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Model-driven design has shown great promise for shortening the development

time of cell factories by complementing and guiding metabolic engineering

efforts. Still, implementation of the prized cycle of model predictions followed

by experimental validation remains elusive. The development of modelling

frameworks that can lead to actionable knowledge and subsequent

integration of experimental efforts requires a conscious effort. In this review,

we will explore some of the pitfalls that might derail this process and the critical

role of achieving alignment between the selected modelling framework, the

available data, and the ultimate purpose of the research. Using recent examples

of studies successfully usingmodelling or othermethods of data integration, we

will then review the various types of data that can support different modelling

formalisms, and in which scenarios these different models are at their most

useful.
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1 Introduction

“All models are wrong”. This famous quote by George Box (Box, 1976) is often

mentioned in discussions about mathematical models or their predictions, often followed

by the qualifier “but some are useful”. This, naturally, turns this sentiment into practical

advice: just find the model that is useful and off one goes. However, it is important to

consider that on its own, a mathematical model is never wrong; it just fails to represent the

intended phenomenon. You were wrong when building the model. Amathematical model

is a way to formalize expert knowledge into an objective decision-making framework.

“Errors” in a model, or the differences between predictions and experiments, thus expose

incorrect assumptions, knowledge gaps or inconsistencies in the data, or as summarized

by another famous idiom: “Garbage in, garbage out”.

In metabolic engineering, model-driven experiments have been long thought of as the

future and many studies have shown that models can be useful tools to predict or validate

biological mechanisms. For instance, Satanowski et al. (2020) use a constraint-based,

genome-scale model of Escherichia coli to find possible carbon-fixating cycles that
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consume CO2 as a sole carbon source to produce pyruvate. A

complementary model based on thermodynamic considerations

was then used to assess the feasibility of successfully

implementing these cycles, after which they show

experimentally that CO2 fixation is feasible using one of these

pathways. This study shows two important ways a metabolic

model can be utilized, first by offering potential designs and next

by evaluating these potential strategies. The model by Klipp et al.

(2005) about the response of Saccharomyces cerevisiae to osmotic

shock is a strong example of a model integrating different

biological processes: metabolic, regulatory, and homeostatic.

Integrating these parts into a single model allowed for the

prediction of independent experiments, and led to an

increased understanding of the system as a whole.

Still, expert knowledge is often preferred to guide

experimental designs and most metabolic engineering studies

published right now do not make use of a model. For example, a

survey of recent metabolic engineering studies (Q4 2020) in the

journals Metabolic Engineering and Microbial Cell Factories,

show that only 32% (n = 54) and 17% (n = 21), respectively,

make use of a metabolic model in their study.

Reasons for this could relate to the difficulties in constructing

a quality model or the amount of data required. Alternatively,

models often predict the obvious or the predictions of a model

are not actionable and thus do not translate well to engineering

strategies. Finally, the quality of the tools or a lack of training

could be additional reasons for the lack of use of predictive

models in metabolic engineering studies. Cvijovic et al. (2016)

discusses possible strategies to address the last possibility, in

particular on how to foster awareness of both experimental and

modelling techniques and how they fit into a systems biology

curriculum.

In this review, we will discuss how to avoid these pitfalls, how

to design experiments with models in mind, and how to find the

model that is not just wrong but also useful. In the first section,

(Box 1) we will introduce some commonly used modelling terms

and we will discuss the aspects that turn a model into something

insightful and actionable. Next, we will give a high-level overview

of the most common and relevant modelling techniques used for

metabolic engineering, what kind of data they require and when

they are the most useful. Finally, we will discuss what we believe

to be the most important part of the model: the data. What kind

of data is both useful and available for metabolic engineering

studies? What are the limitations of different measurement

techniques? And how does all this impact a potential model?

2 What is the right model?

To choose a model that is useful, start by considering the

different aspects influencing the decision to choose for a specific

model (Figure 1). First, figure out the question it needs to answer.

What problems need to be solved? Or, more technically: What is

the objective to be optimized? The more specific the problem can

be formulated, the easier it becomes to solve the problem and to

verify model predictions experimentally.

BOX 1 Modelling terms
Different modelling fields often use their own specific jargon.

Thus, we list here a number of common modelling terms for the
context of this review.

• Model: Amathematical representation of a (biological) system,
describing, for example, flux through ametabolic pathway or a
population of cells growing in a bioreactor.

• Variable: A variable describes something that can be quantified
in the system. In a model describing a metabolic pathway, this
could be the concentration of a metabolite or enzyme. The
complete set of variables describing the model is called the
state. Note that a variable does not necessarily need to
represent something that can be experimentally measured,
but can also represent something abstract. A variable can thus
also be binary, such as the presence or absence of a gene, or
discrete, such as the choice of one of several plasmid
backbones.

• Parameter: A parameter is similar to a variable, but can be
considered fixed during the simulation of the model, such as
an enzyme rate constant or the relative strength of a ribosomal
binding site in a genetic construct.

• Input: A variable in the model that can be changed
experimentally in order to achieve an objective, for
example, the concentration of a medium component, or
which enzyme variant to use in a pathway.

• Output: A variable in the model that represents a property of
interest resulting from the simulation, for example, a variable
that can be measured experimentally and can thus be used to
verify the model.

• Objective function: A function quantifying the goal to
achieve based on the state of the model. For example, the
growth rate of an organism, the concentration of a product at a
certain time, or the yield of a product relative to the
consumption of the substrate. There can also be multiple
objectives, possibly signifying a trade-off within the system.
In constraint-basedmodels specifically, the objective function
is used to represent the biological objective of the organism,
such as growth. A common objective is therefore the biomass
reaction: a reaction that consumes the different metabolites
the organism requires to grow.

• Parametrization: The process of finding the parameter values
best describing the system based on its agreement with
experimental data, also known as fitting or optimization.
During parametrization, the objective is to reproduce the
measured data as closely as possible, thus an objective
function is minimized that quantifies the difference between
variables predicted by the model and experimental
measurements of the same variables.

• Constraint: A limitation on the range of one or more variables
or parameters in the model, often due to practical or
experimental reasons. A set of constraints specifically on the
minimum and maximum value of a variable or parameter
during optimization is often called bounds.

Next, consider what experimental factors, i.e., which

properties of the system that can affect the research outcome,

can be changed. Since these are the inputs the model can tune to
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predict different scenarios, it is essential that the model allows

these factors to be represented. Vice versa, this also makes sure

that the solutions and predictions of the model can be validated

in practice.

Together with the research question and the inputs, consider

the availability of data. What can be measured? Do not only

consider here the different molecules or properties that can be

measured, e.g. proteins, metabolites concentrations, or enzyme

kinetics, but also other factors such as the throughput, the

context in which it is measured (in vivo versus in vitro) or

whether measurements can be done as a time-series, or in

steady-state. Just as it is important to make sure that the

inputs can be modelled by the model, the model should be

able to integrate the data measured.

Finally, which other practical limitations exist? Think about

the data that can or cannot easily be measured, the scale at which

this can be done due to cost or time limitations and whether the

assumptions that certain modelling techniques bring are valid.

For example, how valid is the steady-state assumption that a

constraint-based model would bring, or is it reasonable to assume

that reactions inside the cell take place on a much faster time-

scale then changes in the conditions of the medium, such as

assumed by a dynamic Flux Balance Analysis (dFBA) model.

Often, there is a trade-off to be made here. High-level models are

built on more assumptions but do not require as much data to be

useful. Low-level models make less assumptions about what

happens inside the cell and describe processes in more detail,

but do require more data to be useful.

As different models can offer distinct insights, there is no

need to limit oneself to a single model for the whole study. Similar

to how the objective or research question of a study might shift

when new information becomes available, the most suitable

model for the task might change as well. This might require a

whole new modelling approach, or can be accomplished by

adding new processes to the existing model. Imagine, for

example, a study where potential targets are first identified

using a data-driven approach based on comparative

transcriptomics, after which a subset of these targets are

evaluated and further studied with a constraint-based

metabolic model. The design-build-test-learn (DBTL) cycle is

FIGURE 1
Research objectives, experimental factors, and the data that can bemeasured all have an impact onwhich type of model is themost suitable for
their study. Conversely, the data the model can integrate and the predictions it can make also impact these three components in return. Balancing
the requirements and advantages of each is essential for successfully utilizing a computational model for a study.
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a process that embraces this idea. In this iterative process, a

genetic design is created, built and tested, after which the

experimental data is used to improve a model (learn) to

suggest new designs.

Reusing an existing model from a previous study can also be

the right approach. However, be aware that it can be challenging

to make use of a model if it is not clear exactly what data and

assumptions the model is built on. Especially with kinetic models

this can be problematic. Tiwari et al. (2021) report that around

half of the systems biology models in the BioModels repository

(Malik-Sheriff et al., 2020) were not reproducible. Porubsky et al.

(2020) give an in-depth overview of the best practices to follow in

order to do reproducible and FAIR research and how they apply

to metabolic models. These best practices can also be used to

evaluate the potential of a model for re-use.

2.1 What is the problem to be solved?

The problem to be solved, or the aim of the model is critical.

Formulating a research question well is important in science in

general, but especially essential when using amodel, as the type of

model that is useful critically depends on the question to be

answered. For example, if the objective is to compare the co-

factor usage of different pathways to produce a metabolite, flux

balance analysis on a constraint-based model will easily perform

this task. Ask the same model to predict the effect of metabolic

regulation or feedback inhibition and the model will start to show

its limitations.

In Gaspari et al. (2020) the authors aimed to find a defined

medium for the growth of the fastidious pathogen

Mycoplasma pneumoniae. Their modelling approach, a

constraint-based model, was well suited for this as both

the objective (a high growth rate) and the factors to

change (medium components), were directly represented

in the constraint-based model and could easily be

measured or modified experimentally. Another example of

using a model well suited to the objective is the study by

Krambeck and Betenbaugh (2005), which investigated the

glycosylation of glycoproteins in Chinese hamster ovary

(CHO) cells. Since the glycosylation pathways involve

many similar building blocks that can be assembled in

different orders, enzyme kinetics play a large role in

determining the exact products formed. By using a

dynamic model describing the enzyme kinetics in detail,

the authors were able to predict the effect of expression

changes on the final distribution of glycoproteins and

design strategies to increase the production of their

preferred product. The problem or research question does

not necessarily need to be something concrete, but can also be

abstract. In de Groot et al. (2020) the authors aimed to unite

different theories of why overflow metabolism takes place. By

relating the works analysed back to a shared mathematical

formulation, they showed that these different models share a

common principle, i.e., that overflow metabolism is caused by

two growth-limiting constraints.

In addition to the research question, the problem to be

solved can also be regarded in a broader sense when considering

aspects such as the number of solutions, tolerance for errors or

other factors. In explorative studies, generating many leads for

further research is the goal and missing good candidates might

be a worse outcome than generating a few false-positive results.

A modelling method that covers the entirety of metabolism

such as a genome-scale constraint-based model, could thus be

suitable (Figure 2). Due to its wide scope, different designs can

be created for a single objective, even if some of them might not

turn out to be feasible in practice. In contrast, when the

objective is more constrained or the investment per

experiment is higher it might become more important to

minimize prediction errors rather than having the genome-

scale scope of a constraint-based model. In this case, it would be

preferred to use a method where it is possible to test the

sensitivity of the prediction to different parameters or

assumptions that were made in the design of the model such

as a kinetic model. For example, in the previously mentioned

study by Satanowski et al. (2020) they used both of these

strategies in turn. First they predicted possible carbon

fixation routes using a genome-scale constraint-based model

purely based on reaction stoichiometry. Next, they performed a

more detailed analysis of the predicted reaction

thermodynamics for each potential pathway taking into

account the thermodynamic potentials and possible

concentration range of each intermediate metabolite. This

allowed them to evaluate the potential design based on both

the difficulty of implementing the required number of new

enzymes, as well as the likelihood of the pathway being

thermodynamically feasible.

2.2 What are the factors that can be
modified?

In order to figure out what the model should include and

what type of model could be appropriate, consider the factors

that can be changed experimentally to achieve their research

goal. In metabolic engineering studies, for example, common

factors are which strain or organism to use, or which genes to

knock in or out. Also important are the growth conditions,

such as the temperature, medium, and choice of substrate. To

further optimize a strain, expression levels or the usage of

enzyme variants with different kinetics or regulation become

important targets. For dynamic processes, perturbations

such as adding more substrate or an activating or

inhibiting metabolite can also be a factor for optimization,

as the strength and timing of the perturbation can be

significant.
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To optimize indigoidine production in Pseudomonas putida,

Banerjee et al. (2020) tried to couple production to growth. Here

they chose a method called minimal cut sets on a genome-scale

constraint-based model to identify a minimal set of reactions to

deactivate. Because of the mapping of reactions to genes supplied

by the genome-scale constraint-based model, they could directly

link the factors to be modified (i.e., the activity of specific genes)

to their model. Alternatively, instead of modifying their

organism, Li et al. (2019) controlled their medium by

changing feed rates for different substrates of the algae

Chlorella vulgaris using a constraint-based model to manage

the trade-off between high growth, which requires nitrogen, and

high production, which happens under nitrogen starvation. With

the model, they devised feeding strategies that provided the

required nitrogen for high growth but kept the concentration

in the medium low. They tried this strategy both with cell density

data from previous experiments to predict the consumption, as

well as real-time data measured during the experiment itself.

Using the constraint-based model as controller determining their

feed rates, they managed to significantly increase their product

concentration.

Expression levels are common targets for both screening and

optimization. Lian et al. (2019), for instance, used CRISPR

targeted activation, inhibition, and deletion for a whole-

genome screening of furfural tolerance in S. cerevisiae, while

Carbonell et al. (2018) used a combinatorial library of genetic

constructs to vary gene order, promoters, and plasmid backbones

in order to optimize a key precursor for the production of

flavonoids in E. coli.

Usually, there are many factors that can be changed.

However, some might be more practical to implement

experimentally, while others might allow more granularity or

a higher throughput of experiments. In addition, consider

whether the effect of the change can be measured directly, or

only in the end result. Having many steps between the changed

factors and the measured readouts will make it harder to

accurately model their effect as signals get mixed or diluted. A

model can be a tool to help estimate the value of a proposed

FIGURE 2
Different experimental and modelling techniques work best at certain scales. Often there is a trade-off between the methods scope and the
amount of detail that is measured or simulated. Note that machine-learning and statistical approaches critically depend on the scale of the data
collected and rather than on the scope of the model itself.
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experimental factor, as the changes can be analysed

computationally to estimate their effect at different levels.

Using techniques such as sensitivity analysis and optimal

experimental design, a model can thus assist by providing an

expected return of investment versus the cost of doing an

experiment.

2.3 What can be measured?

In order to create a quality model, data is usually required to

fit the model. High-throughput “omics” data can often be an

important source of data, such as transcriptomics, proteomics,

metabolomics and fluxomics. In addition, many other types of

data can be highly relevant and can be obtained from targeted

experiments or assays, such as growth rates, kinetic parameters,

toxicity of metabolites or localization of proteins. Furthermore,

data on the “network” or interaction level, such as the presence of

reactions, regulation or other interactions between species in the

system are essential for an accurate model.

In addition to the type of data, the context of the

measurements also has to be considered, as it impacts how

samples relate to one another. For studying the effect of

metabolic regulation, Link et al. (2015) opt to take

metabolomics samples at very short intervals to capture the

period of time when metabolic regulation is dynamically

active while regulation on the gene level still has to come into

effect. Contrast this with Gerosa et al. (2015), where they also

looked at metabolic regulation and included metabolomics data

from multiple steady-state conditions instead. Even though both

studies aimed to study the impact of metabolic regulation and use

metabolomics data to do so, they required an entirely different

method of analysis. Similar to dynamics in time, a spatial

component can also be considered. In Harcombe et al. (2014),

the authors used a spatio-temporal model of competing

microbial strains, including the relative positioning of the

colonies as a factor to describe the interactions. A spatial

component can also mean the presence of multiple

compartments. For example, Alvarez-Vasquez et al. (2000)

showed that transport is likely the limiting step for citrate

production in Aspergillus niger using a dynamic model based

on S-systems. Regardless of whether spatial or temporal

interactions are considered, it is important to consider

whether the time or space between samples is sufficiently

small to match the expected temporal or spatial scale of the

process in question, or, in the case of multiple compartments,

whether metabolites in the different compartments can be

measured independently.

As another example of how the context of a measurement can

matter, in Shen et al. (2020) the authors used a cell-free system to

optimize the Weimberg pathway to degrade xylose into α-

ketoglutarate. Since they were able to control all species in the

system and measure all changes of metabolite concentrations

over time, they could fit a detailed kinetic model for the whole

pathway. Alternatively, for Teusink et al. (2000), one of their

goals was to fit a kinetic model of S. cerevisiae glycolysis using

in vitro measured kinetic parameters. Even though this is a well-

studied model system, they reported that only half of the in vitro

measurements of enzyme kinetics described the in vivo enzyme

activity accurately. While these two studies are not directly

comparable, it goes to show that in this case the in vitro

versus in vivo measurements, and also the cell-free versus

in vivo systems, bring different constraints and thus impact

the model.

The context can also mean the difference between single-cell

data, where stochasticity plays a large role, or the data of an entire

culture of cells in different metabolic states pooled together

where these differences are averaged out. Co-cultures or

microbial communities can add another layer of complexity,

due to the extra level of interactions possible between different

species. For microbiome studies, “meta-omics” pool together

measurements for all species in the sample, where the exact

composition of the species in the sample, or even the species

themselves might not be known. This leads again to a new set of

modelling challenges as the traditional compartmentalization of

species in the model, such as in a co-culture model, might not be

possible. In Delogu et al. (2020) the authors analyse the dynamics

andmetabolic capabilities of such a community, SEM1b, with the

ability to degrade cellulose and produce methane using several

“meta-omics” technologies.

Finally, care has to be taken whether the data measured is

absolute or relative, as many of the current “omics” methods

yield relative data. Evaluate whether integrating the relative data

into the model is feasible, or switching to an alternative

measurement method with absolute quantification is required.

Similar to the difference between relative or absolute

measurements, some methods generate data where multiple

signals are combined into a single measurable output, imagine

for example, an optical assay where the spectra of two species

overlap. In this case, it can be considered whether integrating this

relation directly into the model might allow for a more

straightforward or robust interpretation than trying to isolate

the signals beforehand, potentially losing the correlated structure

of the two measurements.

Overall, it is important to assess what is feasible to measure,

how it can be integrated into the model and how much

information it contains about the process to be optimized. In

Section 4, we will elaborate on the specific types of data and their

suitability for modelling in depth.

2.4 What type of model is suitable?

Many different types and variants of models have seen use in

metabolic engineering, both data-driven and knowledge-based

approaches. Machine-learning and statistical models can be
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considered data-driven models, where the data is the main

driving factor behind the model to find significant differences

or correlations pointing out potential areas of interest to

investigate. Mechanistic models such as constraint-based or

kinetic models, on the other hand, are based on a description

of the behaviour of the system according to the biological

processes happening. They aim to use the experimental data

to validate these descriptions and provide a deeper

understanding of the underlying process and can thus be

considered knowledge-based models. In metabolic engineering

genome-scale, constraint-based metabolic models have been

highly successful, but it is far from the only usable method

and even within constraint-based models there are many

variations.

All of these models come with their own set of assumptions.

Genome-scale constraint-based models assume steady-state and

optimality of a certain objective, while Michaelis-Menten kinetics

assume that the concentration of the enzyme is significantly

lower than that of the substrate. Statistical tests might assume

normally distributed values or independence of two variables.

Closely related to the assumptions made is the level of abstraction

of a model. Statistical models work at a high level of abstraction,

incorporating little about the details of the underlying process.

Kinetic models, on the other hand, aim to describe the physical

interactions between enzymes and metabolites. However, even

within kinetic models there are degrees of abstraction, ranging

from mass-action kinetics describing every interaction between

metabolites and enzymes, to composite rate laws such as

Michaelis-Menten, or lin-log kinetics, which trades physical

accuracy for ease of modelling. Generally, lower-level models

offer increased insights into the underlying processes, while

higher-level models trade this extra detail for simplicity in

both creating and using the model, also allowing for a wider

scope of the model.

Apart from the use of a model to drive decision-making,

another important aspect is the generation of “knowledge” from

raw data, i.e., turning raw measurements into verifiable theories

or quantifiable properties of the system. Depending on the

research question, this might be a primary or secondary

objective. However, even if it is not the primary objective,

gaining more knowledge about the system can assist in

further engineering efforts or serve to test and validate

assumptions to simplify the system. Choosing a mechanistic

model can help with achieving this knowledge-based objective,

as system properties in these models often depend less on factors

not included in the model and are thus easier to translate to a

different system or model. Still, to make use of a lower-level

model, more data is needed with a greater level of detail than for a

higher-level model or the scope of the model has to be reduced.

Relating to this is the concept of the design-build-test-learn

(DBTL) cycle, where knowledge or data from each round of

experiments is fed back into the model to get a better

understanding of the system for subsequent rounds of

experiments. While within a research project often a single

type of model is utilized, it can also be considered to start the

project with a high level and gradually move to a lower level of

abstraction as the knowledge about the system increases.

Together with the considerations that we have discussed in

the previous sections, these factors result in some models being

more suitable for a research question than others. Summarizing,

certain research questions align better with certain types of

models and data. We explore three successful studies utilizing

different types of models in Table 1 to highlight how they

achieved this match between experiment and model. In

Section 3, we will discuss the different types of models and

how they have been successfully applied for metabolic

engineering.

3 Metabolic engineering: Most
relevant models

3.1 Knowledge-based models

3.1.1 Constraint-based models
Genome-scale constraint-based models are one of the more

common types of models used to study metabolism, most often

in combination with methods based on flux balance analysis

(FBA). By assuming steady-state conditions, this method

eliminates the need for describing reaction kinetics and can be

simplified to a linear programming problem, which scales well to

thousands of reactions and can thus span the full genome-scale

reaction network. These models can be reconstructed from

genomics data by matching genes to annotated enzymes

catalysing known reactions, often starting from a known

reaction network from a related organism. The metabolic

network can then be further curated with studies of growth

on specific substrates, metabolomics, knock-out or essentiality

studies. Multiple tools exist to facilitate this task, several of which

were compared by Mendoza et al. (2019).

Because these networks are usually built to study the full

metabolic potential of the organism in question, it can be

necessary to further tailor these networks to only contain

reactions active in specific conditions. Especially for multi-

cellular organisms, where regulation becomes more important,

this can be relevant, although it proves challenging in practice. A

comparison of multiple methods to integrate expression data for

E. coli and S. cerevisiae by Machado and Herrgård (2014) showed

large differences between methods but no clear advantage.

Opdam et al. (2017) also applied several algorithms to

generate context-specific networks for four human cancer cell

lines using transcriptomic and exometabolomic data. They note

that the choice of method and threshold settings to qualify a

reaction as active have a great impact on the final model

produced and the predictions. Despite this, Montero-Blay

et al. (2020) showed that using proteomics and essentiality
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data from a transposon study active metabolic pathways can be

accurately determined for the Mycoplasma agalactiae and M.

pneuomiae, although for these two minimal organisms the

number of possible alternative pathways is very limited.

Flux balance analysis (FBA) can be used to make predictions

of growth and production rates using these constraint-based

models by constraining metabolite uptake or secretion, and

reaction directions in combination with an objective such as

maximal growth or production. By changingmedium conditions,

objectives or by introducing or removing reactions, different

scenarios can be simulated. For example, in Keller et al. (2020)

E. coli was screened for strain designs where methanol

assimilation is a strict requirement for growth, but an

additional carbon source can be utilized to boost the growth

rate. This extra requirement was set in order to find a strain that

would be suitable to be further optimized through laboratory

evolution. FBA can also be used for multi-species models, for

example, to analyse a co-culture or microbial community. For

example, Benito-Vaquerizo et al. (2020) used FBA to analyse a

co-culture of two Clostridium species to convert syngas to

medium-chain fatty acids. Using this model, the authors

managed to predict strategies to increase the fatty-acid

production rate, one of which was also previously found

experimentally. There are also many alternative formulations

of FBA, such as parsimonious FBA, where after optimization of

the objective to a certain threshold the total sum of flux is

minimized, based on the concept that each unit of flux carries

some burden in enzyme cost. This method was used by Davidi

et al. (2016) as a stand-in for fluxomics data to study enzyme

kinetics, and by Zhang et al. (2020) to investigate which reactions

TABLE 1 Analysis of the objective, measured data, and model for three selected studies. It is highlighted how the experimental and modelling
techniques have been aligned to create a successful study integrating models and experiments.

Study Banerjee et al. (2020) Shen et al. (2020) Zhang et al. (2020)

Overview

Objective Production of indigoidine Optimization of the Weimberg pathway Production of tryptophan

Organism P. putida C. crescentus S. cerevisiae

Model

Type Constraint-based Kinetic Constraint-based

Machine-Learning

Method Design: Minimal Cut Sets (MCS) Experimental design: Kinetic model Target predictions: pFBA

Simulation: FBA, FVA Analysis: Metabolic Control Analysis Design: Probabilistic ensemble model

Scale Genome-scale Pathway (5 reactions) Screening: genome-scale

Optimization: 5 reactions

Variables Genes Enzyme concentration Genes

Carbon source Metabolite concentration Promoters

Organism Co-factor recycling

Constraints Minimum product yield Total protein amount Limited set of promoters

Minimum growth rate

Experiment

System From 96-well plate up to 2L bioreactor Cell-free system 96-well plate

Factors Genes (CRISPRi knockdown) Enzyme concentrations Choice of promoter

Data HPLC (glucose and organic acids) NMR metabolomics (5 min interval) Fluorescent biosensor

Colorimetric assay Enzyme kinetic assays HPLC (tryptophan)

Transcriptomics Enzymatic assays (Metabolites) Transcriptomics

Targeted Proteomics

Gene essentiality

Results 50% of theoretical yield 6x speed up using same total enzyme
concentration

74% increase in titre

Consistent performance in different reactor scales 43% increase in productivity

Highlights Match between predictions with MCS and
experimental setup using multiplexed CRISPRi

Match between time-series data and kinetic
model

Combination of models: Mechanistic for target
selection, machine-learning for optimization

Fitted model reproduces experimental
measurements in several conditions

Creation of novel biosensor to allow for high-
throughput optical measurements

Extensive characterization of enzyme kinetics Match between high-throughput optical assay and
machine-learning predictions
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became more or less active when over-producing tryptophan in

S. cerevisiae.

Further extensions of FBA include factors such as kinetics,

thermodynamics, or protein cost more explicitly. For example,

the enzyme-constrained model where the protein cost for each

reaction is added as a constraint scaled by the catalytic rate of the

enzyme. This type of model was used by Ye et al. (2020) to

increase the production of lysine in E. coli by optimizing high-

demand proteins for lysine productions, and lowering the

required protein expression for core metabolic proteins by

comparing the required expression profiles on different

nitrogen sources. Li et al. (2021) used a similar model

formulation based on catalytic rates of the enzymes, but also

included the effect of temperature on the enzyme stability and

kinetics and use this to identify potential rate-limiting enzymes at

higher temperatures. Other methods that include similar

constraints are ME models, where apart from the metabolic

(M) reactions, the metabolic costs for activating these

reactions through expression (E) of the relevant RNA and

proteins are explicitly included. Finally, methods such as

OptKnock Burgard et al. (2003), offer the possibility of using

a constraint-based model to directly design interventions to

achieve improved production and growth coupling, where the

production of a product of choice is a requirement for biomass

generation. Many other computational strain-design methods

have been created since; Machado and Herrgård (2015) andMaia

et al. (2016) review the different methods and their successful

applications.

An alternative usage of constraint-based models is the analysis

through elementary flux modes (EFM). With this method, the

metabolic network is decomposed into a set of minimal, unique

pathways that flux can flow through. Any flux through the network

can be represented as a linear combination of these EFMs. A variety

of methods based on this principle exist, however, most do not scale

well to genome-scale networks as the number of EFMs increases

exponentially with the complexity of the network. However, this

method can be useful for smaller networks, such as the core carbon

metabolism, as once the enumeration of the EFMs is performed,

strain designmethods are easy to apply. For example, Poblete-Castro

et al. (2012) analysed the potential of P. putida for the production of

polyhydroxyalkanoates, while Jol et al. (2012) integrated

metabolomics data to study the feasibility of specific EFMs under

thermodynamic constraints.

Do note, however, that generally the solutions from FBA

based approaches are not unique, as in large genome-scale

metabolic models there can be multiple flux profiles that

achieve the optimal objective value. An alternative method to

utilize genome-scale constraint-based models that embraces this

property is flux sampling. In contrast to FBA, where the fluxes are

optimized according to some objective, flux sampling aims to

explore the entire feasible flux space without imposing an

objective. This can be considered a more robust approach, as

assuming a single objective such as growth to be optimal is not

always biologically valid, especially when dealing with engineered

strains or multi-cellular organisms. Quantifying a large space of

possible fluxes also offers the advantage of being able to add an

error or uncertainty margin to predicted fluxes, offering

additional guidance of for example, the feasibility of a

pathway design that can be lacking when looking solely at a

single optimal flux profile. In Herrmann et al. (2019), the authors

used flux sampling to study cold acclimation of Arabidopsis

thaliana and also compare several flux sampling

implementations. By constraining the model with the

measured input flux of CO2 and output fluxes of accumulated

metabolites, they could compare the possible flux distributions in

both conditions and predict which reactions are important for

the adaption to low temperature conditions.

Genome-scale constraint-based metabolic models shine

when exploring the potential routes through metabolism a

metabolite can take, and investigating the impact of

integrating new pathways or knocking out native genes. For

most model organisms a high-quality model is readily available,

and if not, the steps to build new models are well documented,

albeit sometimes laborious due to the sheer scope of a genome-

scale model. Methods for further integrating experimental data

exist but can be inconsistent, as having sufficient coverage in the

experimental data is often problematic due to the large scope of

these models. The main downside of using constraint-based

models is their steady-state assumption, making it problematic

to integrate metabolite concentrations or to investigate dynamic

processes such as metabolite regulation. In these cases, other

models can be used to supplement the constraint-based model.

3.1.2 Kinetic models
Kinetic models describe a system through reaction rates

based on the concentration of metabolites and the kinetic

properties of the enzyme. Usually based on ordinary

differential equations, they offer a flexible way to model

metabolite dynamics and easily integrate with other dynamic

processes. Since dynamic models are common to many fields,

many tools are available for simulation, parameter fitting and

analysis. Klipp et al. (2005) offers a good example of a kinetic

metabolic model integrating with regulatory processes, such as

enzyme phosphorylation and osmotic pressure. Another

example is Maeda et al. (2019), where alternative modes of

ammonia assimilation were modelled for E. coli. Here they

integrated the uptake kinetics, related metabolic reactions and

the phosphorylation of regulatory proteins to conclude that

active transport of ammonia is more likely than the passive

alternative given the available data.

One of the major downsides of kinetic models is that they

contain many parameters, most of which are hard to measure

directly. These parameters are thus fitted computationally, but

the available experimental data often does not match well to what

is optimal for parametrization, such as measurements of enzyme

kinetics or high temporal resolution measurements of metabolite
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and enzyme concentrations. In addition, the computational

effort to fit parameters scales exponentially with the number

of parameters, limiting the size of kinetic metabolic models.

However, this is more of an issue relating to the available data

versus the scope of the model rather than an inherent problem

with kinetic models. In Shen et al. (2020) the authors studied the

Weimberg pathway of Caulobacter crescentus for xylose

degradation to α-ketoglutarate. Here they used enzyme assays

and quantified intermediates using NMR metabolomics every

5 min in a cell-free system, leading to a data set well suited to

fitting a kinetic model. Improved methods for parametrization

have been proposed to increase the scope of kinetic models by

advanced methods to speed up parameter estimation such as by

Fröhlich et al. (2018), or by Yuan et al. (2021), which takes

advantage of recent advances in the infrastructure for training

large-scale machine-learning models.

An alternative approach to analyse kinetic models is the use

of sampling methods to characterize the model without fitting the

parameters explicitly, also known as ensemble modelling, not to

be confused with the sampling of constraint-based models

generally referred to as flux sampling. By simulating the

model with many scenarios of combinations of parameter

values and statistically analysing the resulting simulations,

system properties can be identified that hold true in a wide

range of scenarios. In Rizk and Liao (2009) the authors utilized

ensemble modelling to study the production of aromatic

compounds in E. coli and showed that the model correctly

predicts known phenotypes, while Murabito et al. (2014) used

ensemble modelling to explore the metabolic regulation and

control in the core metabolism of Lactococcus lactis. Finally,

Chen et al. (2020) applied this ensemble method to assess the

system robustness of an engineered E. coli methylotroph,

obtaining targets for modulating enzyme expression

that allowed for successful growth on methanol

which was then further improved upon using laboratory

evolution.

Kinetic models have a strong advantage over constraint-

based methods when stoichiometric constraints are not the

limiting factor in a system and additional detail is needed.

Dynamic systems, as well as systems where metabolic

regulation, toxicity, or non-linear kinetics play a role, are

good targets where a kinetic model can be beneficial.

However, due to their increased number of parameters and

non-linear nature, they require not only more data to fit, but

also more detailed data such as time-courses of metabolites and

enzyme kinetic parameters. Furthermore, it often takes

significant computational work to estimate the parameters

even when this data is available. Still, kinetic models can be

highly informative as they provide explanations for system

behaviour supported directly by biochemical mechanisms.

Foster et al. (2021) provides a review of tools for the creation

and parametrization of kinetic models, as well as a number of

examples of their application.

3.2 Data-driven models

In addition to constraint-based and kinetic models, statistical

or data-driven models can be used to great effect, by identifying

relevant areas of metabolism based on large-scale datasets which

can then be further analysed in detail with other models.

Alternatively, methods such as flux sampling of constraint-

based models or ensemble models generate large results sets

that require additional statistical analysis to process and explore.

Albeit not stated explicitly so far, a requirement for

constructing a useful mechanistic is that there is enough

known about the general metabolic structure of the

organism of interest. However, if this is not the case, large

scale data-driven analysis of “omics” data using statistical

methods is often a good approach to start identifying

important nodes in a system. Another case where this

might be a better approach is if the data is too far off from

the process that is supposed to be predicted. For example,

trying to predict production rates of a metabolite by modifying

the concentration of metal co-factors in the medium. While it

is clear this could affect the production of a metabolite through

changes in reaction fluxes viametal-dependent enzymes, there

are multiple levels of interactions in-between. Since metal-

protein interactions are often not well characterized, if known

at all, building a mechanistic model describing all these

interactions could prove challenging. A statistical or

machine-learning model on the other hand can likely

capture enough of the relevant relationships that the system

can be optimized system without having to explicitly encode

these interactions.

Machine-learning methods have found their way into

metabolic engineering and can be a powerful complement

or alternative to existing methods. Zhang et al. (2020) used

constraint-based modelling to predict initial targets for

modulating expression in order to optimize tyrosine

production in S. cerevisiae. A library of genetic constructs

with these targets was then tested, feeding a black-box

machine-learning algorithm. Their method was then used

to generate new designs both to maximize tyrosine

production and to maximize the information gained to

improve the model further. While machine-learning

methods are often seen solely as black-box predictors,

efforts have been made to ease the translation from

predictive models to biological understanding. Although not

directly modelling metabolism, Yuan et al. (2021) showed how

“interpretable” machine learning can be applied to dynamic

systems. In their case a model of drug responses of a melanoma

cell line using a simplified dynamic description of the

perturbation, decay, and interaction terms for measured

proteins and phenotypes. Analysing these interaction terms

showed that many known interactions could be recovered,

highlighting the potential of combining mechanistic methods

with machine-learning approaches. Zampieri G. et al. (2019)
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and Lawson et al. (2020) review the application of different

machine-learning methods in the context of metabolic

engineering.

3.3 Multi-scale modelling

Finally, multi-scale modelling is a method to combine

modelling approaches where models are integrated together,

each covering their own subject area. This method is often

applied when there is a logical separation to be made in the

system: spatial, temporal or otherwise. One of the most

straightforward examples of this approach is dynamic FBA

(dFBA). Normally, a constraint-based model would not be

usable under dynamic conditions due to its steady-state

assumptions. However, by assuming that the cells internal

metabolic state quickly adapts to an optimal steady-state

corresponding to the current medium conditions and by

having another model simulate these medium conditions

dynamically, we can integrate the two models into a hybrid

multi-scale model. To simulate the model, the constraint-

based model is re-optimized at every time step using the

current medium conditions to determine growth and

production rates which in turn are used to update the

external conditions. Here, the separation of the models is

based on the spatial separation of the external medium and

internal metabolism of the cell, but also on the temporal level,

with the assumption being that the steady-state conditions in

the cell are adapted to the external medium every time step.

This technique can be useful to study dynamic systems such

as co-cultures of different microbes or can be further extended to

a spatial-dynamic model to include factors such as localized

interactions between microbes or as metabolite gradients.

Pacheco et al. (2019) applied both FBA and dFBA to study

whether the exchange of “cost-less” metabolites can be a driving

force of community interactions, while Harcombe et al. (2014)

also integrated a spatial component to study interaction

dynamics of a three strain consortium. In Øyås and Stelling

(2018) additional applications of dFBA are reviewed,

while Heinken et al. (2021) provides an in-depth

review of dFBA in the context of microbial community

modelling.

One of the more famous examples of multi-scale modelling

is the work by Karr et al. (2012), who created a whole-cell

model of Mycoplasma genitalium integrating 26 models into a

single simulation framework. While multi-scale models can be

informative, care has to be taken on the technical side as

simulating and optimizing these models can be challenging.

Existing tools such as ODE solvers are often unsuitable for

the specific requirements of these models,

thereby necessitating the parallel development of both the

model and the tooling required to simulate and analyse the

model.

4 Metabolic engineering: Most
relevant types of data

4.1 Interactions

Although it can be easy to overlook because of its widespread

availability in model organisms, possibly the most essential

source of information about metabolism is the reaction

network, connecting metabolites through enzyme catalysed

reactions. These networks can be reconstructed from

genomics and transcriptomics data by matching genes to

annotated enzymes catalysing known reactions. Apart from

the metabolite and reaction network, protein regulation is an

important part of the interaction network as it determines which

enzymes are active and in which amounts. Finally, subcellular

location is important to consider as it limits which reactions or

interactions can take place. Enzymes can be localized to a

particular organelle, and metabolites can be transported

between compartments with different mechanisms such as

diffusion, passive or active transport. Knowing all these

different interactions between the metabolites, enzymes or

other species in a system of interest is essential, as this is the

basis of structure of the model.

Many of these interactions have been previously

characterized and can now be obtained from databases such

as UniProt (The UniProt Consortium, 2021), which contains

information on genes and proteins and provide cross-references

to other databases with different areas of focus such as protein

interactions or enzyme kinetics. In addition, there are databases

focussing on metabolic networks in particular, such as KEGG

(Kanehisa and Goto, 2000) and BioCyc (Karp et al., 2019), and

even further specialized databases such as BRENDA (Chang

et al., 2021) (enzyme properties), Rhea (Lombardot et al.,

2019) (biological reactions) or BiGG (King et al., 2016)

(reactions and metabolites from curated constraint-based

models).

4.2 Metabolites

Knowing the presence and concentration of metabolites is

key for studying metabolism. However, metabolomics is also one

of the more finicky “omics” technologies, due to the inherent

problem that, unlike DNA or proteins which are built from a

limited set of similar subunits, metabolites are extremely

chemically diverse. At the same time, due to the strong

specificity of enzymes, structurally very similar metabolites

can require entirely different pathways biologically, making it

essential that they are differentiated correctly. Furthermore,

metabolite concentrations span a wide range of magnitudes

(Milo and Phillips, 2015), from micro- or even picomolar up

to high millimolar concentrations, adding further difficulties to

high-throughput analysis. Many metabolites are also reactive or
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have an extremely high turnover rate, requiring specialized

procedures for sample preparation. Finally, when doing

metabolomics experiments, care has to be taken to separate

the metabolites inside and outside the cell, or even from

different organelles.

Nonetheless, methods based on different technologies have

been used to quantify metabolites. Mass-spectrometry (MS)

based techniques have seen broad applicability and use, often

in combination with chromatographic methods for separating

metabolites such as liquid chromatography (LC) or gas

chromatography (GC). For example, Zampieri M. et al. (2019)

used untargeted MS to characterize the exometabolome of E. coli

as well as LC-MS to measure a selection of intracellular

metabolites. In combination with a constraint-based model

they use this data to predict internal fluxes and to investigate

the regulatory mechanisms underlying glucose and amino acid

metabolism.

Nuclear magnetic resonance (NMR) (Nikolaev et al., 2019; Shen

et al., 2020) and infrared (IR) spectroscopy (Sayqal et al., 2016) have

also seen use, and thanks to their non-destructive nature, can be used

to follow samples in real-time. However, when using these methods

signals often cannot be assigned to specific metabolites. Although

data analysis is not always straightforward, metabolic models can

help in this case by providing a framework for separating and

interpreting these signals with appropriate error margins.

In addition to these more high-throughput methods more

specific assays exist, although they are usually limited to a single

metabolite. These assays, especially in the case of optical assays,

can be of great use due to their ease of measuring in common

laboratory set-ups as well as being able to integrate well into

large-scale screening efforts, such as shown for the optimization

of tryptophan production by Zhang et al. (2020). Although not all

metabolites are optically visible, often they can be linked to

metabolites that are or can be made visible using different

assays. For example, Yang et al. (2018) screened for knock-

down targets that overproduce malonyl-CoA in an E. coli library

made with small regulator RNAs. To measure malonyl-CoA

overproduction, they introduced a gene to convert the

malonyl-CoA to the detectable compound flaviolin.

Finally, there are many known regulatory proteins that

interact with different metabolites that can drive the expression

of a reporter protein such as GFP. Even if no known regulators are

available, Hanko et al. (2020) showed that new regulatory proteins

can be identified by screening for transcriptional regulators in

close genetic proximity to enzymes interacting with a certain

metabolite. Through this method, they identified 15 novel

biosensors in Cupriavidus necator and showed that the majority

of these also function inmodel strains such as E. coli and P. putida.

Although the dynamic range of these biosensors can be low for the

wild-type genes it can be improved (Chen et al., 2018; Meyer et al.,

2019). Combining metabolic and regulatory pathways can further

expand the space of detectable metabolites as shown by Voyvodic

et al. (2019), who transformed an undetectable metabolite to a

detectable signal by using metabolic transducers to arrive at a

metabolite that can be detected using regulatory proteins.

4.3 Isotope tracing and fluxomics

Isotope labelling experiments in combination with

metabolomics can be used to trace the flow of a labelled

isotope, for example, 13C in a carbon source such as glucose,

through the metabolic network by determining the ratio of

labelled versus unlabelled metabolite. When engineering

microbes to use alternative carbon sources, in particular,

isotope labelling can be used to prove that a certain carbon

source is successfully integrated into different components of the

cells’ biomass. For example, in Keller et al. (2020) the authors

aimed to engineer an alternative carbon assimilation cycle into

E. coli starting from methanol and used isotope labelling

experiments in combination with LC-MS to both prove the

incorporation of carbon from methanol and to assess whether

the flux profile as simulated by FBA was accurate. NMR

metabolomics can also be used in combination with isotope

labelling, as illustrated by Perrin et al. (2020), where the authors

used NMR metabolomics to study co-utilization and diauxie of

carbon sources in Pseudoalteromonas haloplanktis.

The isotope ratios are not only useful to determine which

pathways connect to one another, but can also be applied at a

larger scale to calculate relative flux rates through reactions, also

known as fluxomics. Fluxes are not measured directly but

approximated using metabolic flux analysis (MFA) of the

isotope ratios and a model of the reaction network, similar to

what is used for constraint-based metabolic modelling. This is a

great example of how a good alignment of the data andmodel can

be used to generate somethingmore informative than the original

data by itself but also serves to highlight that often a dataset

comes with its own assumptions that have to be considered. In

the case of fluxomics data, this is the structure of the reaction

network, meaning that the flux rates can not be applied directly to

a model using an updated network structure without reanalysing

the original metabolomics data. As an example of the use of

fluxomics, in Christodoulou et al. (2018) the authors used

isotopically labelled glucose to differentiate flux going through

glycolysis or the pentose phosphate pathway in E. coli by the ratio

of labelled versus unlabelled fructose-6-phosphate. Gerosa et al.

(2015) studied the regulation of central carbon metabolism of

E. coli by comparing the fluxes when growing on eight

isotopically labelled carbon sources, in conjunction with

metabolomics and transcriptomics data.

4.4 Proteins and transcripts

Proteomics and transcriptomics are some of the most mature

“omics” technologies, which shows in their widespread
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availability. However, due to the many layers of post-

transcriptional and post-translational regulation between

expression levels and reaction flux, transcriptomics in

particular often do not contain as much information as

expected. For one reaction a doubling of the transcript coding

for the enzyme catalysing the reaction could correspond to an

equivalent doubling of the reaction flux, while for another the

effect is insignificant, due to regulation or other limitations.

Nonetheless, transcriptomics and proteomics data sets often

offer genome-wide coverage and can be integrated into many

modelling approaches, often as a proxy for enzyme

concentrations. In addition, they can be essential to place

metabolic findings in a broader, whole-organism context and

to relate changes in metabolism back to changes in microbial

behaviour. For example, in Sastry et al. (2019) the authors

analysed a large set of transcriptomics data from E. coli and

used this to find independent transcriptomic modules, and link

these to known regulators and changes in medium conditions.

While not necessarily a predictive modelling approach this work

shows how omics datasets can be used to connect different

processes and can be used to put other experimental results in

context.

In addition to “omics” technologies, measurements of

individual transcripts can also be done using qPCR, which

has the advantage of being able to provide an absolute

quantification of the number of transcripts. Although

absolute quantification of proteomics and transcriptomics is

feasible (Schmidt et al., 2016; Delogu et al., 2020), often data is

provided as relative levels between conditions which can make

it harder to compare measurements between experiments.

Finally, similar to the measurement of metabolites using

biosensors, expression can also be monitored using reporter

proteins such as GFP. Especially for small-scale models, such as

kinetic models, these techniques can be invaluable as they can

allow for improved time-resolution on the enzymes or

regulators of interest.

4.5 Enzymes

In particular for kinetic models, enzyme kinetics are an

important source of information. Unfortunately, the “omics”

technologies have not caught up to the measurement of enzyme

kinetics, as highlighted by Tummler and Klipp (2018). In

addition to the lack of experimental measurements of enzyme

kinetic parameters, there exists a gap between in vivo and in vitro

measurements, as was shown by Davidi et al. (2016) in a large-

scale study of catalytic rates in E. coli. Still, specialized enzyme

databases such as BRENDA (Chang et al., 2021) aggregate large

amounts of information about enzyme kinetics, co-factor

utilization and regulation.

Apart from enzyme kinetics of the products and substrates,

other interaction partners can be important such as which co-

factors an enzyme can utilize as availability is different depending

on the organism. Small molecule regulation of enzymes can be a

significant factor for the regulation of (core) metabolism, as was

shown in a study by Reznik et al. (2017) where they aimed to

make an exhaustive inventory of these interactions in E. coli, and

also compared the conservation of these interactions across

domains. Recently, novel proteomics-based methods have

shown to be effective to find interactions between enzymes

and metabolites on a larger scale, by utilizing the binding of

the regulating metabolites to the enzyme, which can affect the

protein structure or stability. Piazza et al. (2018) showed this

principle using a technique based on differential protein cleavage

called LiP-SMap, while Mateus et al. (2020) applied a technique

called thermal proteome profiling in E. coli to find enzyme

interaction partners. While direct measurements are thus

possible, inferring these regulatory interactions using

metabolic modelling is also an option. Link et al. (2015)

utilized short time-scale metabolomics (<30 s) to study the

effect of metabolite regulation before expression based

regulation has a chance to kick in. By sampling directly after

switching from starvation to growth conditions, they can use a

kinetic model to investigate regulation in amino acid and purine

metabolism. Christodoulou et al. (2018) used an ensemble of

kinetic models to find the most likely enzyme metabolite

interactions in the pentose phosphate pathway of E. coli using

a metabolomics data set taken before and after E. coli was

challenged by oxidative stress.

4.6 Phenotypes

Apart from these data sources based on different classes of

biologically active molecules and complexes, there is a

multitude of other phenotypic traits that can be important

to study or measure in relation to metabolism. Growth rates

are essential to calibrate genome-scale constraint-based

models, as well as the organisms’ ability to use different

sources of carbon, nitrogen, or phosphate. Assays such as

Biolog phenotype microarrays can be used to quickly screen

the metabolic potential of a micro-organism, but can also be

used for more in-depth analysis, such as done by Yang et al.

(2019) to uncover the metabolic mechanisms of antibiotic

resistance in E. coli by comparing the lethality of several

antibiotics in multiple conditions. Transposon mutagenesis

studies are useful to assess the essentiality of genes, and as

such are often used to curate genome-scale constraint-based

models. Other phenotypic markers, such as morphology or the

tolerance to toxic compounds can also be an interesting source

of high-level data on the state of an organism, such as shown

in Caldera et al. (2019), where the authors analyse the

effect of different drugs on morphological markers to

compare the underlying mechanisms, coining the term

“perturbome”.
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5 Perspective

In this review, we have outlined the three factors we consider

to be essential for the successful application of computational

models to assist in metabolic engineering studies. We have also

provided a selection of recent examples on the importance of

aligning the modelling approach with these three factors: the

research question and objectives, the experimental data, and the

factors that can be experimentally modified. As with any tool,

experimentally or computationally, a method can excel at

certain uses and can be useless in others. The main idea,

therefore, is that it is worthwhile to align the research

objective not only with the model used but also with the

experimental constraints, data, and vice versa. In larger

projects, going through multiple design-build-test-learn

cycles, the most appropriate model might shift. During the

early stages, a data-driven approach could be the best but as

more data and knowledge becomes available, mechanistic

models such as constraint-based or kinetics models could

become more suitable. This can require flexibility from both

the experimental and the computational side of a project to

adapt to shifted objectives and to judge whether the data being

gathered and the model being used are still the most appropriate.

Automation is increasingly transforming the field of metabolic

engineering and large-scale automated facilities, such as

biofoundries, will likely make new experimental methods feasible

to apply. As the scale of both data collection and experiments grows,

andmore detailed experiments become feasible, modellingmethods

will likewise have to adapt. Data-driven approaches and constraint-

based methods offer the advantage of being able to predict possible

experimental interventions on the whole-genome scale, however,

more detailed models such as kinetic models could also become

increasingly feasible with more data becoming available. Increased

automation could also lead to shorter feedback cycles, which

emphasizes the ability of a model for in-depth analysis of its

own uncertainty and sensitivity in order to predict new

experiments. These predictions can not only serve to optimize

the objectives of the study but also to improve the accuracy of

the model itself.

In conclusion, successful integration of experimental and

modelling approaches is becoming more and more essential. In

this paper, we have provided an overview of current approaches

and outlined the factors we deem important to achieve this

successful integration.
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