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Systems and Synthetic Biology are complementary fields emerging side-by-

side into mainstream scientific research. Whilst systems biologists focus on

understanding natural systems, synthetic biologists wish to modify, adapt and

re-purpose biological systems towards certain desired goals, for example

enhancing efficiency and robustness of desired biological traits. In both

fields, data analysis, predictive mathematical modelling, experimental design,

and controlled experimentation are crucial to obtain reproducible results and

understand how applications can be scaled to larger systems and processes. As

such, students from Life Sciences, Engineering, and Mathematics backgrounds

must be taught fundamentals in biological systems, experimental techniques,

mathematics, and data analysis/statistics. In addition, students must be trained

for future multidisciplinary careers, where the interaction and communication

between experimental and modelling researchers is fundamental. With the

acceleration of technological developments (both computational and

experimental) continuing unabated, educators need to bridge the increasing

gap between fundamentally-required knowledge and skills that students need

to pursue future academic or industrial research projects. In this paper, we will

discuss how we have re-designed an introductory course in Systems and

Synthetic Biology at Wageningen University and Research (Netherlands) that

is targeted simultaneously to mathematical/computational students with an

interest in biology and experimental methods, and to Life Science students

interested in learning how biological systems can be mathematically analysed

and modelled. The course highlights the links between fundamental

methodologies and recently developed technologies within the Systems and

Synthetic Biology fields. The course was re-designed for the 2021/22 academic

year, we report that students from biology and biotechnology programmes

graded their satisfaction of the course as 4.4 out of 5. We discuss how the

course can act as a gateway to advanced courses in Systems Biology-oriented

curricula (comprising: data infrastructure, modelling, and experimental

synthetic biology), and towards future research projects.
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1 Introduction

We are living in the century of biology (Venter and Cohen,

2004). The life sciences domain is becoming increasingly multi-

disciplinary (Kitano, 2002), and recent major breakthroughs

have required collaborative systems biology approaches, such

as the recently-improved human genome sequence (Nurk et al.,

2022) or the protein structure prediction tool AlphaFold (Jumper

et al., 2021). In parallel to the increase in biological information,

the development of fast and affordable DNA sequencing and

synthesis is fueling the rise of synthetic biology to solve problems

in medicine, agriculture, and manufacturing in sustainable and

efficient ways (BBSRC, 2011). These novel technologies also have

the capability to “create” organisms (Hutchison et al., 2016). As a

consequence of these technological developments, green

economies are becoming a reality (Delebecque and Philp,

2015), and synthetic biology is leading to the creation of

enterprises and jobs (Vilanova and Porcar, 2019; Kampers

et al., 2021). Given the speed at which life sciences research

and careers are evolving into multi-disciplinary ventures,

educators require refreshed and up-to-date course designs to

train the future innovators in the biological revolution.

Previous studies of multi-disciplinary research groups and

educational programmes have highlighted the presence of

“boundaries” (Akkerman, 2011; Akkerman and Bakker, 2011):

for students and researchers, these boundaries present not only a

challenge to overcome but also an opportunity to broaden their

knowledge, consider new methodologies or ideologies, and

obtain novel insights. Within the Systems and Synthetic

Biology field, one such boundary is communication and

understanding between experimental and theoretical

researchers. For the course outlined in this paper, we will

refer often to experimental researchers as those who build

genetic circuits and theoretical modellers as those who wish to

predict novel experiments with ordinary differential equation

(ODE) models that fit the available data. In this instance, it is

desired that experimental laboratory researchers understand the

value of using (predictive) mathematical models for experimental

design and planning, whereas theoretical modellers need to

understand experimental constraints that limit the scope of

model development (equations or data fitting) and the

refinement of any further predictions.

To cater to this educational need, pan-European educational

consortia (Cvijovic, et al., 2016) and national programmes (like

those promoted by the Dutch Research Council, NWO, in the

Netherlands and by the Biotechnology and Biological Sciences

Research Council, BBSRC, and the Engineering and Physical

Sciences Research Council, EPSRC, in the UK, see https://www.

nwo.nl/en/projects/022004006-0 and https://gow.epsrc.ukri.org/

NGBOViewGrant.aspx?GrantRef=EP/L016494/1) have

supported the creation of training centers for early career

researchers, where students can follow courses covering

fundamental topics in experimental and theoretical spheres of

Systems and Synthetic Biology. At the academic level, educators

have also described how problem-based learning and flipped

classrooms can be used effectively to simulate computational

biology research assuming that experimental data has already

been obtained (Robeva and Laubenbacher, 2009; Eager, Peirce

and Barlow, 2014; Sauter et al., 2022).

In this paper, and as an illustration of this integrative mindset

for biology education, we discuss the development of a problem-

based course aiming to train students in synthetic biology

research that brings together predictive models and

experimental methods for the design of, building of, testing

of, and learning from biological circuits. To the best of our

knowledge, this has not been discussed elsewhere in the

literature.

2 Course structure

2.1 Course requirements

The first question that arises when designing an academic

course on Systems and Synthetic Biology should be what makes

the course different from those of other related fields like

genetics, molecular biology, genomics, or microbiology. The

leading theme of synthetic biology is the application of

engineering principles in biology such as the standardization

of parts, hierarchically combining modules into more complex

systems, and the separation of system design from system

construction (Endy, 2005). Following the engineering analogy,

mathematical models bring together multiple sources of

biological information to design and predict quantitatively the

desired outcomes of the engineered biological systems

(Chandran et al., 2008; Zheng and Sriram, 2010). However,

the complexity and stochasticity of (at times understudied)

living systems ensures that engineering of biology is a huge

challenge requiring genetics, systems biology, chemistry,

mathematics, and (bio)informatics (Farny, 2018; Honegger

and de Bivort, 2018).

To guide system development, and building upon concepts

from more traditional engineering disciplines, many synthetic

biologists have adopted the DBTL (Design-Build-Test-Learn)

framework (for examples see Miskovic et al., 2017; Carbonell

et al., 2018). The researcher designs a series of constructs, builds

them in the lab, tests their outcomes against model predictions

and learns from the synthetic systems to redesign new and

improved constructs, starting the cycle again. This cycle can

be used both for top-down or bottom-up research. In the former,

biological principles are uncovered by reducing large datasets or

gaining insights using large systems level (e.g., whole cell) or

statistical models [for example, see Ahn-Horst et al. (2022)]. In

the latter, smaller, more detailed mechanistic models are

iteratively expanded or edited as new data emerges that

challenges or falsifies the underlying model [for a recent
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example of such modelling see Santos-Moreno et al. (2022)]. The

recent review by Aydin et al. (2022) provides a thorough

overview of how far the synthetic biology field has come

following the DBTL cycle, and where current research is

focusing for the future. On top of the purely scientific

content, synthetic biologists also promote ethical values and

considerations (Venter and Cohen, 2004; Farny, 2018). In

particular, open science and education is actively pursued, by

sharing knowledge, genetic parts, data and data analysis scripts or

tools within the science community and with society (for

example, through the iGEM Foundation; www.igem.org). As

such, any synthetic biology course should go beyond scientific

investigations to consider their impact on the world.

Given the multidisciplinarity of Systems and Synthetic

Biology highlighted above, the student intake for any course

will contain students that are stronger in one or two of the

following areas: biology, mathematics, (bio)engineering, or ethics

(Delebecque and Philp, 2015). This heterogeneity of skills and

interests inherently creates the disciplinary boundaries discussed

above which students need to be trained to overcome.

In light of this, the DBTL concept provides a useful

framework for a synthetic biology course and is well suited

for teacher-student collaborative projects with an active,

project-based learning focus (Kuldell, 2007). By performing a

complete DBTL cycle to solve a given problem, the students can

reach the higher cognitive levels in synthetic biology, learn the

skills necessary to use the different disciplines that are integrated

in the field, and reach the “apply” level according to Bloom’s

taxonomy (Bloom, 1956). The DBTL cycle also ensures a

diversity of learning activities, which helps students with

different learning styles, including: designing DNA devices

and circuits, predicting the outcome of genetic circuits with

models, analyzing papers in search of a solution to the

problem or considering ethical issues. Some students will

reach many of the learning goals whilst computationally

designing their experiments and biological systems, others will

reach them by experimenting in the laboratory.

In fact, there is, in our opinion, a high similarity between

the DBTL cycle for engineering and Kolbs’ Learning Cycle for

learning through experience (Figure 1; Kolbs, 1984).

Following a DBTL cycle in a synthetic biology course

ensures activities for the completion of Kolb’s learning

cycle. During the Design phase activities, students

abstractly conceptualize the biological problem based on

their previous knowledge and assumptions. This is in the

form of mathematical formulas, genetic designs and

experiment proposals. The students proceed into active

experimentation activities (both wet and dry) during the

Build and Test phases, in which they perform or simulate

their designed experiments and acquire new experimental

data. Analyzing their newly acquired data and any

observations during the active experimentation constitutes

new concrete experiences for the learners. Finally, with this

concrete experience completed, students make reflective

observations as to how their previous knowledge and

assumptions during the Learn phase have been confirmed

or challenged. That might lead to a new Design and abstract

conceptualization phases, hence starting both cycles again.

FIGURE 1
Comparison of DBTL and Kolbs’ Learning Cycle. Kolb’s learning cycle (Kolbs, 1984) can be superimposed on the DBTL cycle to show how
students complete both processes in tandem. In this schematic, the design phase of the DBTL cycle is linked with abstract conceptualisation of the
biological problem and hypothesis generation, active experimentation and concrete experiences are obtained during the build and test phases
where data is acquired and analysed, whilst learning from newdata requires reflective observations andwhether the datamatches the predicted
expectations.
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In this paper, we will discuss how we have re-designed an

introductory course in Systems and Synthetic Biology following

the DBTL cycle. The course was first offered in 2012 and has

evolved towards this DBTL structure alongside changes in

available technologies in the synthetic biology field. After

providing an overview of the course, we will highlight the

positive satisfaction observed by students in the re-designed

course.

2.2 Course overview

By modularizing the weeks to discuss modelling software

and methods, and experimental techniques with laboratory

practice, educators can rotate the course to start at other parts

of the DBTL cycle (see Figure 2). Following the first 5 weeks of

teaching fundamental topics, students are then able to

complete the DBTL cycle themselves in collaborative

project work revolving around a published CRISPR

(clustered regularly interspaced short palindromic repeats)

interference toggle switch (Santos Moreno et al., 2020). After

introducing the course and discussing its content, we will

highlight the feedback received from students in course

evaluations, how students can progress to move advanced

topics, and discuss how the course has contributed to ongoing

research efforts, providing a neat link between education and

research. The course took place over 8 weeks from the end of

August to October 2021 (the first teaching period in the

academic year of Wageningen University) and was aimed at

final year B.Sc., or early M.Sc., students. The course afforded

the students six European Credit Transfer and Accumulation

System (ECTS) credits towards their respective education

programmes. We hope our illustration of a multi-

disciplinary course provides inspiration to other teachers,

lecturers, and researchers in the community.

The learning outcomes for the course are:

• To recognize the basic theoretical and applied concepts of

Systems and Synthetic Biology,

• To assess a biological system in terms of mathematical

models,

• To implement in Python a (dynamic) model describing a

biological system,

• To perform an iterative computational-laboratory (dry-

wet) experiment based on a given genetic circuit,

• To employ standardized DNA assembly methods of

synthetic biology to construct a genetic circuit,

• To discuss systems and synthetic biology experiments

found in the literature,

• To understand the impact of synthetic biology in the near

future, including its wider societal implications.

These learning goals address different cognitive levels. If we

follow Bloom’s taxonomy (Bloom, 1956), this introductory

FIGURE 2
Course overview and relation to DBTL cycle. Whilst we do not explicitly follow the DBTL cycle in chronological order, we divide our teaching
weeks into the four categories. After an introduction week, the DBTL cycle begins to show students how modelling and experimental synthetic
biology can be combined. Later weeks then require students to write a report critically reflecting on their research, before a final exam tests the
students on the knowledge they have obtained.
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course covers the first three goals of six: “to remember,” “to

understand,” and “to apply” throughout. Through the second

learning goal and the project work undertaken in the course (see

below), we also touch on the fourth level: “to analyze.” However,

we anticipate that only the best students will successfully achieve

this fourth level within the course.

In the first 5 weeks, students are taught how to construct

and analyze mathematical models, build synthetic systems

experimentally, and understand societal impact issues related

to synthetic biology. Each week is divided into lectures and

practical classes or tutorials to allow students to practise the

theory they have learnt. The focus of our DBTL

cycle—towards which the entire course is directed—will be

on constructing a previously published CRISPR interference

toggle switch (Santos-Moreno et al., 2020). On the

accompanying GitLab page we share the course calendar,

material and protocols. This circuit covers many topics of

interest to budding synthetic biologists: genetic engineering

with CRISPR, constructing inducible genetic circuits,

(modelling) non-linear system dynamics and behaviours,

and the potential to control downstream cellular processes

(e.g., kill-switches). However, our course structure could be

easily implemented and redesigned for the purpose of

constructing other synthetic circuits. For example,

optogenetic (light controlled) transcriptional circuits have

been constructed using transcription activator-like effector

nucleases (TALENs) that, depending on the application, may

be a better choice than CRISPR systems (Konermann et al.,

2013; Jusiak et al., 2016; Bhardwaj and Nain, 2021).

In weeks six and seven, the students must write a report on

their research throughout the course and explain differences

observed between their modelling efforts and laboratory data,

and discussing how the toggle switch could be utilised for future

synthetic biology applications. The elected programming

language for our course is Python, but other teachers may

wish to adopt other languages like R, MATLAB, Octave,

COPASI, or Julia.

In week eight, which at Wageningen University is the so-

called exam-week, students then need to take a short written

exam on the material covered in the course (usually closed-book

exam consisting of open questions).

To highlight the topics covered in each part of the cycle, we

will now provide a brief overview of the course content.

2.2.1 Week one: An introduction to systems and
synthetic biology

In this first week, the course overview is presented and the

key concepts of Systems and Synthetic Biology are defined and

introduced to the students. A key element of the teaching is to

convey the message that any biological system is made up of the

(dynamic) interactions among its components (genes, proteins,

metabolites, cells, microbes, organisms) and that Systems Biology

deals essentially with understanding and quantifying these

components and their interaction. If required, it is at this

moment that the biological background required for the

course can also be introduced. For example, the central

dogma of biology can be presented whereby DNA is

transcribed to RNA, that is further translated to protein.

Importantly, the effect of CRISPR interference on blocking

transcription, and that protein production will influence

cellular metabolism and growth rates which in turn feeds back

on to reaction rates in the system, can be introduced. With this

knowledge to hand, we hope that even non-biologists will have

the conceptual overview of the system details and genetic

engineering the course will be focusing on.

To relate genetic engineering to synthetic biology,

particular attention is given to the presentation of the

DBTL cycle as this provides a useful conceptual overview

of the course. As a motivating illustration (for the use) of the

DBTL cycle, we provide lectures and computer practicals on

genome-scale, constraint-based modelling of metabolism (of

which the most common approach is flux balance analysis;

Orth et al., 2010). We believe this to be beneficial for students

in three ways. First, modelling metabolism at steady-state

reduces the mathematical complexity of the system to a set

of algebraic equations that students should be able to

recognise from earlier mathematics education. Second, by

using genome-scale, constraint-based modelling students

learn how to compare models with data, e.g., simulated and

experimental growth rates for well-studied bacteria, and using

simulation methods to predict how to re-engineer a cell’s

metabolism towards a desired goal or which pathways are

important for metabolic function (as an example of the top-

down Systems Biology approach). Finally, synthetic circuits

are constructed within a growing cellular environment that is

regulated by metabolism. By understanding how a cell can

grow, we can later introduce to students how dilution due to

cell growth impacts the function of genetic circuits (e.g., see

Qian et al., 2017). These ideas will be required for the analysis

and the understanding of more complex, non-linear, and

time-dependent systems which will be presented in weeks

two and three.

The computer practical introduces students to the Python

computer programming language (and Jupyter notebooks) used in

the course, and how to install packages such as COBRApy that are

used in their project to help analyse their experimental methods.

See the Jupyter notebooks Week1_Pr2_Thursday.ipynb and

Week1_selfStudy_Friday.ipynb in the GitLab repository for

example COBRApy tutorials that are based on those provided

by the package developers (Ebrahim et al., 2013). We will discuss

later how constraint-based modelling methods are discussed

further in advanced courses but it is important to note here

that the tutorial could also be provided in MATLAB using the

COBRA toolbox if that is the teacher’s preference.
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2.2.2 Week two: Designing a synthetic circuit
and constructing an ODE model (Design)

With the mathematical concepts and tools provided in Week

one, the course can nowmove on to (mathematically) designing a

synthetic circuit. For this purpose, we have utilised the iBioSim

platform (Watanabe et al., 2018). This package is a good example

of ongoing developments in the synthetic biology field to create

computer-aided design (CAD) tools for experimental

practitioners and possesses a number of key features that we

look to take advantage of, and can be used alongside design tools

such as CELLO (Fontanarrosa et al., 2020).

1. In iBioSim, genetic circuits can be designed in a modular way

using the notation for parts (promoters, ribosome binding

sites, operons, stop codons, etc.) that Life Science students are

taught in earlier courses.

2. iBioSim is connected to an online wikidata-style FAIR

(findable, accessible, interoperable, reusable) database,

SynBioHub, where information for relevant genetic parts

are stored (McLaughlin et al., 2018). These databases

contain descriptions of the part’s function, its DNA

sequence, and some related reaction rates. This means that

when parts are put together in iBioSim, the researcher can

output a novel genetic sequence that can be engineered on

plasmids and used experimentally.

3. iBioSim automatically constructs mathematical models of the

designed system using the law of mass action and

implementing time-scale separation arguments such as Hill

functions to describe transcriptional regulation. These can

then be simulated using ODE and stochastic model solvers to

visualise model predictions. Finally, all designs are saved in

systems biology-oriented markup languages (SBML and

SBOL) that can be used with other software.

Using iBioSim software, we show students how they can

design simple systems/modules (e.g., transcriptional regulation

of a fluorescent reporter) that they can build further into their

genetic toggle switch. We can then teach students further about

the modelling process from the obtained mathematical

equations. As with the use of COBRA tools in Python or

MATLAB, iBioSim will likely develop further in the future, or

other preferred CAD tools may be available for the course

provider to take advantage of.

2.2.3 Week three: Simulating and fitting models
to data (Learn)

In this last week dedicated to modelling, students learn how

the designed ODEs obtained from iBioSim can be implemented

into Python Jupyter notebooks. The purpose for this is to show

students how models can be coded and fit to data in a hands-on

manner (as this is very similar across multiple languages: Python,

MATLAB, Octave, COPASI, Julia, and R). iBioSim and other

similar software tools also include the potential to learn model

structures and reaction rates from data (i.e., data fitting), but we

do not utilise this functionality here. These skills are then

advanced in further courses and thesis research (discussed

below).

The week starts with a discussion of the use of Hill functions

and how they arise, mathematically, through simplifying

assumptions of the biological system. The resulting ODE

models can then be coded into a Jupyter notebook and

compared. If required, students can be provided with

equations to account for cell population expansion and

dilution rates—as obtained by flux balance analysis—that are

required to explain the data correctly (the theory behind these

equations can be described in advanced courses). Next, we

discuss how model simulations can be compared to data using

scoring functions. These scoring functions are then applied to

find the most likely reaction rates (from, e.g., a Latin hypercube

sample) underpinning our data. An important aspect to consider

here are the bounds of feasible values that reaction rates can take.

The synthetic biology community has already developed online

calculator tools that can link genetic sequences with Gibbs free

energy values and reaction rates (e.g., the RBS calculator for

translation rates; Cetnar and Salis, 2021). Students can be taught

about these tools, the underlying models that allow reaction rates

to be calculated, and their use in designing systems—either for

parameter fitting or initial simulations. Then, based on the

comparisons between the simulations and data, we discuss

how students can draw conclusions from their model: whether

the model is an accurate representation of reality, how to design

new experiments, and make model-based predictions. If time

allows, or in further courses, students can be shown how to

analyse their models using simulated sensitivity analysis, or

taught further mathematical analysis to observe system

behaviour across a viable range of reaction rate values, such as

simulating bifurcation diagrams for toggle switches. These steps

are then practically implemented in their Python scripts and can

be reused and applied when they have performed experiments for

their project report.

2.2.4 Week four: Experimentally building
synthetic circuits (Build)

Week four is the start of the wet-lab activities in the build

phase. Students learn about the main assembly methods used in

synthetic biology, such as restriction/ligation-based, Gibson,

Golden Gate and in vivo assembly methods; and genome

editing tools including homologous recombination,

recombineering, and CRISPR. Focus is given to the pros and

cons of each technology and how their characteristics fulfil the

engineering pillars of synthetic biology: standardisation,

modularization, and abstraction (Endy, 2005). We found that

providing students with schemes and self-study material for the

different methods means that the lecture time is used for the

discussion of these topics. The self-study material we use includes

YouTube videos (Dy et al., 2019) and the use of computer
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software to simulate and visualise system assembly. Use of tools,

such as Benchling (benchling.com), allows the students to

visualise how the assembly occurs base-by-base in the real

experiment. Although multiple software packages are available

to simulate DNA assemblies, we chose Benchling because it is

free, easy-to-use and facilitates the sharing of projects, folders

and DNA sequences. The repository sequences for the toggle

switch nodes and final vector can be found in the accompanying

GitLab repository, exported from Benchling as Genbank files.

In our course, we decided to continue with the Golden Gate

assembly method for practical teaching due to its wide use in

synthetic biology, its straightforward protocol, and its high

success rate. The students are provided with pSB1C3 plasmids

each already containing one cloned toggle switch node from the

published toggle switch system (pJ 2016.2_TS; Santos-Moreno

et al., 2020). The pSB1C3 plasmid was chosen as it is the main

repository vector used by, e.g., the iGEM Foundation for

synthetic biology applications (http://parts.igem.org/Part:

pSB1C3). From here, using the SEVA3.1 standard

oligonucleotides (Damalas et al., 2020), students can rebuild

the toggle switch in any SEVAb or converged plasmid using

Golden Gate. Alternative plasmid systems could be used by other

course providers (such as BioBrick/3A assembly, Rokke et al.,

2014) depending on the teacher’s preference.

The comparison of the toggle switch performance in different

standardised vectors may also make an interesting study project

for students at the end of the course. After the students have

performed the Golden Gate ligation and obtained successful

colonies, the students perform PCR and gel electrophoresis to

check the presence of their construct in cells. Students with a

biological background are likely to have encountered these

methods in other molecular courses and can aid the

computational students. To circumvent problems with nucleic

acid purification (Campbell et al., 2014), we recommend the use

of commercial kits during these steps of the construction process.

Although in our courses, students have a highly dispersed

amount and qualities of the extracted DNA, this has not

hindered the building of the final plasmid by the golden gate

assembly, which in turn demonstrates the robustness of this

assembly method. Detailed protocols can be found on the

accompanying GitLab repository in week4_protocol.docx.

2.2.5 Week five: Characterising circuits (Test)
and societal impacts of synthetic biology

In week five, students perform laboratory practicals

corresponding to the test phase of the DBTL cycle. Our aim

here is to show the students that the toggle switch can be changed

from one state to another depending on the inputs used. Hence,

they grow their selected positive clones for E. coli strains in LB

media overnight containing the inducers required to trigger the

toggle switch (in our case acyl homoserine lactone, AHL, turns

the system ON and arabinose turns the system OFF). After

washing and dilution (such that the optical density, OD, is

0.1), the cells are then added to fresh minimal media with the

second inducer present to either switch the system OFF or ON,

respectively (see the supplied protocols). Different

concentrations of each inducer may be tested: in doing this,

more data is available for later optimisation of the mathematical

model and to provide validation datasets if students wish to use

their model to make predictions. The students then distribute

their samples across well plates suitable for fluorescence

measurement. The plates are then placed in a plate reader

programmed to measure the OD and fluorescence produced

by green fluorescent protein (GFP). Once the results are

obtained, they are distributed to the students for analysis.

These datasets could be used in the final project that students

work on in later weeks.

Furthermore in week five, students follow two lectures on the

broader impacts of synthetic biology, including considering

safety-by-design across the development process and

responsible research and innovation. The students are

presented with, and critically discuss unforeseen consequences

of the novel synthetic biology technology. These range from the

potential economic and environmental impacts as synthetic

biology enables a shift from petrochemical to biobased

economies, to far-reaching effects on, e.g., job displacements

elsewhere in the world, ownership of (modified) biological

resources, public perception of synthetic biology, co-creation

and stakeholder engagement.

Finally, the students are given an exercise to read and

present a scientific article on synthetic biology. Each student

presents one article and is the first questioner to the

presentation of another, as a way to ensure a structured

debate and full participation of all students. This activity

allows the students to find similarities with their conducted

project, and see how the different parts of synthetic biology are

combined in academic research. On the accompanying GitLab

repository you can find instructions we provide to students. As

an example, we have used the work of Carbonell et al. (2018) to

highlight an example of the use of DBTL cycles within synthetic

biology that students can discuss.

2.2.6 Modular structure of DBTL course
We remark that in our course organisation we do not strictly

follow the DBTL cycle within the calendar overview of the course,

but other educational practitioners could consider such a course

redesign: we highlight in Figure 2 how that could be achieved.

The key change would consist of moving discussion related to

comparing mathematical and statistical models (simulations)

with experimental data (the learn phase) from week three in

our current design to week five. In this construction, a model of

the toggle switch would be designed, the students can then enter

the lab to build and test the system, before they return to their

mathematical model to see what they learn about the system.

Such choices, though, are often constrained by the availability of

educational laboratories scheduled by the academic institution.
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Other teaching teams may also consider gamifying the course

structure (Dicheva et al., 2015). In this scenario, the design stage

could become personalised or cooperative amongst team

members (with a team constituting a subset of the class).

Individuals or teams could then compete throughout the

course to earn experience badges or complete the DBTL

trajectory. The winners would be those that complete the

DBTL cycle and are able to explain (dis)agreements between

their model and experimental data (the start of a new DBTL

cycle). As found in other technical subjects, such a course

structure can help enthuse students about the topic under

study (Iosup and Epema, 2014).

2.3 The research project

After being taught the fundamental methods and tools of

Systems and Synthetic Biology during the first 5 weeks of the

course, the students have learned how to design, construct and

test a mathematical model of a genetic circuit. In weeks six and

seven of our course, the students now need to put these skills

together and apply them to model and test the CRISPR

interference toggle switch (Santos-Moreno et al., 2020)

experimentally constructed during the course. The two-weeks

project consists of the following key steps:

1. Design of a mathematical model of the toggle switch that has

been built experimentally during practicals in weeks four

and five.

2. Estimation of reaction rates using online resources for, e.g.,

transcription, translation and degradation rates, and

COBRApy for dilution rates if the cell population size is

not controlled for in the experimental design. Note that we

discuss dilution models in advanced courses, so the required

equations are provided to students here.

3. Write a Python script to find optimal reaction rates for their

model in relation to their data. If the experiments with the

toggle switch have been successful then students can use their

own data. If for some reason the experiment fails, the students

will be provided data to work with from experiments

performed by teachers.

4. Analyse the results of their mathematical model in relation to

experimental data. To understand (possible) discrepancies

between model results and experiment, students can reflect

on: Hypothetical missing mechanisms that could be added to

the model to improve the fit to data, predicting new

experiments or matching their model to validation datasets,

performing parameter sensitivity analysis relative to their

data, or obtaining bifurcation plots to understand in which

parameter regime the toggle switch functions as desired.

5. Discussion/suggestion of possible uses for the toggle switch to

control biological systems (e.g., metabolism) or of new system

designs to construct amore robust toggle switch system.A possible

extension to this discussion is to consider ethical and/or biosafety

aspects of such synthetic constructs in natural systems.

The results of the research need to be written as a short

report. By developing a model to analyse their experimental

results, the students will take into account all aspects of the DBTL

cycle, mimicking higher-level scientific research. The results and

the hypotheses developed by the students could, potentially, go

on to inform future research efforts within the coordinating

group - either by altering experimental protocols, or utilising

well-designed tools for applications. The link to (thesis) research

projects will be discussed below.

3 Examination and evaluation

3.1 Student examination

In the 2021/22 academic year at Wageningen University,

10 students (five B Sc., and five M.Sc.,) from Biotechnology (five

students) and Biology (three students, the remaining two

students were external students from other institutions)

curricula followed the course Systems and Synthetic Biology

that we have presented and discussed here. One of the BSc

students dropped out of the course before the graded project and

the short, written exam; the remaining nine students obtained

grades between 7 and 8.5 out of 10 (average grade = 7.72 with

standard deviation = 0.62; note that in the Dutch education

system a rounded score of lower than six is a fail). Given the high

average grade and small standard deviation, one could suggest

that all the students in the course were able to recall and

implement the key methodologies taught in the course.

However, given that no students were able to score the

highest grades (or, even, fail), future considerations for course

design includes trying to ensure that students can reach high (or

low) grades; one possibility could be to allow for more creativity

within the project, e.g., by incorporating discussions of

technology ethics and impact or model-driven experimental

design. By allowing the high-achieving students to “spread

their wings,” students will be able to obtain a wider range of

grades within the course.

3.2 Course evaluation

Following the course (but before they had received their

grades), the students were asked to complete a survey providing

us with their thoughts about the course over three categories:

course quality, student effort, and examination quality (Figure 3).

These are ranked on a scale of 1–5, with one representing strong

disagreement with a statement related to course quality, too low

effort required to pass the course, or too easy an exam, and five

representing strong agreement with, too high, and too hard,
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respectively. Based on the results of the survey, the students rated

their course satisfaction very highly (average score = 4.4 out of 5,

with standard deviation = 0.9) with all the students acquiring new

knowledge (average score = 4.7, standard deviation = 0.5). The

difficulty level of the course was given 3.3 out of 5 (standard

deviation = 0.7), suggesting that students did not find the course

too difficult or too easy, and this was also reflected in the

difficulty of the exam that scored three out of 5 (standard

deviation = 0). As with the course satisfaction, the quality of

the examination was rated 4.6 out of 5 (standard deviation = 0.5).

In summary, from the 2021/22 class, all the students 1) learnt

new concepts and ideas from Systems and Synthetic Biology that

are not present in other parts of their curricula, 2) passed the

course with average to above average grades, and 3) ranked the

course highly in satisfaction surveys. Such positive results are

encouraging for the future development of multidisciplinary

educational courses at the B.Sc., and M.Sc., level.

4 Transitioning to advanced courses

The course we have presented here is an introductory gate-

way course for students into the Systems and Synthetic Biology

fields. In the 8 weeks, students will have been exposed to

concepts related to data infrastructure and computer-aided

design, modelling methods from Systems Biology, and

experimental synthetic biology. Each of these topics requires

its own in-depth course to deepen and expand the knowledge

gained during the course presented here. Here we will discuss

the content of hypothesised/desired courses in a Systems and

Synthetic Biology curriculum (Figure 4; also see Cvijovic, et al.,

2016).

4.1 Multi-disciplinary synthetic biology

In the course outlined above, we have focused on the construction

of a CRISPRi genetic circuit. Consequently, students have learnt

fundamental experimental techniques such as plasmid design, Golden

Gate assembly, agarose gel electrophoresis and polymerase chain

reaction (PCR) purification, as well asmeasuring optical density (OD)

using plate readers and circuit function from fluorescent protein

readouts and plate readers. An envisioned advanced course should

look to refresh and use these skills to tackle cutting-edge research

questions (Aydin et al., 2022). This could be to construct circuitry to

ensure condition-dependent survival of bacteria (Preston et al., 2016),

to switch bacterialmetabolism from growth-promoting to compound

production phases (Izard et al., 2015), to compare circuit function and

robustness across different organisms (see, e.g., Chatelle et al., 2018),

or to generate synthetic microbial communities (Shahab et al., 2020).

Alongside the experimental implementation of these extended

examples which highlight the uses of synthetic biology, new

modelling approaches to aid system optimisation are required.

Within an advanced course, students can learn how to create or

FIGURE 3
Summary statistics of course survey. (A) Students evaluated the course satisfaction level by rating each statement from one (low) to five (high)
scores. Error bars represent standard deviation. (B) Students provided opinions on the course and exam by providing a rank (from “too low/easy” to
“too high/hard”) for a set of statements. As some students did not sit the exam, n is less for this statement than others. The full survey and statements
can be found in the GitLab repository.
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use larger models of metabolic systems in extended ODE systems

(Millard et al., 2017; Ahn-Horst et al., 2022), and take into account

metabolic-controlled dilution effects in growing cell populations (de

Jong et al., 2017). Advanced topics could then consider metabolic

burden imposed on cells by synthetic circuits (Nikolados et al.,

2019), resource competition of parts within a synthetic circuit (Qian

et al., 2017), or modelling open- and closed-loop control systems

(Milias-Argeitis et al., 2016). This would push students towards the

current edge of synthetic biology research where increasingly

automated experimental and modelling approaches are being

combined to increase the speed and reproducibility of DBTL

cycles (Carbonell et al., 2018).

4.2 Mathematical modelling and analysis

Based on the output of iBioSim, we teach the students in our

course how to implement an ODEmodel in Python and simulate the

system.However,mathematical analysis andmodel development goes

much further than this in the Systems Biology field. Further courses

on mathematical modelling should look to include topics such as:

model building and understanding how to pick functions and terms

within equations, fitting the model to desired quantitative or

qualitative behaviours, how to reduce model complexity to allow

for analysis (e.g., phase portraits, bifurcation diagrams, identifiability),

and adapting the model to incorporate spatial or stochastic effects.

These topics can be taught using analytical (hand-written) or

numerical (computational) tools in multiple languages (Python,

MATLAB, R, Octave, COPASI, or Julia). Through combining

these methods, students will learn general skills that are applicable

regardless of the future research problem or environment they face.

Importantly though, we have found that students are

enthused to learn about modelling problems through

research-driven approaches. In these instances, students are

provided with an “open” research problem and can apply

skills to understand how a biological system works (relative to

available data) and to design new experiments that could be

performed by a hypothetical laboratory scientist. As many

different aspects of modelling need to be dealt with in order

to reach this objective, modelling skills could be split over

multiple follow-on courses. By focusing on producing

research-style outputs, students see the benefit of Systems

Biology approaches for both natural and synthetic systems.

4.3 FAIR infrastructure for data and
models

One aspect that is touched on in our introductory course is

the FAIR online storage of (biological) data and models. The

FIGURE 4
An overview of an idealised systems and synthetic biology course curriculum. Starting with the introductory course we have discussed in the
main text, students could follow a range of further courses at an intermediate and then advanced level. Through one channel, students can learn
more advanced systems biology topics and modelling methods; through a second channel, students could extend their laboratory experience
towards automated closed-loop control systems; and in a third channel, students could deepen their knowledge further on open data and open
science. Ultimately, the final goal should be for students to use the gained knowledge and skills within thesis research of the iGEM competition.
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tools we discuss within the course make use of computer-

readable XML/SBML languages to improve the sharing and

interoperability of data and models. In the first instance,

iBioSim makes use of and can query the SynBioHub

repository to obtain information related to the DNA parts and

synthetic constructs used in a system design (e.g., DNA

sequences, system function, and related measurements or

publications). In the second instance, the final model design

from iBioSim can be exported into SBML format such that

models can then be simulated in other platforms (e.g., using

the Tellurium package for Python; Medley et al., 2018). To

modify a model, iBioSim can also make use of pre-existing

SBML models found in the BioModels database (Watanabe

et al., 2018; Malik-Sheriff et al., 2020).

Given the increasing importance of data and model

reusability, one suggested follow-up course would be to go

more in-depth with such wiki databases: their development,

their usage, and how they can be queried by users. By using

examples from the Systems and Synthetic Biology field, the

envisioned course can highlight theoretical and practical skills

in tandem, students will be enthused by ongoing developments in

this research area. This is crucial in three respects as 1) future

researchers need to understand the requirements for making

their data FAIR, 2) they will be able to make use of already

existing FAIR databases to automate and speed up their research

or model development, and 3) the open research ethos of the

Systems and Synthetic Biology fields will be encouraged from the

earliest possibility in a research career.

4.4 Future research and the iGEM
competition

The ultimate aim of any Synthetic Biology curriculum is to

attract students to the field for future research-based careers,

either in academia or in the private and public sectors. In this

sense, providing students with multi-disciplinary skills from the

outset and throughout the curriculum is imperative as cellular

biology aims to replicate engineering disciplines in the future. To

simulate and teach students about research careers, many

university programmes include a thesis component that takes

place towards the end of a student’s study. The thesis projects

allow the students to bring together all they have learnt to

develop their skills to understand a novel research problem.

The courses outlined above should provide the training required

for students to undertake, almost independently, thesis research

and collaborate with other researchers to uncover novel

biological insights. Notably, students may wish to continue

their research into synthetic toggle switches for further

modelling analysis, experimental applications, or as a sub-

module within a larger system.

Within the Synthetic Biology field, though, the iGEM

(international genetically engineered machine, see www.igem.

org) competition provides student teams with a unique

opportunity to design their own research project. As part of

this, the teams need to consider philosophical, ethical, and

societal concerns related to synthetic biology research, going

beyond the practical execution of projects.We have discussed our

views of iGEM as an educational tool elsewhere (Garcia-Morales

et al., 2022), and the ability to incorporate iGEM within

educational curricula. Importantly, the iGEM competition is a

key driver of synthetic biology research both in academia and

industry (Kelwick et al., 2015). As such, adding iGEM to the final

stages of a synthetic biology curriculum adds a novel extra

dimension that is not seen in many other educational

programmes, generating strong researchers for the future.

5 Concluding remarks

In this paper we have discussed the organisation of an

introductory synthetic biology course. The course is aimed at

final year B.Sc., and earlyM.Sc., students as a means of expanding

on concepts that students have been exposed to earlier in their

education. By combining experimental and theoretical

approaches, students are introduced to multi-disciplinary

concepts for, potentially, the first time. To design the course

we use a research-driven approach, focusing on methodologies at

the forefront of the Systems and Synthetic Biology fields. In

addition, we include how synthetic biology technologies have a

wider impact on society. We believe this applied approach to

education 1) increases student satisfaction as they are able to

visualise how research will be conducted in their future lives, and

2) develops more general cognitive problem-solving skills that

can be translated to other fields. This does, of course, imply that

some topics or concepts cannot be covered in detail or are not

included in the course—for example, theoretical assumptions

underlying statistical tools often used for data analysis, technical

implementation of numerical methods, or the biochemistry of

fluorescent reporters and CRISPR systems often used in synthetic

biology research. Our hope is that this knowledge is developed

elsewhere in a curriculum or that strong students are able to

research such details independently given the cognitive skills

developed during this course. Ultimately, we believe our modular

course design is flexible enough to be translated to other

institutions interested in alternative synthetic biology research

problems, providing the next generation of synthetic biologists

with the skills to push the field beyond its current frontiers.

6 Related course materials

Experimental protocols, Jupyter notebooks, detailed course

schedule, and other material is available in the course GitLab

repository https://gitlab.com/wurssb/systemsand-synthetic-

biology.
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