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What can go wrong when
observations are not independently
and identically distributed: A
cautionary note on calculating
correlations on combined data sets
from different experiments or
conditions
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Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen,
Netherlands

In the scientific literature data analysis results are often presented when samples
from different experiments or different conditions, technical replicates or times
series are merged to increase the sample size before calculating the correlation
coefficient. This way of proceeding violates two basic assumptions underlying the
use of the correlation coefficient: sampling from one population and independence
of the observations (independence of errors). Since correlations are used to measure
and infer associations between biological entities, this has tremendous implications
on the reliability of scientific results, as the violation of these assumption leads to
wrong and biased results. In this technical note, | review some basic properties of the
Pearson’s correlation coefficient and illustrate some exemplary problems with
simulated and experimental data, taking a didactic approach with the use of
supporting graphical examples.
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1 Introduction

The Pearson’s correlation coefficient (Pearson, 1895; Spearman, 1907) is certainly one
of the most popular measures of association used in biology and in the Life
Sciences. Unfortunately, it is also one of the most misused. Recently, several papers
have been brought to my attention by collaborators in which the sample correlation
coefficient is calculated following questionable practices, in particular when data
from different experiments or conditions are combined before calculating
the correlation. The goal of this cautionary note is to show what happens when the
basic assumptions underlying the calculation and the use of the sample correlation are
not met.

To set the scene, I start by introducing some notation and by recalling some basic statistical
principles. Taken n observations (x;, x,, . . . , X,,) of a variable x and » observations (yy, y», . . . »
¥,) of a variable y, the Pearson’s sample correlation coefficient #* (to which I will term “sample
correlation” for sake of simplicity) is defined as
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Let’s now recall now some facts about the sample correlation
™ (Eq. 1): it can always be calculated, however its validity and
(correct) interpretation (including its statistical significance, as
expressed by the associated p-value) rest on several statistical
assumptions. I will focus here on the two assumptions stating
that the
must be

correlation
these

observations wused to calculate the
identically and independently distributed;

formulated as.

Al All the (x, x5, . ..
from the same (normal) distribution.
A2 The (x, x5, . . .
(independence of errors).

, X,) observations of x (and y) are sampled

, X,) observations of x (and y) are independent

To be of any significance, and to be able to make inference on
population parameters, the observations must be randomly
selected, that is must be a representative random sample of a
larger population. In addition, the relationships between x and y
must be linear, since (Eq. 1) cannot account for non-linear
relationships. Chapter 32 of Motulsky. (2014) offers a low level
yet very precise presentation of all the assumptions underlying the
use of the correlation coefficient.

This note deals with the problems arising when assumptions
Al and A2 are violated, that is when observations are non-
independently and non-identically distributed. Consequences of
the violations of other assumptions, like deviation from normality
of the observations, have been discussed elsewhere (Calkins, 1974;
Havlicek and Peterson, 1976; Havlicek and Peterson, 1977;
Wilcox, 2009). The papers by Schober et al. (2018) and Janse
et al. (2021) discuss pitfalls and interpretative problems of
correlations.

In what follows, all observations are well-behaved and follow a
normal (Gaussian) distribution:

xi ~ N (4, 7*) (5)

where y and v are the population mean and standard deviation (same
for variable y).

1 The notation V % with the use of superscript (x) may seem, at fist, unpractical.
Its utility will become evident in the remaining of the paper when more and
different quantities are introduced.
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2 Three research scenarios when
correlations are wrongly calculated

I will consider three research scenarios often found in literature in
which data is manipulated in some way before the correlation among
measured variables is calculated.

RS1 A researcher has two data sets A and B which contain
measurements of the variables x and y. Data set A contains #
observations of x and y, while data set B contains m observations.
A and B are combined into one data set containing n + m
observations and the Pearson’s sample correlation (Eq. 1) is
calculated between x and y. The reasons for merging the two
data sets can be different. Data sets A and B can come from
different batches measured during an experiment, or even from
different experiments. Often the data sets are merged to increase
the sample size with the idea (wrong, in this case) of obtaining a
more a reliable estimation of the correlation between x and y.

RS2 A researcher has performed an experiment where a large number
of variables have been measured over two conditions, on n
observations for Condition A and m observation for Condition
B, like, for example, in the case of a transcription experiment where
thousands of gene expressions have been measured on case and
control samples. To reduce the dimensionality of the problem, the
researcher restricts the analysis to those genes that are differentially
expressed between the two conditions. Moved by the interest of
understanding regulatory mechanisms, the researcher decides to
build a correlation network using all the measurements
(observations) available for those genes (let’s call two of such
genes x and ) that are differentially expressed.

RS3 A researcher has measured variable x and y several times on the
same subjects, obtaining m measures for each subject. A typical
case is when technical replicates are measured for each (or
some of the) sample, usually in duo or triplicates, or when time
series are acquired. To increase the total sample size, they then
decide to combine all the n x m observations and calculate the
correlation over the n x m observation of x and y.

The first two scenarios RS1 and RS2, albeit different, can be
schematized in the same way, as shown in Figure I.

2.1 Violation of sampling from one population

Scenarios RS1 and RS2 entail the calculation of sample
correlations after merging of two (or more) data sets: I wish to
illustrate the problems that arise from such a way of operating
with a simple simulated example. Figure 2A shows the correlation
plot of n + m = 200 observations of variables x and y. A positive linear
relationship seems to exist between x and y: the sample correlation
coefficient is r’(cf; ) = 0.76 (P-val<107%). Equipped with this rather
strong correlation and statistical significance, the researcher may claim
association between the two variables and build a story around it,
explaining and discussing the biological relevance of it.

The problem becomes evident when we look at how the data
presented in Figure 2B has been built. I have proceeded as described
in research scenarios RS1 and RS2, merging two data sets
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FIGURE 1

Research scenarios RS1 and RS2. Graphical illustration of two data sets A and B (depicted as blocks of different color) containing measurements/
observations of two variables x and y measured on two different conditions. Data set A contains n observations, while data set B contains m observations. The
data set obtained by merging A and B row-wise (on top of the other) has dimension (n + m) X 2.

46

451

variabley »>

M

40+

39

38

371 (4

36 . . . L L L L L ),
37 38 39 40 “1 42 43 44 45 46

variable x

FIGURE 2

46

variable y
s
o
;

a2+

4t

20F = = = gmp =y == mp my|— —

39

38|

371 L

a8 . . . . . " h ; ‘
37 38 39 40 41 42 43 44 45 46

variable x

Research scenarios RS1and RS2. (A) Scatter plot of n + m = 200 observations of two variables x and y: the Pearson’s sample correlation between xand y is

(xy)

rnim = 0.76. (B) The same scatter plot as in Panel A but with data points color coded to highlight the actual data structure: when taken separately then =m =
100 observations of x and y (Condition A: blue; condition B: red) are uncorrelated: r$ = 0.01 (data set A) and r$® = 0.08 (data set B). The observed high

(xy)

correlation rpym, = 0.76 is an artifact due to the merging of two data set containing variables coming from two different populations: in this case x and y
come from two independent normal distributions with population means i, = (43, 43) and ug = (40, 40) and unit variance »* = 1.

containing # = 100 and m = 100 observation of x and y and then I
have calculated the correlation between x and y. The reality is that x
and y are not correlated at all: when the two data sets (conditions)
are considered separately, the correlation between x and y is zero,
since the generating mechanism of the data shown in Figure 2A is
the following:

(-x1<i<m y1<i<n) ~ N(40: 1)

6
(xn+1<i<n+m) yn+1<i<n+m) ~ N(43a 1)) ( )
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which generates variables x and y that are independent and
uncorrelated. The second scenario RS2 is very often encountered in
papers dealing with the analysis of very large omics data sets. This way
of proceeding is also problematic. In fact, when the researcher looks
for differentially expressed genes, (or for metabolites with different
concentrations), they perform some statistical test to compare the
observed means of variable x and y in condition A versus condition B
(in this case a t-test, for instance), testing the Null hypothesis (similar
considerations hold for variable y):
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Gene y

Real life research scenario RS2. (A) Scatter plot of the expression values of two genes x and y: the Pearson’s sample correlation between gene x and y is
rmm = 0.66. (B) The same scatter plot as in Panel A but with gene expression color coded to highl |ght the actual data structure: when taken separately the

expression of genes x and y (Condition A: blue; condition B: red) are uncorrelated: rm

(xy)

~0.1and r$” = 0.1, respectively. The observed correlation r(%), =

0.66 is an artifact due to the merging of the expression profile of two genes that have been found to be differentially expressed between condition A and
B (case and controls) (P-val < 107%) violating, in this way, the assumption of sampling from the same distribution. Data from (Li et al., 2014). Note that there is
nothing wrong with analysis of the data in the original publication: here the data has been only used to build an illustrative example.

Ho: 6 = Y o)
against the alternative
Ho: i # g ®)

There is of course no problem using the f-test to find genes that are
differentially expressed (even if more powerful approaches have been
introduced for this type of data). The problem arises when the
differentially expressed genes are used to compute correlations. Selecting
the variables for which Hy is rejected is the equivalent of selecting variables
for which the distribution of x is different between two conditions. Stated in
other words, by doing so the researcher is looking specifically for those
variable that violates the assumption of sampling from one distribution!

If the reader thinks that these are just simulated numerical
examples, it is not complicated to show that such problematic
situations can be easily encountered when wusing real-life
experimental data. Figure 3 shows a case similar to the one given
in Figure 2, this time obtained using data from a transcriptomic study:
the expression profiles of two genes x and y, measured at two different

X
conditions in a case-control scenario, are uncorrelated (r( i 1,

ri? = —0.1) when the two conditions are considered separately
Figure 3A. However, they become correlated (r,(,ff,? , P-val <107°)
(Figure 3B) if the correlation is taken over all the observations

combined, i.e., when the two data sets are combined.

2.2 A closer look to the mathematics of the
problem

This section presents a mathematical explanation of what

observed in Figures 2, 3. Let’s define the overall mean M (x)

iy Over
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all the (x;, X5, ... X,4,m) Observations of x (identical formulas hold

for y)
1 n+m
MW = Xi» 9
n+m n+m ; 1 ( )
and the partial means M,(l") and M Y(n") over the (x;, Xy, ... x,,) and
(Xpna1> Xpa2s -+ Xpam)> S
MP == x 10
W= Z (10)
1 n+m
M,(,f) =— Xis (1 1)

i=n+1

with similar definition for variable y. The overall variance S) of

Xu4m is given by (Chan et al., 1982)

n+m

Vi e 3 G MELY (12
and the partial variances S,Sx) and S\ by
(x)
= Z (x; — MY
| (13)
Ve = MY,
L Gy

i=n+1

The total variance S{) taken over all the observations of x can be

expressed as function of the partial variances (Eq. 13) of the subsets

X 1 X,
V& = - OV n - v+

nm N2
(M) - M)
(14)

frontiersin.org


https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1042156

Saccenti

The covariance C,(nﬁy,z between the n + m observations of x and y
can be expressed in term of the partial covariance C**) and C%)
between the n (and m) observations of x and y:

c@ - Ju-1ne™ 4 m- et
n+m-—1
nm X X (J’) (;V) (15)
+—n+m(M,§’—M§n>)(Mn — M, )]

By combining (Eq. 15) with (Egs 13, 14) it is possible to obtain the
sample correlation r,gffﬁ between 7 + m observations x and y as a function

of the correlation ry(l") and rf,f) calculated on the two subsets (Hayes, 2012):

(xy)
r (xy) _ Cn+m

e
@ fr»
Vi Vil

nm

1 (n=DC + (m-1)CLY + o (MY - MDY (MY - MQ)

:n+m—1 (x) ()
Vi Vil

n-— m—

1 7o)

(xy)
T +
n+m-1"

Tn+m-1"

1 nm  (MP - MP) (MY - M)

(16)

Eq. 16 shows that the correlation between x and y taken over the

+ el
n+m-1ln+m

full data set is a weighted sum of the correlations i and ry” taken
over the two subsets plus and additional term
(x) _ pf) O — M
x 1 nm Mn Mm Mn M
ar) = ( A ) wy)

m
n+m-1ln+m
Wanven
The term Ar,(,if’,/,f does not depends on the correlation between x and y,
but only on the difference between the mean value of x and y in the two

sub sets. As a consequence, even if ry(lxy ) and r,(nxy )

are zero, the correlation
taken over the merged data set is different from zero if x and y have not the
same average M ¥ and M(¥) and M» and M? in the two sub sets.
This is exactly what happens in the examples shown in Figures 2, 3.

Working out the calculations for data in Figure 2 we have:

n=m= 100 (18)
MP =132 MY =432 M =399 M) =401
v =092 s =086 V@ =077 v =09
M®) =415 M =416 (19)

v =35 8% =33
rn(”) =0.08 r,ffy) =0.01

72 Z 0.76.

These numerical results are consistent with those we obtained for
the synthetic data sets, where uncorrelated observations of x and y
were generated according to:

(X1 %3, .. %) ~ N (40, 1)
(xn+1: Xpt2s - - - xn+m) ~ N(43> 1)

(y1> Y2 - yu) ~ N (40,1)

20
(Vust> V2o - -« Yoam) ~ N (43, 1), 20

with n = m = 100. Eq. 16 shows that the contrary is also possible:
two variables can be correlated in two different data sets but
uncorrelated when the correlation is taken over the two merged
data sets: this is shown in Figure 4.

Eq. 16 also explains why the Pearson’s sample correlation is so
sensitive to outliers, to the point that one single outlier is sufficient to
pull a zero correlation to 1. Having one outlier is the equivalent of
having one additional data set (or condition/class/group) with just m =
1 observations. As a result, Eq. 16 simplifies to
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1 (MY = %) (MY = Y1)
n+1 [ [ ’
Vii)l Vn{l

If the outlying observation (x,,1, ¥,.+1) is very distant from the average

"1y
n+l T n n

T (21)

of the other n observations, the resulting correlation can be severely
inflated, as shown in Figure 5A. The reader could argue that the use of
Spearman’s rank correlation (Spearman, 1904) would have avoided this
problem, since Spearman’s correlation is less sensitive to outliers. This is
certainly true, as shown in Figure 5B: the presence of an outlier, even if
really far from the average of all other #, not outlying, observations, does
not affect the correlation. However, this argument holds true only in case
of a few outliers: if the number m of outliers increases, also the Spearman’s
correlation increases, albeit less dramatically than in the case of Pearson’s
correlation, but still to a significant extent, leading to claim the existence of
a correlation between x and y when x and y are not correlated at all. This is
shown in Figures 6A, B. The agreement between Pearson’s and
Spearman’s indexes increases when the number of outliers increase
since the Spearman’s index is not robust against a large number of
outliers. As shown in the plot, when there are one to two outliers, the
Pearson’s coefficient gives a large correlation while the Spearman’s not;
and as the number of outliers increase, both agree on a large correlation.

2.3 Violation of independence of observations

The third scenario RS3 pertains the violation of the assumption
that the observations (i.e., the samples on which variables x and y
are measured), are independent, i.e., independence of errors.
Working with repeated measures is the most striking case of
non-independent observations, since the same subject is
measured more times. This scenario is graphically illustrated in
Figure 7.

What are the consequences of the violation of the independence of
the samples? This depends on the type of dependence present between
the observations. Take for instance the case when technical replicates
are used (wrongly!) to increase the sample size. In this case more
observations (measurements) are available of x and y on the same
sample(s), with the model (a similar equation holds for y)

Xij = phy +€js (22)
where x; ; is the jth replicate of observation ith of x and ¢; is the
replication error. An example of n = 25 observations of x and y,
each with three replicates, is shown in Figure 8A: if only one
observation per subject is taken (n = 25), the correlation between x
and yis ¥’ = 0.91, while ifall n + m =25+ 2 x 25 =25x3 =75
observations are taken, the correlation is ™’ = 0.76. In general,
using replicates considering them as independent observation will
lower the value of the correlation coefficient. Repeated measures
must be handled carefully with special approaches: there is ample
literature on this topic, see for instance (Bakdash and Marusich,
2017) and reference therein.

Dependence of observations can also arise because of reasons that
are out of the control of the experimenter, like in presence of
correlated measurement noise, where data can be modeled as

(23)
(29)

xi:nux+exi+¢x

Yi=phy, tE+ ¢,
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Research scenarios RS1and RS2. (A) Scatter plot of n + m = 200 observations of two variables x and y: the Pearson’s sample correlation between xand y is

(xy)

rnem = 0.20. (B) The same scatter plot as in Panel A but with data points color coded to highlight the actual data structure: when taken separately then = m =
100 observations of x and y (data set A, blue; data set B: red) are correlated: rﬁxy) = 0.72 (data set A) and rﬁm = 0.72 (data set B). The low observed correlation

(xy)

rnim = 0.20 is an artifact due to the merging of two data set containing variables coming from different populations: in this case x and y come from two
independent normal distribution with population means i, = (43, 40) and g = (40, 40) and unit variance.
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Effect of outliers on the correlation coefficient: 100 observations of two uncorrelated variables x and y ~ N (40, 1) (observed Pearson’s correlation

r,(f” = 0.1) to which an outlier observation x,+1. Yn+1, With increasing distance from the sample mean (open dots O), is added. (A) The Pearson’s correlation r)

n+l

calculated on the n + 1 observations (including the outlier x,,.1, yn+1) increases with the distance of the outlier x,,,1, ¥»4+1 from the sample mean, consistently
with Eq. 21. (B) The Spearman'’s correlation coefficient is not sensitive to the distance of the outlier from the sample mean. However, this is not true if m >
2 outliers are present, as shown in Figure 6.

where ¢, and ¢, are correlated error terms normally distributed

with zero mean and given error variance-covariance. The presence

of correlated error can induce correlation between two variables

Frontiers in Systems Biology

06

that are originally uncorrelated, as shown in Figure 8B. The effect
of correlated and uncorrelated error on the Pearson correlation

coefficient is discussed in (Saccenti et al., 2020).
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the two indexes is larger when m = 1 since the Spearman’s correlation is robust to the presence of that outlier. If the number of the outlier is large (m = 100) the
difference between the two indexes becomes increasingly smaller since the Spearman index is also affected by the outliers: both indexes record an

inflated correlation.
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FIGURE 7
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Graphicalillustration of a data set containing m repeated (or replicated) measurements/observations of two variables x and y on n subjects. Each block of

repeated measurements is depicted as a block of different color.

Another
the correlation using time series data to increase the sample

commonly seen error is the estimation of

size, which is another violation of the assumption of
independent observations. This type of data also needs to be
handled carefully, since it is very easy to obtain misleading

results: a classic reference on this topic is (Yule, 1926).
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3 Plot the data rather than blindly
trusting correlation values

The examples discussed in the previous section should (hopefully)
suggest that plotting the data is a critical step for the analysis,
understanding and interpretation of correlations: visual exploration
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Principal component analysis score plot of n = 200 observations of p = 1,000 variables. (A) Observations are sampled from the same normal multivariate
distributions: variables are uncorrelated with unit variance and mean 40. There is no structure in the data and no outliers are visible. (B) Observations sampled
in presence of batch effect affecting 500 variables which are sampled from a normal distribution with mean 40.2. The batch effect is clearly visible in the PCA
score plot, suggesting a violation the assumption from one distribution. Caution must be taken when correlations are calculated!

of scatter plots like those shown in Figures 2—4, can easily reveal the
presence of outliers and data structures that can point to violation of
the assumption of sampling from one population or independence of
observations (although the latter can be tricky to spot). In the case of
multivariate data when p > 2 variables are measured, plotting and
visual exploration of all possible correlation plots is usually not a

Frontiers in Systems Biology

feasible approach, since the number of plots increases as  p(p — 1). In
this case, Principal Component Analysis (PCA) (Pearson, 1901;
Hotelling, 1933; Jolliffe, 2002) is an extremely valuable tool since it
can be used to reduce the dimensionality of high-dimensional data and
can highlight the presence of outliers and of (unwanted) data structure
that hampers the calculation of the correlation coefficient. An example
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Saccenti

is given in Figure 9, where the PCA plot of a simulated data set without
and with data structure (in this case a batch effect) is shown.

4 Conclusion

In this technical note, I have shown some of the consequences of
neglecting the assumptions of sampling from one population and
independence of observations when calculating the Pearson’s
correlation coefficient. I illustrated cases of the violation of these
assumptions that originate when data sets coming from different
experiments or pertaining different experimental conditions or in
presence of batch effects are merged before the calculation of the
correlation coefficient. It is shown that this way of proceeding will
result in inflation or deflation of correlations: inflation or deflation of
correlations. In both cases wrong inference will be made, leading to
believe that a correlation exists when it does not, or that a correlation
does not exist when it actually does. Similar problems arise when
correlations are taken over repeated measures or time series.

The hope is that the reader, after having read and meditated the
examples, will be able to recognize those situations where the
calculation of the sample correlation is not allowed because of the
violations of fundamental statistical assumptions.
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