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Embryonic epithelial cells exhibit strong coupling of mechanical responses to

chemical signals and most notably to calcium. Recent experiments have shown

that the disruption of calcium signals during neurulation strongly correlates with

the appearance of neural tube defects. We, thus, develop a multi-dimensional

mechanochemical model and use it to reproduce important experimental

findings that describe anterior neural plate morphogenetic behaviour during

neural tube closure. The governing equations consist of an advection-

diffusion-reaction system for calcium concentration which is coupled to a

force balance equation for the tissue. The tissue is modelled as a linear

viscoelastic material that includes a calcium-dependent contraction stress.

We implement a random distribution of calcium sparks that is compatible

with experimental findings. A finite element method is employed to generate

numerical solutions of the model for an appropriately chosen range of

parameter values. We analyse the behaviour of the model as three

parameters vary: the level of IP3 concentration, the strength of the stretch-

sensitive activation and the maximum magnitude of the calcium-dependent

contraction stress. Importantly, the simulations reproduce important

experimental features, such as the spatio-temporal correlation between

calcium transients and tissue deformation, the monotonic reduction of the

apical surface area and the constant constriction rate, as time progresses. The

model could also be employed to gain insights into other biological processes

where the coupling of calcium signalling and mechanics is important, such as

carcinogenesis and wound healing.

KEYWORDS

mechanochemical model, calcium signalling, linear viscoelasticity, embryogenesis,
apical constriction, computational modelling

OPEN ACCESS

EDITED BY

Jennifer Anne Flegg,
University of Melbourne, Australia

REVIEWED BY

Linda Irons,
Yale University, United States
Riccardo Sacco,
Politecnico di Milano, Italy

*CORRESPONDENCE

Katerina Kaouri,
kaourik@cardiff.ac.uk

SPECIALTY SECTION

This article was submitted to Multiscale
Mechanistic Modeling,
a section of the journal
Frontiers in Systems Biology

RECEIVED 06 June 2022
ACCEPTED 05 October 2022
PUBLISHED 28 October 2022

CITATION

Kaouri K, Christodoulou N,
Chakraborty A, Méndez PE, Skourides P
and Ruiz-Baier R (2022), A new
mechanochemical model for apical
constriction: Coupling calcium
signalling and viscoelasticity.
Front. Syst. Biol. 2:962790.
doi: 10.3389/fsysb.2022.962790

COPYRIGHT

© 2022 Kaouri, Christodoulou,
Chakraborty, Méndez, Skourides and
Ruiz-Baier. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Systems Biology frontiersin.org01

TYPE Original Research
PUBLISHED 28 October 2022
DOI 10.3389/fsysb.2022.962790

https://www.frontiersin.org/articles/10.3389/fsysb.2022.962790/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.962790/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.962790/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.962790/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2022.962790&domain=pdf&date_stamp=2022-10-28
mailto:kaourik@cardiff.ac.uk
https://doi.org/10.3389/fsysb.2022.962790
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2022.962790


1 Introduction

During the early stages of the development of an embryo’s

central nervous system (CNS), neuroepithelial cells undergo a

shape change via apical constriction (AC), a morphogenetic

process controlled by apical actomyosin contraction that is

induced by calcium transients (Christodoulou and Skourides,

2015; Suzuki et al., 2017). AC results in the folding of the

neural plate and in the formation of the neural tube. It is not

fully understood how AC in the neural plate is controlled and

how it contributes to tissue morphogenesis but recent

experiments have shown that Ca2+ plays a crucial role in

regulating AC during neural tube closure (NTC)

(Christodoulou and Skourides, 2015; Suzuki et al., 2017).

Furthermore, pharmacologically inhibiting Ca2+ has been

shown to lead to neural tube defects (Smedley and

Stanisstreet, 1986; Wallingford et al., 2001; Christodoulou

and Skourides, 2015), such as Spina Bifida and anencephaly.

Many experiments have documented that intracellular Ca2+

release triggers actomyosin-based contractions, in both

embryonic and cultured cells (Wallingford et al., 2001;

Herrgen et al., 2014; Hunter et al., 2014; Christodoulou and

Skourides, 2015; Suzuki et al., 2017). The ability of cells to sense

and respond to forces by elevating their cytosolic Ca2+ is also well

established; mechanically stimulated Ca2+ waves have been

observed propagating through ciliated tracheal epithelial cells

(Sanderson and Sleigh, 1981; Sanderson et al., 1988; Sanderson

et al., 1990), rat brain glial cells (Charles et al., 1991; Charles et al.,

1992; Charles et al., 1993), developing epithelial cells in

Drosophila wing discs (Narciso et al., 2017) and many other

cell types (Young et al., 1999; Bereiter-Hahn, 2005; Tsutsumi

et al., 2009; Yang et al., 2009). Thus, different types of mechanical

stimuli, from shear stress to direct mechanical stimulation, can

elicit Ca2+ elevation (although the sensing mechanism may differ

in each case). Moreover, localisation of stresses or strains within

the cells can generate alteration in patterns of Ca2+ distribution in

a tissue by changing cell displacement magnitude, direction, and

velocity (Lecuit and Lenne, 2007; Guiu-Souto and Munuzuri,

2015). This is especially noteworthy since distinct Ca2+ signalling

patterns differentially modulate AC for efficient epithelial

folding. The latter mechanism has a broad range of

physiological outcomes (Suzuki et al., 2017).

Since mechanical stimulation elicits Ca2+ release and Ca2+

elicits contractions which are sensed as mechanical stimuli by

the cell, a two-way mechanochemical feedback between Ca2+

and contractions should be at play. Motivated by the recent

experimental observations (Christodoulou and Skourides,

2015; Suzuki et al., 2017) where, during AC, increasing

tension in the contracting cells yields Ca2+ release which,

in turn, elicits contractions in the cells which are sensed as

mechanical stimuli by the neighbouring cells, we develop a

new mechanochemical model that captures the interplay of

Ca2+ signalling and mechanical forces during AC.

This paper extends the mechanochemical model in (Kaouri

et al., 2019), which describes the coupling of Ca2+ signalling with

the mechanics of the embryonic epithelial tissue during AC in

one spatial dimension; it also extends the multi-dimensional

model presented in (Kaouri et al., 2022). In the aforementioned

models, following the early mechanochemical models in (Murray

and Oster, 1984), where small strains are assumed, the embryonic

tissue is assumed to be a linear viscoelastic (Kelvin–Voigt) solid

(with one elastic spring and two viscous dashpots), where only

after the initial stress has vanished, does the material go back to

its original state. Also, In the model proposed here, as in (Murray

and Oster, 1984; Banerjee and Marchetti, 2011; Kaouri et al.,

2019; Kaouri et al., 2022), we assume that the viscoelastic stress

includes an active contraction stress which depends on the

cytosolic Ca2+ concentration. The models in (Kaouri et al.,

2019; Kaouri et al., 2022), as well as the model presented

here, employ the well-established Ca2+ signalling model from

Atri et al. (1993), called the “Atri model” hereafter. The Atri

model captures the experimentally verified Ca2+-induced Ca2+

release (CICR) process. It consists of two differential equations,

one PDE for the cytosolic Ca2+ concentration and another PDE

for the percentage of the non-inactivated IP3 receptors on the

endoplasmic reticulum (ER) which allow release of Ca2+ from the

ER into the cytosol.

In Figure 1 we show still images from a time lapse recording of

the anterior neural plate during the last stage of neural tube closure

(stage 16 of Xenopus embryo development). For live imaging, 4-cell

stage Xenopus laevis embryos were injected with the mRNA

encoding membrane-GFP and the calcium sensor GECO-RED at

the two dorsal blastomeres to target the neural tissue. Subsequently

the embryos were allowed to develop until stage 14 and imaged

during neural tube closure. The time lapse recordings of neural tube

closure that we represent in Figure 1 were generated on a ZEISS LSM

710 confocal microscope with a 30 s time interval. At this stage, the

ectoderm of the embryo consists of the neuroepithelium, which is

surrounded by the surface ectoderm. The last stage of anterior neural

tube closure is controlled by AC of neuroepithelial cells

(Christodoulou and Skourides, 2015) and lasts about 40 min; this

is the stagewemodel here. DuringAC cells reduce their apical surface

area and change their shape from columnar to a wedge shape

(Christodoulou and Skourides, 2015). These cell shape changes

subsequently drive the bending of the neuroepithelium and the

formation of the neural tube. Note that the frequency of calcium

transients has been quantified in (Christodoulou and Skourides,

2015). The observation there is that the frequency increases as

neural tube closure progresses. This information ties up with the

data presented also in (Kaouri et al., 2019). Thus, experimental

evidence shows a clear correlation between the appearance of calcium

transients, and the reduction of the apical surface area during neural

tube closure. Even though the process of AC is three-dimensional we

focus attention to the stage where the apical surface area reduces (in a

ratchet-like manner). This is the active driver of the process and it is

sufficient to describe it with a two-dimensional model, as we do
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below. For stage 16 ofXenopus embryo development studied here we

can assume small strains; hence the tissue can be modelled as a linear

Kelvin–Voigt viscoelastic solid. This linear viscoelastic material is

completely defined by the stiffness and viscosity, which can be

determined using diverse measuring approaches such as pipette

suction, optical laser tweezers, microrheology tools, particle

tracking, or even contact-free techniques (Nguyen et al., 2020). In

the present mechanochemical model, we assume that the viscoelastic

stress includes a contraction stress which depends on Ca2+

concentration, following the formulation in (Murray and Oster,

1984; Banerjee and Marchetti, 2011; Kaouri et al., 2019; Kaouri

et al., 2022).

The new mechanochemical model proposed here, following

(Kaouri et al., 2022) is underpinned also by the following

fundamental assumptions: a) the equilibrium of the mechanics in

the system is established by a quasi-static balance of linear

momentum using displacements and hydrostatic or solid pressure

[the so-called Herrmann formulation (Herrmann, 1965)]. The

introduction of solid pressure contributes to achieve robustness in

the nearly incompressible regime assumed for the tissue. This occurs

when the Poisson ratio approaches 0.5, implying that the first Lamé

parameter defining the dilation properties of the material is very

large. Also, themechanochemical coupling ismodelled directly in the

viscoelastic stress through a Hill function that depends on Ca2+ and

through the modification of the reaction kinetics by volume change.

The two-way coupling mechanism we adopt follows the model

structure used in (Murray, 2001; Murray, 2003; Neville et al.,

2006; Ruiz-Baier et al., 2014; Kaouri et al., 2019; Kaouri et al., 2022).

Finding closed-form solutions to this inherently highly

nonlinear and multidimensional problem is only possible in

very restricted scenarios and simplified settings. We, hence,

resort to solving the governing equations numerically, via an

implicit, fully coupled finite element method (Ruiz-Baier et al.,

2014; Kaouri et al., 2022). Following (Kaouri et al., 2022), we

nondimensionalise the model using experimentally verified

parameter values from neuroepithelial cells undergoing AC

during NTC (Atri et al., 1993; D’Angelo et al., 2019; Benko

and Brodland, 2007) to investigate whether our model

reproduces important features of NTC observed in the

experiments of (Christodoulou and Skourides, 2015).

This paper is organised as follows. In Section 2 we present a

new mechanochemical model capturing the coupling of calcium

signalling to forces in a deforming embryonic epithelial tissue

undergoing AC. We also present the computational

implementation of the model, using a Finite Element Method.

Next, in Section 3 we present the simulations and discuss how

they reproduce important experimental features. Finally, Section

4 includes our conclusions and future research directions.

2 Methods

2.1 A new mechanochemical model for
apical constriction, coupling calcium
signalling and mechanics

Here, we present a new mechanochemical model coupling

calcium and mechanics in AC. We adapt, as previously, the Atri

et al. (1993) model to write the governing equations for the

cytosolic calcium concentration and the percentage of non-

FIGURE 1
Snapshots of the closure of the neural tube over a period of 55 min (from top-left to bottom-right). The green colour indicates the cell
membrane and magenta is the calcium sensor.
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inactivated IPR—for more details on this well-established model

see (Atri et al., 1993; Kaouri et al., 2019; Kaouri et al., 2022). We

also assume, as previously, that the tissue is represented by a

linear viscoelastic, Kelvin–Voigt material (Murray and Oster,

1984; Kaouri et al., 2019; Kaouri et al., 2022). The system is

assumed to be in mechanical equilibrium, that is the contraction

forces generated by the calcium are in mechanical equilibrium

with the viscoelastic forces. The model is as follows:

ztc + ztu · ∇c −D∇2c � f c, h, u( ) inΩ × 0, tfinal( ], (1)
zth + ztu · ∇h � g c, h( ) inΩ × 0, tfinal( ], (2)

−div  u( ) − pI + α1zt u( ) − α2ztpI + T c( )I( ) � 0
inΩ × 0, tfinal( ], (3)

p + ]
1 − 2]( ) divu � 0 inΩ × 0, tfinal( ], (4)

where [Ca2+] = c is the cytosolic calcium concentration, h

is the percentage of non-inactivated IPR, u is the tissue

displacement and p is the Herrmann pressure. ] is the

Poisson’s ratio, α1 and α2 are the shear and bulk

viscosities, respectively, and D is the diffusion coefficient

of cytosolic calcium. The Cauchy stress has elastic, viscous,

and active calcium-dependent stress components.

The active stress and the reaction kinetics are specified as

follows:

T c( ) � β1
cn

β2 + cn
,

f c, h, u( ) � Irand x, t( )μhK1
b + c

1 + c
− Gc

K + c
+ λ div u,

g c, h( ) � 1
1 + c2

− h. (5)

The function Irand multiplying the CICR Ca2+ flux is a

random-in-space distribution of Ca2+ sparks which increases

in frequency and in amplitude with time, observed in the

experiments of (Christodoulou and Skourides, 2015). Since

there is a (thin) circumferential layer of epidermal cells

surrounding the neuroepithelial cells, the Young’s

modulus, E, is discontinuous across the interface of these

two regions (Wiebe and Brodland, 2005). Hence, we assume

that the Young’s modulus in the domain is given by

E � EinχΩin
+ EoutχΩout

, (6)

where χM denotes the characteristic function on the generic

subdomain M, and by Ein and Eout we denote the Young

modulus in the inner and outer regions, respectively. The

model parameters and their values are discussed in more

detail in Section 2.2.

The PDE system (2.1) is complemented with appropriate

initial data for c, h, u and p, respectively given by

c 0( ) � c0, h 0( ) � h0 � 1
1 + c20

, u 0( ) � 0, p 0( ) � 0, inΩ,

(7)
where c0 is the steady state value of c. We also assume stress-free

and zero-flux boundary conditions on the domain boundary, as

follows:

 u( ) − pI + α1zt u( ) − α2ztpI + T c( )I( )n � 0 and

D∇c · n � 0 on zΩ × 0, tfinal( ]. (8)

These pure-traction boundary conditions necessitate imposing

an additional condition to render the system well-defined. We,

hence, impose that the displacements are orthogonal with respect

to the space of rigid motions, that is

RM Ω( ) ≔ v ∈ H1 Ω( ):  v( ) � 0{ }. (9)

Note that T(c) in Eq. 3 has an opposite sign to that in the models

of (Kaouri et al., 2019; Kaouri et al., 2022). There, the opposite

sign corresponded to dilation instead of contraction here [see

also (Murray and Oster, 1984; Moreo et al., 2010)].

2.2 Model parameter values

The Atri Ca2+ signalling model we use (Atri et al., 1993)

captures the Ca2+ release to the cytosol via the IPR/Ca2+ channels,

relying on experimental data from the Xenopus laevis oocyte. We

TABLE 1 Parameter values for the mechanochemical model.

Parameter list

Parameter Definition Value Source

Ein Young’s modulus on the neural plate 44.26 Pa Zhou et al. (2009)

Eout = 0.55Ein Young’s modulus on the epidermal layer 24.34 Pa Wiebe and Brodland, (2005); Zhou et al., (2009)

T0 Traction stress 50 − 450 Pa Kraning-Rush et al., (2012); Oakes et al., (2014); Yamaguchi et al., (2022)

] Poisson’s ratio 0.4 D’Angelo et al., (2019); Zhou et al., (2015)

~α1 Shear viscosity 3790 Pa s D’Angelo et al., (2019); Zhou et al., (2009)

~α2 Bulk viscosity 550 Pa s D’Angelo et al., (2019); Zhou et al., (2009)
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nondimensionalised this model in detail in (Kaouri et al., 2019);

here we present it in its nondimensional form, choosing the same

parameter values.

The values of the mechanical parameters were taken from

Xenopus and Drosophila embryos (D’Angelo et al., 2019;

Benko and Brodland, 2007; Zhou et al., 2009; Wiebe and

Brodland, 2005) and are collected in Table 1. (The

parameter values can be taken from two different species

since the magnitude of sub-cellular forces are similar across

species.) To determine the Young’s modulus and viscosity of

neural tissues, in (Zhou et al., 2009) the authors measured the

stiffness of dorsal isolate explants of Xenopus laevis embryos

over different stages of development, from gastrulation to

neurulation. They recorded the values of Young’s modulus

and viscosity over five dorsal isolate explants taken from stage

16 embryos. We averaged these five values to obtain Ein. To

determine the Young’s modulus for the epidermal cells

surrounding the neuroepithelium, Eout, we use the ratio

between the stiffness moduli of the neuroepithelium and

epidermis, as determined in (Wiebe and Brodland, 2005);

we, thus, estimate Eout = 0.55Ein.

We determine the shear and bulk viscosities, ~α1 and ~α2 using

data from (Zhou et al., 2009) and (D’Angelo et al., 2019). In

(Zhou et al., 2009), measurements were taken from five

neurulating embryos and we determined the value of viscosity

to be the average of the five values. This viscosity value was then

split using the ratio between the shear and bulk viscosity given in

(D’Angelo et al., 2019).

For the Poisson’s ratio, we assume, as in (Zhou et al., 2009),

that the embryonic tissue is a nearly incompressible material and

hence we set ] = 0.4. This value is also consistent with the range of

values in (D’Angelo et al., 2019) and in other experimental

studies, e.g., (Zhou et al., 2015). The value of the maximum

(saturation) traction stress, T0, is difficult to determine but

experiments on zebrafish primordium tissue suggest that the

value can range from 50 Pa to 450 Pa (Yamaguchi et al., 2022).

This range is supported by (Kraning-Rush et al., 2012) and

(Oakes et al., 2014) where traction force microscopy revealed

the average traction stresses of cells on 2D substrates to be

between 100 Pa and 1,000 Pa. In our model, T0 was set by

tuning its value while keeping all other parameter values

constant.

The area of a single neuroepithelial cell at the start of apical

constriction is approximately 250μm2. We have 256 cells (Suzuki

et al., 2017) tightly packed in the tissue and, hence, the initial

tissue area is approximately 64,000μm2. We assume that the

tissue is a disc-shaped domain of radius ≈ 143μm. The spatial

variables have been non-dimensionalised using L = 100 μm.

Thus, the tissue is represented as a disc of radius R = 1.43, in

non-dimensional terms.

We take the non-dimensional parameters from (Kaouri et al.,

2019), as follows: D = 0.004, K1 = 46.28, G = 5.71, and K = 0.14.

The three parameters we are going to vary in the simulations are

μ, λ and β1 �
T0 1 + ]( )

E
. (10)

As the Young modulus, E, is discontinuous across the interface of

the neuroepithelium and the epidermis, so are the parameters α1,

α2 and β1. From the nondimensionalisation it arises that α1 �
(1+])
Eτj

~α1 and α2 � (1+])(1−2])
E]τj

~α2, where τj = 2s and other values as in

Table 1. On the neuroepithelium we, hence, have αin1 � 59.94 and

αin2 � 4.35, whereas on the epidermis we take αout1 � 113.67 and

αout2 � 8.25.

2.3 Computational implementation of the
model using the finite element method

The mechanochemical model Eqs 1–4 has been discretised

using the finite element method (FEM). The open-source FEM

library FEniCS (Langtangen and Logg, 2017) was used to obtain

the numerical approximation of the variational formulation of

the governing equations. Due to the nonlinear nature of the

model, the Newton–Raphson method was used and at each

iteration the linear tangent system was solved with the

MUMPS direct solver (Amestoy et al., 2000). Time derivatives

were approximated by a fully implicit backward differencing

scheme. A mixed finite element formulation based on the MINI

element (Cioncolini and Boffi, 2019) was used for the numerical

approximation of the displacement and the rescaled Herrmann

pressure, and piecewise linear and overall continuous elements

FIGURE 2
Frequency and normalised amplitude of calcium sparks
versus time used to construct Irand, fitted to experimental data
from (Kaouri et al., 2019).
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for the calcium concentration and IPR. The rigid motions in a

finite-dimensional subspace of Eq. 9 were removed from the set

of admissible displacements using a Lagrange multiplier

approach, as described in (Kaouri et al., 2022). For the

Newton–Raphson iterative algorithm, a tolerance of 10–8 was

used. Note that, as long as an appropriate discrete inf-sup

condition is satisfied and one can still construct a suitable

auxiliary discrete problem to remove rigid motion solutions,

high-order elements can also be used, for example generalised

Taylor–Hood elements of degree k ≥ 2 for the approximation of

displacement and rescaled Herrmann pressure, and piecewise

polynomials of order k for the approximation of calcium and IPR

concentrations. For the lowest-order Taylor–Hood elements one

has an additional order of convergence with respect to the MINI-

element. That is, we expect an improvement in model predictions

as the mesh is refined, but at the price of solving a larger system at

each Newton–Raphson iteration. More details about the code can

be found in (Ruiz-Baier et al., 2014; Kaouri et al., 2022).

3 Results and discussion

In this section we present numerical solutions of the

model for a range of parameter values and explore the

agreement of the model with experimental results. We

treat μ, λ, and β1 as bifurcation parameters and identify

the set of values for which the model exhibits agreement

with the experimental results in (Christodoulou and

Skourides, 2015). The computational domain is a disk of

radius R = 1.43, discretised into an unstructured triangular

mesh of 34,947 elements. A fixed time-step of Δt = 0.1 is used

in all simulations.

FIGURE 3
Plot of statistics (quartiles, ranges, and average) of the model variables over time, spatially averaged over 80 points near the disk centre (square
of side 0.25). The scales for calcium concentration and for the percentage of open IPR are on the right axes, whereas the scales for the displacement
magnitude and for the Herrmann pressure are on the left axes. Parameters are βin1 � 3.16, μ = 0.288 and λ ∈ {0.01, 0.1, 0.5, 1.3}, varied from top left to
bottom right.
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In order to generate the random field of calcium sparks, Irand,

we impose a frequency that is linearly increasing from 0.1 to

0.4 and set the amplitude to 1 + ampl, with ampl increasing from

0.47 to 0.78 quadratically–see Figure 2. A single spark at the

domain centre is included in all simulations.

We proceed to extract transients of the model variables c, h, p,

u at 80 points which are located in a square of side 0.25, centred at
the origin. We then average these values over space to generate

the evolution of the system over time. The simulations are

presented in Figures 3, 4. Figure 3 shows the results obtained

when βin1 � T0(1 + ])/Ein � 3.16, that is when T0 = 100 Pa.When

μ = 0.288 the Atri model (Atri et al., 1993; Kaouri et al., 2019)

does not exhibit oscillatory behaviour. The increase of the

Herrmann pressure (and of the displacement) is monotonic,

which indicates a monotonic contraction and area reduction, as

observed in experiments (Christodoulou and Skourides, 2015;

Suzuki et al., 2017). Hence, our model reproduces this key

experimental feature. This behaviour occurs because the

random-in-space calcium sparks (modelled by Irand) exist

elsewhere in the domain and increase in amplitude and

frequency as time progresses (see Figure 2).

Increasing T0 to 250 Pa gives β
in
1 � 7.91. In this case we see in

Figure 4 that the pressure and displacement approximately

double in magnitude compared to those for T0 = 100 Pa

(βin1 � 3.16).
In Figures 3, 4, as time advances the Herrmann pressure

increases, the tissue contracts and the area decreases

monotonically. However, for any fixed value of μ, the

contraction decreases as λ increases. Since λ is a measure of

the strength of the coupling between the calcium signalling

system and the mechanics of the tissue this result indicates

that the stronger the coupling the smaller the contraction.

FIGURE 4
Plot of statistics (quartiles, ranges, and average) of the model variables over time, spatially averaged over 80 points near the disk centre (square
of side 0.25). The scales for calcium concentration and for the percentage of open IPR are on the right axes, whereas the scales for the displacement
magnitude and for the Herrmann pressure are on the left axes. Parameters are βin1 � 7.91 (T0 = 250 Pa), μ = 0.288 and λ ∈ {0.01, 0.1, 0.5, 1.3}, varied
from top left to bottom right panels.
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In Figure 5 we plot the tissue area as time progresses. We

compute the area using the expression ∫Ω det(I + u)dx, and
compare it with the experimental data in Figure 2. In the top

left plot, for βin1 � 7.91 we plot the area reduction as μ and λ

vary. We get a good fit with the area data in Figure 2 for μ =

0.288 and λ = 0.5 (yellow line). For the chosen parameters

μ = 0.288, λ = 0.5, in the top right plot, we determine the area

for βin1 ∈ � 1.58, 3.16, 4.74, 7.91 (corresponding to T0 = 50,

100, 150, 250 Pa and changing accordingly βout1 ); we see

that the area reduction is quite sensitive to the choice of

the active contractile force parameter, T0, which confirms the

nonlinear nature of the model. In the bottom plot the red

dash-dotted curve depicts the constriction rate (rate of area

reduction) for the parameters μ � 0.288, λ � 0.5, βin1 � 7.91.

The constriction rate is approximately constant, as

identified in the experiments of (Christodoulou and

Skourides, 2015).

In Figure 6 we visualise the deformation of the tissue (disc

domain) and the associated calcium distribution, at different

times. The boundary of the initially non-deformed disc is also

shown, for comparison. For λ = 0.01, we observe nucleation of

calcium waves—synchronous waves that are sustained for a

longer time. In Figure 6 we clearly visualise what has been

already noted in Figure 4: that, as time advances the area

always decreases monotonically and that the larger λ is the

smaller the contraction. In Figure 7, for the same set of

parameters, μ = 0.288, βin1 � 7.91, and varying λ, we plot all

field variables at time t = 35 (to show a different time snapshot

than the ones depicted before). For all cases, a larger

displacement is observed near the boundary.

FIGURE 5
Area (in non-dimensional units) with respect to time for different parameter values, plotted against experimental data from (Kaouri et al., 2019).
The red, dash-dotted curve in the bottom plot depicts the approximately constant constriction rate, for the parameter set μ � 0.288, λ � 0.5, βin1 �
7.91.
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FIGURE 6
Snapshots of the contracting domain and the associated calcium distribution, at t = 20, 30, 40. Parameters are μ = 0.288, and λ = {0.01, 0.1, 0.5,
1.3} from the top to the bottom row, respectively. Here we use βin1 � 7.91.

Frontiers in Systems Biology frontiersin.org09

Kaouri et al. 10.3389/fsysb.2022.962790

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.962790


FIGURE 7
Snapshots of the contracting domain and the associated calcium distribution (left), Herrmann pressure (centre), and displacement (right), at
time t = 35. Parameters are: μ = 0.288, λ = 0.01 (top), λ = 0.1 (second row), λ = 0.5 (third row), λ = 1.3 (bottom). We use βin1 � 7.91.
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Testing the code for different
viscoelasticity parameters

Although real tissues usually show intermediate degrees of

viscoelasticity (von Dassow and Davidson, 2011; Parvini et al.,

2022; Brückner and Janshoff, 2015; Lange and Fabry, 2013;

Karcher et al., 2003) it is not uncommon that mechanical

models of morphogenesis assume one of two extremes in

material behaviour: either a purely elastic or a purely viscous

fluid. For the specific case of embryonic tissues, in (Davidson,

2011) authors conclude that most embryonic tissues should be

considered viscoelastic in order to fully understand the

mechanisms behind deformation of a multicellular tissue in

response to any force or stress. Along similar lines, in (von

Dassow and Davidson, 2011) it is noted that the stability and

robustness of specific physical mechanisms of morphogenesis

will likely have a strong dependence on the viscoelasticity of the

tissue.

Here, for the stage of embryogenesis we consider (stage 16),

we can assume small strains; hence we modelled the tissue as a

linear Kelvin–Voigt viscoelastic material. However, we

emphasize that the formulation we propose along with the

finite element method we employ do accommodate for the

pure elastic case and also for material constants close to the

incompressibility limit. This is tested in the following simple

example where we choose the parameters μ = 0.288, λ = 0.5, T0 =

250, and take a higher Poisson ratio (= 0.4999) with or without

shear-bulk viscosities. The results are visualised in Figure 8. They

need to be compared with the base-line case shown in Figure 4

(bottom left panel). Both panels use ] = 0.4999 (which

corresponds to the slightly higher βin1 � 8.47, since β1 is

proportional to the Poisson ratio). The left panel shows the

behaviour when maintaining the base-line viscoelastic

parameters. The displacement and pressure exhibit an initial

peak and then return to a plateau phase. On the right panel we

focus on the case with ~α1 � ~α2 � 0 (on both neuroepithelium and

epidermis regions). Both calcium and the percentage of open IPR

are quite similar to the base-line case. As in the left panel, both

the Hermann pressure and the displacement exhibit an initial

peak followed by an undershoot and then reach a plateau phase.

However, the displacement magnitude is much lower than in the

viscoelastic case (in the base-line case, both mechanical fields

were increasing monotonically).We also note that in order to

properly capture other stages of NTC, we would require a large-

strain viscoelasticity framework in combination with a

remodelling approach. This constitutes a direction for future

research.

4 Conclusion

We propose a new mechanochemical model that reproduces

important experimental findings on the apical constriction (AC)

during the last stage of neural tube closure (NTC). AC is

controlled by the complex coupling of calcium signalling to

the mechanics of the embryonic epithelial tissue; disruption of

calcium signals and consequently of AC leads to significant

embryo malformations such as Spina Bifida and anencephaly.

The model builds on other recent mechanochemical models

(Kaouri et al., 2019; Kaouri et al., 2022). The calcium-induced

calcium release process allowing calcium to get released from the

ER into the cytosol has been modulated with a random-in-space

FIGURE 8
Testing behaviour in the nearly incompressible purely elastic and viscoelastic cases. Parameters are ] = 0.4999, ~α1 � 3790, ~α2 � 550 (left); and
] = 0.4999, ~α1 � ~α2 � 0 (right).
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distribution of calcium sparks of which the amplitude and

frequency increase with time. The distribution has been fitted

to agree with experimental data presented in (Christodoulou and

Skourides, 2015; Kaouri et al., 2019)–see Figures 1, 2. The

embryonic tissue is modelled as a linear viscoelastic material,

including three types of stresses: viscous, elastic and an active

contraction stress which increases with calcium concentration

until it saturates.

We have simulated the model using a finite element method

on a disc domain packing 256 epithelial cells—details about the

numerical method can be found in (Kaouri et al., 2022). We have

studied the behaviour of the model as three parameters vary: μ,

the level of IP3, λ, which measures the strength of the stretch-

sensitive activation and βin1 which represents the maximum

contraction stress.

The model shows that for any value of μ, λ, and βin1 the

tissue area is decreasing monotonically over time, as observed

in experiments (Christodoulou and Skourides, 2015; Suzuki

et al., 2017). Furthermore, we have identified that for

μ = 0.288, λ = 0.5, and βin1 � 7.91, the monotonic area

decrease fits to the experimental curve, generated in

(Christodoulou and Skourides, 2015). Also in Figure 5

(bottom plot) we have quantified and plotted the

constriction rate (red, dash-dotted curve) which is

approximately constant as observed in experiments

(Christodoulou and Skourides, 2015).

We also found that as λ increases the contraction effect

decreases–see Figures 4, 6. This result could be tested in future

experiments.
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