Acetobacter, other

samples showing large proportions of Lactobacillus or

Pseudomonas as dominant or subdominant genera,

respectively (Figure 2B). Finally, CI samples collected

FIGURE 1
Microbial diversity according to the forage type. Alpha-diversity measures of forage types in fall (A) and spring (B). Principal component analysis
(left) on CLR (C) or PhILR (D) transformed datawith corresponding post hoc tests (right) for fall. Principal component analysis (left) on CLR (E) or PhILR
(F) transformed data with corresponding post hoc tests (right) for spring. p-values indicate the significance of differences between groups from the
Kruskal–Wallis test. Different lower case letters represent statistically significant differences between forage types.
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FIGURE 2
Forage microbial profiles across sampling periods. Relative abundance (value) of the top 21 most abundant genera within forage samples
collected in fall (A) and spring (B). LCBD indices represent the sample local contribution to the beta-diversity measures between groups. The higher
the index, the more unique is the sample microbial profile and the higher its contribution to the beta-diversity measures between groups.
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FIGURE 3
Distribution of differentially abundant ASV between uninoculated and inoculated silage. Relative abundance of ASV significantly enriched
between uninoculated and inoculated grass/legume silage in fall (A) and spring (B). Relative abundance of ASV significantly enriched between
uninoculated and inoculated corn silage in fall (C) and spring (D).
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during fall were broadly dominated by Lactobacillus, although

some with higher LCBD indices exhibited large proportions of

Acetobacter as either dominant or co-dominant (Figure 2A).

For CI samples collected in spring, Lactobacillus was almost

the sole dominant genus, except in one sample showing

Acetobacter as co-dominant (Figure 2B).

A differential abundance analysis performed to identify

significantly enriched taxa between uninoculated and

inoculated silage revealed that in fall, phylotypes (ASV) of

P. pentosaceus andWeissella were significantly more abundant

in GL than in GLI samples, except for two GLI samples

inoculated with Biotal Buchneri 500 (Figure 3A). In spring,

Lactobacillus and some Proteobacteria were significantly more

abundant in GLI samples (Figure 3B). For corn silage,

Loigolactobacillus coryniformis and Lactobacillus phylotypes

exhibiting high prevalence (83%–90%) were significantly

more abundant in C than in CI samples in fall (Figure 3C).

Surprisingly, in spring, while some highly prevalent (83%–

100%) phylotypes of Proteobacteria were significantly more

abundant in CI samples, phylotypes of Lactobacillus and

Proteobacteria were significantly more abundant in C

samples (Figure 3D).

LAB including L. buchneri and L. plantarum were

significantly enriched (p < 0.001) in ensiled forage

compared with H samples (Figures 4A,B). However,

inconsistent enrichment of LAB was noted among silage

across sampling periods. Ensiling significantly reduced AAB

loads compared with H (p < 0.05), but differences between

FIGURE 4
Quantification of viable microbial groups across sampling periods. Copy numbers are compared between H and each silage type and between
uninoculated and inoculated silage in fall (A) and spring (B) using the Kruskal–Wallis test. Asterisks above boxes indicate significant differences and
flag p-values from a Wilcoxon rank test as follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001; and ****, p < 0.0001.
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inoculated silage and uninoculated counterparts were

inconsistent across both periods. Ensiling significantly

reduced Pseudomonas levels compared with H (p < 0.05)

and loads of this group tended to increase with inoculation,

as did Enterobacteriaceae levels. While total bacteria load

tended to increase with inoculation between silage across

both sampling periods, contrasting patterns of significant

variations (p < 0.05) of fungi loads were noted (Figures

4A,B). We found similar patterns of bacterial load

variations between forage types within PMA-treated

(Figures 4A,B) and PMA-free (data not shown) samples,

although the latter group broadly exhibited higher load levels.

FIGURE 5
Core LAB community profiling. Relative abundance (value) of the dominating core ASV between uninoculated and inoculated grass/legume (A)
or corn (B) silage. Numbers following taxonomic names represent corresponding ASV numbers.
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FIGURE 6
Microbial phenotypic composition predicted by BugBase. Proportions of microbial phenotypic traits compared betweenH and each silage type
and between uninoculated and inoculated silage in fall (A) and spring (B) using the Kruskal–Wallis test. Asterisks above boxes indicate significant
differences and flag p-values from a Wilcoxon rank test as follows: *, p < 0.05; and **, p < 0.01.
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Abundance profile of the core phylotypes
from the order Lactobacillales in
uninoculated and inoculated silage

In addition to differential abundance testing, specific and

shared LAB phylotypes were identified within ensiled forage to

understand how they differentially occur between uninoculated

and inoculated silage. The analysis was limited to the order

Lactobacillales as it is the lowest taxonomic classification level

gathering lactobacilli, pediococci, and enterococci. Broadly, of

the 2,980 unique ASVs composing the whole PMA-treated

dataset, about 30.67% (914) were assigned to the order

Lactobacillales. From the 913 Lactobacillales occurring in

silage, 836 were found in grass/legume silage, of which

356 were specific to GL, 223 to GLI, and 257 were shared

between both, while from the 241 unique ASVs that occurred

in corn silage, 33 were specific to C, 123 to CI, and 85 were shared

between both (data not shown).

The dominating core LAB among grass/legume silage

(i.e., LAB occurring both in GL and GLI) totaled up to 96%

of the LAB communities and included lactobacilli represented by

138 phylotypes, P. pentosaceus represented by two phylotypes,

Weissella parasenteroides counting two phylotypes, and other

Weissella and Pediococcus spp. represented by 16 and

46 phylotypes, respectively (Figure 5A). For corn silage, the

core LAB phylotypes in both silage types dominated the LAB

communities with up to 95% relative abundance (Figure 5B),

except for samples where LAB were not the sole dominant taxa

(Figures 2A,B). Within corn silage, the dominant LAB

populations were composed of lactobacilli represented by

67 phylotypes, L. coryniformis represented by three

phylotypes, and, to a certain extent, Latilactobacillus sakei and

Paucilactobacillus hokkaidonensis each counting one phylotype

(Figure 5B).

Prediction of phenotypic traits and
function pathways

The analysis of microbial phenotypic traits using BugBase

showed that anaerobic metabolism, presence of mobile elements,

biofilm-forming capacity, Gram-negative, Gram-positive,

potentially pathogenic, and stress-tolerant phenotypes were

differentially distributed among forage types (Figures 6A,B).

Across both sampling periods, biofilm-forming capacity and

Gram-negative phenotypes were significantly enriched in H

compared with silage (GL, GLI, C, and CI). This could be

attributable to higher relative abundances of Actinobacteria

and Proteobacteria in H samples for biofilm-forming capacity

and Gram-negative phenotypes, respectively (Supplementary

Figures S1A,B). A significant enrichment of Gram-positive

phenotypes was observed in silage compared with H across

both sampling periods, a difference attributable to the higher

abundance of Firmicutes in silage (Supplementary Figures

S1A,B). Analyzing the predicted function pathways, we found

that biofilm-forming associated features were significantly

enriched in uninoculated grass/legume silage (Supplementary

Figures S2,3), while other features associated with the

metabolism of macromolecules (Supplementary Material S1)

were significantly enriched in the inoculated counterparts

(Supplementary Figures S4A,B).

Forage physicochemical characteristics
associated with microbial communities

Near infrared spectroscopy analysis of forage showed that the

physicochemical traits of H samples were broadly consistent

across the sampling periods (Supplementary Table S1).

Comparing uninoculated silage with inoculated counterparts,

ammonia content was significantly (p < 0.05) higher in GLI

and CI than in GL and C silage in spring, respectively, as were

acetic acid in GLI in spring and butyric acid in CI in fall

compared with GL and C silage, respectively (Supplementary

Tables S2, S3). The dry matter content of grass/legume silage

ranged between 29% and 65% for GL samples and between 32%

and 57% for GLI. pH values ranged between 3.7 and 5.3 for GL

samples and between 3.8 and 4.7 for GLI. Butyric acid was

detected in less than 38% of GL samples with amounts

ranging between 0.42% and 1.1% and in more than 62% of

GLI samples with amounts ranging from 0.42% to 0.99% dry

matter. In contrast, butyric acid was detected in only 25% of C

samples with amounts of butyric acid ranging between 1.09% and

1.96% dry matter and none among CI samples. However, corn

silage exhibited lower dry matter content, ranging between 20%

and 41%, as well as lower pH values ranging from 3.5 to 3.9.

To gain insight into how forage end products and

characteristics associate with microbial communities,

categorical and quantitative metadata related to farms and

forage samples were selectively integrated in multivariate

multi-table analyses based on sPLS and CCpnA. General

linear models implemented in MaAsLin2 were also used to

determine multivariate associations between forage metadata

and ASVs using CLR normalized data. This analysis scheme

was implemented for all forage types separately. H microbial

communities were grouped into two clusters (Figure 7A;

Supplementary Figure S5A). Moisture content and positively

correlated phylotypes of Serratia, Enterobacteriaceae,

Nocardioides, and Yersinia, as well as those negatively

correlated, including Spirosoma, Intrasporangiaceae, and

Methylobacterium, were the main contributors to the

formation of cluster 1 (Supplementary Figures S5B,C, S6).

Magnesium content and positively (Frigoribacterium,

Curtobacterium, Pantoea, Rhizobiaceae, Microbacteriaceae,

Allorhizobium group, and Pantoea agglomerans) or negatively

(Pseudomonas) correlated phylotypes contributed themost to the
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FIGURE 7
Canonical correspondence analysis. Triplots illustrating canonical relationships between bacterial ASV (round and star-shaped points) and
physicochemical parameters (arrows), inoculants ( + ), forage storage form ( + ), or sampling periods ( + ) for H (A), GL (B), GLI (C), C (D), and CI (E).
Sampling periods include fall 2015 (Fall) and spring 2016 (Spring). Storage forms include loose hay (Loose), wrapped/square round bales
(WSRnd_Bal), concrete silo (Conc_Sil), pressed silo (Press_Sil), stack silo (Stack_Sil), and oxygen-limiting silo (OL_Sil). Inoculants include Biotal
Buchneri 500 (B_Buch500), Biotal Supersile (B_supersile), 11G22, 11C33, and 11CFT. Forage physicochemical parameters include amino acids (AA),
ethanol soluble carbohydrate as % dry matter (CHO_DM), acid detergent fiber as % of crude protein (CP_ADF), ammonia as % crude protein
(CP_NH3), soluble crude protein (CP_Sol), fatty acids (FA), lactic acid (LA), LA as % volatile fatty acids (LA_VFA), magnesium (Mg), moisture (Mstr),
neutral detergent fiber digestibility at 30 h (NDF_D_30), NDF_D_30 as % drymatter (NDF_D_30DM), ammonia (NH3), pH (pH), and volatile fatty acids
(VFA). Round points depict taxa selected by sPLS and star-shaped points those selected by MaAsLin approaches. Round points with red centers are
taxa selected using both methods. Triangles represent samples.
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formation of cluster 2 (Supplementary Figures S5B,C, S6).

Among all the taxa found to associate with the selected H

variables, phylotypes of Methylobacterium (cluster 1) or

Curtobacterium, Pantoea, and Serratia (cluster 2) were the

most prevalent and abundant (Supplementary Material S1).

Selected taxa of the GL microbiota formed three clusters

(Figure 7A; Supplementary Figure S7A). Cluster one was mainly

driven by the variables lactic acid (LA), moisture, fatty acid (FA),

crude fat (CF), and volatile fatty acid (VFA) and the positively

associated taxa including phylotypes of Lactobacillus, Weissella,

and Carnobacterium (Figure 7B; Supplementary Figures S7B,C,

S8). For cluster 2, the pH and positively correlated taxa including

phylotypes of Methylobacterium, Sphingomonas,

Curtobacterium, Allorhizobium group, Methylobacterium

adhaesivum, Lactobacillus, and Pediococcus were the main

contributors. The two variables ammonia expressed as

percentage of crude proteins (CP_NH3) and soluble crude

proteins (CP_Sol) and positively associated taxa including

phylotypes of Weissella, Aeriscardovia, Lactobacillus,

Corynebacterium, Pediococcus, Lactobacillus kefiranofaciens,

Serratia, Brevibacterium, and Brachybacterium were the main

contributors to cluster 3 (Figure 7B; Supplementary Figures

S7B,C, S8). Phylotypes of Lactobacillus, Pediococcus, and

Weissella paramesenteroides were the most abundant and

prevalent of all the GL selected taxa (SupplementaryMaterial S1).

For GLI, ASVs differentially associated with silage

parameters also formed three clusters as for GL (Figure 7C;

Supplementary Figure S9A). The phylotypes of Lactobacillus,

Lentilactobacillus parafarraginis, Weissella, Ligilactobacillus

acidipiscis, and Pediococcus that are positively associated with

the variables CP_NH3, ammonia (NH3), ammonia expressed as

percentage of soluble protein (SP_NH3), and acetic acid (AA) all

constituted the main contributors to cluster 1 (Figure 7C;

Supplementary Figures S9B,C, S10). The variables ethanol

soluble carbohydrates as percentage of dry matter (ESC_DM)

and ESC as percentage of non-fiber carbohydrate (ESC_NFC)

that are positively correlated with phylotypes of

Methylobacterium, Pediococcus, Lactobacillus, Luteimonas

aestuarii, Sphingomonas phyllosphaerae, Neorhizobium, and

Rhodococcus all contributed the most to cluster 2. Cluster

3 was mainly driven by the variables LA, LA expressed as

percentage of VFA (LA_VFA), and CP_Sol, together with the

positively associated phylotypes of Lactobacillus, Clostridiaceae,

Enterobacteriaceae, Lactobacillales, Frigoribacterium faeni,

Microbacteriaceae, and L. plantarum (Figure 7C;

Supplementary Figures S9B,C, S10). The most prevalent of the

selected ASVs included phylotypes of Lelliotia, Serratia, L.

acidipiscis, and Weissella (Supplementary Material S1).

In the case of C, we obtained two clusters (Figure 7D;

Supplementary Figure S11A) driven by both LA and acid

detergent fiber-crude protein (CP_ADF). Phylotypes of

Lactobacillus, Acetobacter, and Serratia positively correlated

with LA, and those negatively correlated, including

Pediococcus and P. hokkaidonensis, mostly contributed to the

formation of cluster 1. Taxa mostly contributing to the formation

of cluster two included phylotypes of Lactobacillus, among which

are L. sakei, all positively associated with CP_ADF (Figure 7D;

Supplementary Figures S11B,C, S12). Phylotypes of Lactobacillus

and Serratia were among the more prevalent and abundant

(Supplementary Material S1).

Finally, for CI, the selected ASVs formed three clusters

(Figure 7E; Supplementary Figure S13A). The parameters AA

and FA mainly contributed to clusters 1 and 2. While a few

phylotypes of Lactobacillus positively correlated with AA and FA

mainly drove cluster 1, those of Comamonas jiangduensis,

Ameyamaea, and Acinetobacter gerneri were the main

contributors to cluster 2 (Figure 7E; Supplementary Figures

S13B,C, S14). For cluster 3, the parameters carbohydrates

(CHO_DM and CHO_NFC), CP_DM, and LA_VFA and

positively associated phylotypes of Lelliottia, Enterobacter,

Raoultella terrigena, Enterobacteriaceae, and Vagococcus

fluvialis were the main drivers (Figure 7E; Supplementary

Figures S13B,C, S14). Among selected taxa, phylotypes of

Lactobacillus, Acetobacter, and Serratia were the most

abundant and prevalent.

Molecular ecological network analyses

To investigate how silage bacteria co-occur in the presence

or absence of inoculants, a network was constructed for each

silage type. The analysis of topological properties revealed that

the GLI network had a higher average degree (avgK) and a

lower average geodesic path (distance between nodes) than

those of GL, thus appearing more complex and denser

(Table 2). The 80 nodes composing the GL network totaled

eight modules (group of ASVs sharing more links among

themselves than with others outside the group) and 405 links,

of which only 18.8% were positive (Supplementary Figure

S15). Some species of Lactobacillales including phylotypes of

Pediococcus, Enterococcus, Weissella, L. sakei, L. coryniformis,

and unidentified Lactobacillaceae co-occurred with those of

Proteobacteria including Methylobacterium, Pantoea,

Sphingomonas, Stenetrophomonas, and Allorhizobium or

Actinobacteria comprising Rhodococcus and Curtobacterium

(modules 1, 3, and 6). Module 5 exclusively composed of

Lactobacillaceae exhibited co-occurrence between phylotypes

of L. buchneri and those of lactobacilli (Supplementary Figure

S15). On the other hand, the GLI network was composed of

47 nodes grouped into two modules and 848 links from which

only 7.2% were positive (Table 2). In contrast to that of GL, the

GLI network involved higher amounts of positive

relationships among Firmicutes (Supplementary Figure

S16). Curiously, phylotypes corresponding to L. buchneri

and L. plantarum were found in distinct modules, sharing

no relationships, although both co-occurred with the same
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phylotype of Lactobacillus. In addition, fewer phylotypes of

Proteobacteria shared positive interactions with Firmicutes.

Another particularity of the GLI network is the co-occurrence

between some phylotypes of Weissella and those of Bacillus

(Supplementary Material S1). Analyzing taxa topological

roles, we identified 47 keystone phylotypes distributed as

network hubs and connectors in the GL pMEN, of which

64% were Firmicutes, 34% Proteobacteria, and the remaining

Actinobacteria (Supplementary Table S4). Among network

hubs were phylotypes of Weissella and Sphingomonas, while

connectors mostly included Firmicutes such as L. plantarum,

L. buchneri, Bacillus, Weissella, Lactococcus, and other

lactobacilli phylotypes (Supplementary Material S1).

Conversely, no keystone species was observed in the GLI

TABLE 2 Topological properties of the empirical pMENs in grass/legume and corn silagemicrobial communities and their associated random pMENs.

Silage
type

Empirical networks Random networks

Similarity
threshold

Network
size

Average
degree
(avgK)

Average
path

Average
clustering
coefficient

Modularity
(no.
of modules)

Average
path

Average
clustering
coefficient

Modularity

GL 0.81 80 10.1 2.4 0.5 0.2 (8) 2.1 ± 0.03 0.5 ± 0.02 0.2 ± 0.01

GLI 0.31 47 36.1 1.2 0.8 0.02 (2) 1.2 ± 0.00 0.8 ± 0.01 0.01 ± 0.01

C 0.31 25 17.4 1.3 0.8 0.0 (1) 1.3 ± 0.00 0.8 ± 0.01 0.01 ± 0.02

CI 0.31 55 37.3 1.3 0.8 0.03 (2) 1.3 ± 0.00 0.8 ± 0.01 0.03 ± 0.01

FIGURE 8
Distribution of network topological roles of grass/legume silage. Labeled ASVs (red points) depict those that exhibited different topological roles
in GL compared to GLI.
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network. However, compared with the GL network, there was

a shift of topological roles in GLI so that nodes formed a

cluster around the value of 0.5 along the Pi axis (Figure 8).

Consequently, the topological roles of all keystone phylotypes

of the GL network also found in GLI were changed to

peripherals (Figure 8).

For corn silage, microbial communities formed a larger and

more complex network in CI than in C (Table 2). The 25 nodes

composing the C network formed a single module, involving

217 links of which 22% were positive (Supplementary Figure

S17A). All Proteobacteria phylotypes (Serratia, Pseudomonas,

and unclassified Enterobacteriaceae) involved in this network

positively interacted with each other and co-occurred with

Firmicutes including L. coryniformis, and two Lactobacillus

phylotypes. Neither L. buchneri nor L. plantarum were

involved in this network. The CI network totaled 55 nodes

comprising two modules and 1,026 links of which 9.8% were

positive (Supplementary Figure S17B). Unlike in the GLI

network, L. buchneri and L. plantarum found in different

modules (modules 1 and 2, respectively) co-occurred and

were both involved in positive relationships with Pediococcus

parvulus and some species of lactobacilli. However, most

phylotypes of Proteobacteria including Serratia, Pseudomonas,

Acetobacter, and Yersinia variably co-occurred among

themselves and with some species of lactobacilli

(Supplementary Material S1). No keystone phylotypes were

found in the C and CI networks.

Discussion

In this study, we implemented a viability high-throughput

sequencing approach combined with viability-PCR (Nocker

et al., 2010; Kennang Ouamba et al., 2020) to provide a

comprehensive and comparative analysis of the viable

microbial ecology of hay and grass/legume or corn silage

produced with or without inoculants at commercial farm-scale

facilities.

Recently, Daniels et al. (2020) have analyzed the viable

microbiota of commercial Meadow and Italian ryegrass hay

and revealed Proteobacteria, Cyanobacteria, Bacteroidetes, and

Actinobacteria as the predominant phyla. In this study,

Cyanobacteria were detected as the rarest taxa and were

discarded from the dataset upon abundance filtering, while

the phyla Proteobacteria, Actinobacteria, and Bacteroidetes

were the most prevalent and abundant in hay. However, the

differences found among hay community profiles could be

attributable to fluctuations in abundance of predominant

genera, including Sphingomonas, Methylobacterium, Pantoea,

Curtobacterium, and Pseudomonas. Behrendt et al. (1997)

analyzed the microbial community of the grass phyllosphere

using a culture-dependent method and identified Pseudomonas,

Stenotrophomonas, Pantoea, Clavibacter, and Curtobacterium as

the predominant genera. Although not among the most

abundant, Stenotrophomonas and Clavibacter were also

detected in our study, thus indicating that the microbiota of

hay might consistently reflect the epiphytic communities of

plants at harvest. Moreover, except Stenotrophomonas, we

found that specific phylotypes of the above-mentioned genera

correlated with hay moisture content, suggesting bacterial

growth in less dried hay. The observed differences between H

samples could therefore be also explained by variation in

environmental and farm management factors including, but

not limited to, plant species, management practices,

geographical location, climatic conditions, moisture

concentration at harvest, and storage form (Bernardes et al.,

2018), which drive the incidence and abundance of epiphytic

microorganisms on plants before harvest or during processing.

Although LAB were not among the dominant taxa, their

prevalence and abundance were found to vary between H

samples and across sampling periods as revealed by a

concomitant study on the same forage samples, where

Gagnon et al. (2020) identified LAB communities through

culture-based techniques. W. paramesenteroides (or Weissella

thailandensis), P. pentosaceus, L. casei (or L. paracasei), L.

mesenteroides (or L. pseudomesenteroides), L. pentosus, and

Enterococcus casseliflavus (or Enterococcus gallinarum and E.

faecium) were found as the predominant cultivable LAB in hay.

In this study, the detection of Weissella, Lactococcus,

Enterococcus, and unidentified Lactobacillales as the sole

representatives of LAB in hay might be attributed to the other

LAB being under the threshold of detection. For survey studies,

this emphasizes the relevance of combining both culture-

dependent and high-throughput sequencing approaches to

deepen our understanding of microbial community

composition and function. However, none of the LAB was

associated with the hay moisture content. Despite the

observed differences among hay samples, their microbial

composition and structure clearly discriminated them from

those of silage across both sampling periods, revealing

haymaking and ensiling as strikingly distinct processes that

differentially alter the epiphytic microbiota of fresh forage plants.

Grass/legume forage has higher buffering capacity and lower

WSC content than corn forage, offering different habitats for

microorganisms (Dunière et al., 2013). These factors

differentially modulate the growth of microorganisms

depending on their initial abundance on the pre-ensiled

forage, thus impacting the rate of pH decrease during the first

stages of fermentation (Weinberg andMuck, 1996; Dunière et al.,

2013). This could explain the differences in phylogenetic

composition and community structure between grass/legumes

and corn silage observed in our study. We also found that most

GL silage was generally dominated by Lactobacillus alone or in

co-dominance with eitherWeissella or Pediococcus or both, while

few samples inconsistently exhibited co-dominance of Bacillus,

Saccharopolyspora, Lactococcus, Serratia, Methylobacterium, or
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Enterococcus across both sampling periods. Previous studies have

shown that LAB, preferably lactobacilli, are the main

microorganisms expected to dominate the microbiota of good-

quality silage (Ávila and Carvalho, 2020). High prevalence and

relative abundance of Weissella, Pediococcus, Enterococcus, and

Lactococcus were also found by Gagnon et al. (2020) using a

culture-dependent approach. In addition to the high buffering

capacity, this observation possibly illustrates grass/legume silage

for which the fresh forage phyllosphere contained insufficient

amounts of Lactobacillus to lead the first stages of the

fermentation process (Stevenson et al., 2006; Yang et al.,

2019). Such conditions might also favor the growth of

undesirable bacteria such as Bacillus and Serratia (Ávila and

Carvalho, 2020), as revealed in our study. Although several

studies have reported the occurrence of Methylobacterium in

silage (Ogunade et al., 2018b; Yang et al., 2020), none have

described its role in the fermentation process. The genus

Saccharopolyspora represented by three phylotypes of

Saccharopolyspora rectivirgula (formerly Micropolyspora faeni),

which has been associated with moist hay, compost, or straw

(Duchaine et al., 1999; Ranalli et al., 1999), is a thermophilic

Actinobacteria identified as a major cause of extrinsic allergic

alveolitis (farmer’s lung disease) in dairy barns (Lecours et al.,

2012; Schultz, 2016). The occurrence of this pathogen as co-

dominant bacteria in GL silage and in lower abundance in GLI

samples suggests its fermentative capability. Although this

pathogen has already been identified in corn silage (Unaogu

et al., 1994), no studies had reported its occurrence in grass/

legume silage. In the case of C silage, the microbiota was

dominated by either Lactobacillus or Acetobacter or both,

while Pseudomonas and Serratia sporadically occurred with

considerably high relative abundance. Our results corroborate

those of Guan et al. (2018) who found Lactobacillus and

Acetobacter as predominant bacteria in naturally fermented

corn silage. These authors also highlighted the inconsistent

incidence of Acetobacter between laboratory- and large-scale

bunker silos. In the current study, two phylotypes of this

genus were detected in C silage processed in stack silos.

Interestingly, 15 phylotypes of Acetobacter, among which

some had higher abundance levels, were identified in CI silage

that were inoculated with Biotal Buchneri 500, 11CFT, or

11C33 and were stored in stack, bunker, or conventional silos

(concrete-stave silos). These results indicate that species of

Acetobacter might outcompete LAB even with the addition of

inoculants, perhaps when oxygen infiltration into the forage

might have favored their proliferation. Moreover, viable-PCR

analyses confirmed inconsistent enrichment of microbial load

including that of LAB, AAB, Pseudomonas, Enterobacteriaceae,

total bacteria, and total fungi across sampling periods in

inoculated silage. These observations suggest that prevailing

weather conditions (colder temperatures) might impair the

efficiency of the inoculant during ensiling and consequently

favor undesirable AAB and acid-tolerant Proteobacteria in

mature silage. Except for LAB, the effects of these

microorganisms during ensiling are not clear (Dolci et al.,

2011; Hu et al., 2018; Guan et al., 2020), and further research

is needed to better understand their function and interplays with

LAB during silage fermentation. Although other studies had

reported a high prevalence of Pseudomonas and Serratia

throughout the ensiling process of corn under controlled

laboratory conditions (Hu et al., 2018; Keshri et al., 2018), like

other Proteobacteria, their effects on the silage fermentation

process are not well understood.

A successful ensiling using transplanted epiphytic microbiota as

the sole source of microorganisms was recently reported (Ali et al.,

2020; Yuan et al., 2020). In this study, uninoculated GL and C silage

with good fermentation profiles were observed. However, conditions

for successful natural fermentation are not always met and ensiling

without additives may therefore most often be associated with an

increased risk of economic losses (Ogunade et al., 2018a; Borreani

et al., 2018). Consequently, microbial additives that are employed to

dominate the communities, minimize the occurrence of undesirable

microorganisms, and drive the fermentation process (Wang et al.,

2006) are generally recommended (Borreani et al., 2018). However,

while this is particularly true for grass or legume silage, microbial

additives might not necessarily improve the quality of corn silage, as

recently revealed by a meta-analysis (Oliveira et al., 2017; Bernardi

et al., 2019). The current study showing dominant or co-dominant

Acetobacter in CI silage particularly in fall corroborates results from

the above-mentioned meta-analysis, though some C silage exhibited

undesirable microbial profiles, mostly in spring.

Our study showed that in GL and GLI silage, specific

phylotypes of Lactobacillus, Weissella, Lelliottia, Serratia, and

an unidentified Enterobacteriaceae were positively associated

with LA and moisture contents and negatively associated with

pH. Although some Proteobacteria can produce lactic acid

(Ávila and Carvalho, 2020), acetic acid is their primary

product during ensiling (Pahlow et al., 2003). Therefore,

the correlation of corresponding phylotypes with LA could

result from their growth and subsequent acid production in

the early stages of fermentation. The relatively low abundance

of these phylotypes in mature silage could be due to the

inhibitory effect of accumulating lactic acid and lower

pH level during ensiling (Da Silva et al., 2017). We also

found that phylotypes of P. pentosaceus, W.

paramesenteroides, Lactobacillus, Pediococcus,

Methylobacterium, and Lactococcus positively correlated

with pH and were negatively associated with LA, indicating

their sensitivity to lower pH levels or higher amounts of LA.

Similar results were obtained by Ni et al. (2017) and Ogunade

et al. (2018b). On the other hand, while phylotypes of

Pediococcus were co-dominant in some GL samples, this

genus largely dominated three GLI samples inoculated with

Biotal Buchneri 500 or Biotal Supersile that include P.

pentosaceus and P. acidilactici in their formulation,

respectively. While the genus Pediococcus is known to
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dominate the microbiota in the early stages of fermentation,

although inconsistently (Stevenson et al., 2006; Ogunade et al.,

2018b; Drouin et al., 2019), the factors that favor its

dominance in mature silage are not well understood

(Nascimento Agarussi et al., 2019). In addition to

Methylobacterium, other Proteobacteria, including Pantoea,

Sphingomonas, and Stenotrophomonas, and Actinobacteria,

including Rhodococcus and Curtobacterium, co-occurred with

most of the LAB phylotypes within the GL, as have phylotypes

of Pseudomonas and Acetobacter within the C communities.

Higher abundance of these Proteobacteria was observed in

samples wherein lactobacilli were not predominant. This

suggests that the co-occurring LAB probably do not induce

a rapid decrease in pH during ensiling as some lactobacilli

strains more adapted for ensiling would have done. The

decreased rates of co-occurrence between Firmicutes and

Proteobacteria observed in inoculated GL and C

communities supports this hypothesis. The observed

phenomenon could be explained by dominating lactobacilli

from inoculation; as more lactic acid is subsequently produced

during ensiling, most Proteobacteria are inhibited, and

consequently, increased patterns of co-exclusion appear to

the detriment of co-occurrence.

However, the enhancement of positive interactions between

LAB due to inoculants certainly prompt, in addition to related

species, other acid-tolerant bacteria such as Bacillus in GLI,

Acetobacter in CI, or Serratia in both. This might explain the

observed co-occurrence between phylotypes of Weissella and

Bacillus in GLI or Lactobacillus and Acetobacter in CI

communities. Although Acetobacter has been frequently

identified in corn silage (Dolci et al., 2011; Li and Nishino,

2011; Guan et al., 2018), there is still no consensus on the

role played by this genus in silage. While Acetobacter was

reported aerobic, Du Toit et al. (2005) demonstrated the

effective survival of Acetobacter pasteurianus under anaerobic

conditions. Queiroz et al. (2013) found no effect on the aerobic

stability, following silage inoculation with AAB. A previous

contradictory finding indicated that these bacteria could

initiate aerobic spoilage (Spoelstra et al., 1988). In our study,

the genus Acetobacter occurred in all 16 CI samples, from which

more than 37% showed its dominance or co-dominance

without considerable effects on fermentation characteristics.

Hence, the conditions under which AAB, specifically

Acetobacter species, could drive the silage fermentation

process are not clear. Likewise, bacilli are known to produce

butyric, acetic, or lactic acids, as well as antibacterial substances.

However, beneficial effects of some strains of B. subtilis, Bacillus

licheniformis, and Bacillus pumilus on the inhibition of molds

and silage aerobic stability have been reported (Ávila and

Carvalho, 2020).

The addition of inoculants to grass/legume and corn silage

drastically changed bacterial interconnection patterns

compared with uninoculated counterparts, resulting in

increased network density and complexity levels, as well as

a modified modularity and taxa topological roles. As suggested

by Ma et al. (2020), in addition to beta-diversity, microbial co-

occurrence networks could be used to characterize community

assemblage depending on the environment. The observed

network modules that have been interpreted as microbial

niches (Faust and Raes, 2012; Röttjers and Faust, 2018)

generally contained desirable and undesirable bacteria

interconnected with positive or negative links. While

positive interactions among bacterial phylotypes might

indicate cooperation, nutritional cross-feeding, co-

colonization, or co-survival in similar environments,

negative associations might result from bacteriocin or other

substance production, competition, changing environment, or

overpopulation of a niche (Faust et al., 2012). These modules

could reflect heterogeneity of the fermentation process

occurring during ensiling or reveal the main players of that

fermentation as pictured at feed-out of mature silage

community composition. If keystone species identified in

the GL network can be essential to its stability (Faust and

Raes, 2012), the interpretation of their ecological relevance is

not evident (Layeghifard et al., 2017; Röttjers and Faust,

2018). In the context of silage, owing to the plethora of

studies conducted on the fermentation process and

subsequent effects on animal performance (Bernardes et al.,

2018; Muck et al., 2018; Wilkinson and Rinne, 2018), there is

no doubt of the type of microbial community expected in

successful mature silage, although this is not always obtained

despite inoculation. For instance, our study revealed

phylotypes of L. buchneri and L. plantarum as keystone

species of the GL network that do not show any type of

cooperation with undesirable bacteria. This finding

confirms the ecological importance of the two taxa from

which specific strains are currently used as inoculants.

Other keystone species from the same network, among

which are phylotypes of L. coryniformis, Weissella sp., and

Lactobacillus spp., were found to cooperate with at least one

undesirable bacterial phylotype. Isolates of such keystone

species, although belonging to the LAB community, could

not be theoretically selected as candidate inoculants.

Obviously, keystone species such as Serratia spp., Pantoea

spp., or Pseudomonas spp. are undesirable in silage and

therefore illustrate key taxa to inhibit or suppress during

fermentation. On the other hand, phylotypes of the genus

Methylobacterium, of which some were identified as keystone

species, shared positive and negative interactions with other

bacteria regardless of the phylum they belong to. Species of the

genus Methylobacterium are methanotrophic bacteria

commonly associated with pre-ensiled forage plants (Knief

et al., 2012; Ni et al., 2017). In this study, the positive

correlation of this genus with pH is in accordance with its

neutrophilic characteristics. Since Methylobacterium species

are facultative aerobes (Knief et al., 2012), their occurrence in
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GL samples as co-dominant taxa might be explained by the

presence of oxygen during ensiling or the low abundance of

lactobacilli strains required to drive the early stages of the

fermentation process. Rigorous experiments should therefore

be carried out to link keystone species derived from co-

occurrence network topological roles to a particular role in

the ecosystem dynamics and stability of preserved forage. In

this study, the observed disparities of taxa occurrence,

abundance, or dominance, as well as differential

associations with forage metadata within and across the

identified forms of forage storage, depict the relevance of

microbial additives and management conditions to the end

products and microbiome structure of mature silage. Bacterial

occurrence was shown to be highly variable, particularly LAB

communities in farm-scale mature silage. Integrating silage

associated parameters mentioned previously in a time-varying

network analysis approach (Faust et al., 2015; Layeghifard

et al., 2017) to decipher the temporal variations of microbial

interactions would help fill the gaps in the current knowledge

of microbial interplays and complex succession throughout

ensiling.

Conclusion

In summary, hay microbiota characterized with high

abundance of Sphingomonas, Methylobacterium,

Curtobacterium, and Pantoea is significantly different from

that of ensiled forage. At commercial farm-scale facilities, the

use of inoculants may unpredictably counteract the effects of

factors such as competing endogenous epiphytic populations,

inadequate pressing, or oxygen penetration into the silo on the

microbiota composition of mature silage. While LAB were

underrepresented in hay, their abundance was inconsistent in

inoculated compared with uninoculated silage. Since LAB

were ubiquitous, they probably originated mostly from

epiphytic LAB instead of from commercial additives. The

microbiota of grass/legume silage was variably dominated

or co-dominated by Lactobacillus or Pediococcus,

specifically exhibiting higher abundance of Weissella or

Bacillus in uninoculated and inoculated silage, respectively.

On the other hand, Lactobacillus and Acetobacter

inconsistently dominated the microbial communities of

corn silage, regardless of inoculation. Based on microbiota

composition and structure, the analysis of co-occurrence and

co-exclusion patterns among community assemblage clearly

distinguished uninoculated from inoculated silage. This study

provides a better knowledge of how inoculants used for

ensiling might modulate bacterial communities populating

preserved mature forage at feed-out on commercial dairy

farms. Further investigations integrating management

practices and silage physicochemical parameters with

microbial dynamics and interactions throughout silage

fermentation and post-feedout periods are needed to fully

understand biological processes involved in maintaining high-

quality silage.
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