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Computational models of disease progression have been constructed for amyriad
of pathologies. Typically, the conceptual implementation for pathology-related in
silico intervention studies has been ad hoc and similar in design to experimental
studies. We introduce amulti-scale interventional design (MID) framework toward
two key goals: tracking of disease dynamics from within-body to patient to
population scale; and tracking impact(s) of interventions across these same
spatial scales. Our MID framework prioritizes investigation of impact on
individual patients within virtual pre-clinical trials, instead of replicating the
design of experimental studies. We apply a MID framework to develop,
organize, and analyze a cohort of virtual patients for the study of tuberculosis
(TB) as an example disease. For this study, we use HostSim: our next-generation
whole patient-scale computational model of individuals infected with
Mycobacterium tuberculosis. HostSim captures infection within lungs by
tracking multiple granulomas, together with dynamics occurring with blood
and lymph node compartments, the compartments involved during pulmonary
TB. We extendHostSim to include a simple drug intervention as an example of our
approach and use our MID framework to quantify the impact of treatment at
cellular and tissue (granuloma), patient (lungs, lymph nodes and blood), and
population scales. Sensitivity analyses allow us to determine which features of
virtual patients are the strongest predictors of intervention efficacy across scales.
These insights allow us to identify patient-heterogeneous mechanisms that drive
outcomes across scales.
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1 Introduction

Understanding the effectiveness of intervention measures in the context of patient-to-
patient variability is a challenge in both drug and vaccine studies. Diseases such as cancer and
infections such as COVID-19 and tuberculosis (TB) show patient variation in both infection
outcomes and intervention efficacies. Actionable data–data that may help us determine
efficacious interventions as well as understand patient variability–is limited by the frequency
of patient visits, the quantity and quality of patient data, monitoring procedures, and resources.
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Computational models are an additional approach toward
gaining valuable insights into disease and accompanying
interventions. Models applied in biomedicine have been used to
disentangle the multitude of interconnected components of large
complex systems such as cancer, HIV-1/AIDS, influenza and TB.
Many modeling studies seek to: i) replicate experimental in vivo,
in vitro, or in situ studies by using in silico experiments while
maintaining experimental design, such as experimental
interventional studies (Aggarwal and Ranganathan, 2019); ii)
determine mechanistic impacts of model components and
perturbations/treatments/interventions on output, e.g., by using
sensitivity analyses; and/or iii) develop model extensions or
reductions to determine the relative importance of detailed
components (Kirschner et al., 2014).

In order for a model to credibly perform credible in silico
experiments requires rigorous validation against available data
(Tatka et al., 2023). The precision and rigor required are system-
specific and adapted to the expected use of the model’s output
(Fogarty et al., 2022), and consequences of incorrect model
predictions (Aldieri et al., 2023). Various standards exist to
codify model validation (Fogarty et al., 2022; Tatka et al., 2023);
including the ten rules for model credibility developed by the Multi-
scale Modeling Consortium (Erdemir et al., 2020; Fogarty et al.,
2022; Nanda et al., 2023; Tatka et al., 2023) for systems biology
approaches, as well as the ASME VandV40 standards (ASME, 2018;
Aldieri et al., 2023; Tatka et al., 2023), and NASA standards for
models and simulation (NASA, 2016; Tatka et al., 2023). Each of
these standards establishes a series of assessments by which we can
establish the appropriateness of a model to address a given question
of interest relative to the model’s context of use. Here we describe a
framework for using a validated computational model, for example,
in a virtual clinical trial.

When we design virtual clinical trials from computational
models, we find one luxury in that the definition of a “virtual
patient” is flexible. For example, if a pharmacokinetic-
pharmacodynamic (PK-PD) model is being implemented, then a
patient’s pharmacokinetic identity is entirely defined by a set of PK-
PD parameters. In many individual-scale computational
approaches, every population generated by a model is
independent, which reflects the design that motivates
experimental interventional studies. However, that same virtual
patient can serve in multiple “what-if” scenarios, such as
determining effects of model stochasticity or perturbed biological
influences or as a negative control (no drug treatment). The
experimental analogue to this approach would be tantamount to
running different experimental interventions on the same patient
under the same conditions and scenarios.

With our ability to select amongst many types of models that can
credibly represent the same system, we need a methodology to
compare models in an implementation-agnostic way. We have seen
a recent push to standardize modeling approaches with modeling
ecosystems such as CompuCell3D (Poplawski et al., 2008;
Shirinifard et al., 2009), VCell (Blinov et al., 2008; Schaff et al.,
2016), PhysiCell (Ghaffarizadeh et al., 2018), as well as standardized
language for ODE model implementation such as SBML (Keating
et al., 2020), SED-ML (Bergmann et al., 2017; Smith et al., 2021),
COMBINE, OMEX (Bergmann et al., 2014; Neal et al., 2020), and
others (Tatka et al., 2023). With this variety of platforms, software,

computational frameworks, and databases available (computational
models, medical digital twins, etc.), it is likely impossible to develop a
single computational package to automate analysis or comparison
methodologies that account for the myriad of modeling approaches
possible without overly constraining their use context. One
component common to all models is the representation a real
patient by a virtual one (with varying degrees of accuracy and
refinement), hence we can create a broadly-applicable
methodological framework to perform model-to-model
comparisons.

In this work we propose a generally applicable methodological
framework, which we refer to as a multi-scale interventional design
(MID) framework: a method of developing a cohort of virtual
patients that we use to examine impacts of interventions on each
virtual patient within a virtual cohort by tracking dynamics across
physiological scales, from within-patient, through whole-patient,
and up to the population scale (Figure 1A). Using a MID framework
requires three key components: i) a cohort of virtual patients, along
with a biological justification as to why the same virtual patient is
able to be represented in multiple models; ii) a set of two related and
validated model versions, such as a control model and an
experimental model if representing, for example, a treatment
intervention; and iii) an impact quantification method by which
the outcomes of both model versions can be
meaningfully compared.

Consider TB, a disease caused by an infectious bacterium
Mycobacterium tuberculosis (Mtb) that has infected one-fourth of
the current world’s population (WHO, 2022). In 2020, TB had a
comparable annual death-toll to COVID-19 (WHO, 2020), and
concurrent infection with COVID-19 or HIV has increased
mortality for TB patients (WHO, 2022). Patients infected with
Mtb may eliminate infection, control infection (resulting in latent
TB disease) or fail to control infection (resulting in active TB
disease), yet the factors determining those outcomes are not fully
understood. Note, it is important to distinguish that Mtb are the
bacteria that cause infection, whereas tuberculosis (TB) is the disease
that results from infection. Data for analysis of Mtb infection
progression typically comes from low-resolution measurements in
patients (e.g., sputum analysis (Portevin et al., 2014; Guzzetta et al.,
2015; Esmail et al., 2016)) or at necropsy when studying non-human
primates (NHPs) or other animal models (Barry et al., 2009; Martin
et al., 2017; Lin and Flynn, 2018; Wong et al., 2020; Grant et al.,
2022). As a result, deriving mechanistic insights to time-evolution of
Mtb infections and its interplay with patient heterogeneity across
populations is a crucial step in improving our ability to study TB as
well as other diseases.

Pulmonary TB, the most common form of the disease, is a
highly complex disease with multiple interacting systems
determining patient fate (note that we will also refer to
patients as hosts as this is common terminology for an
infectious disease). There is heterogeneity in lung granulomas,
the focal structures of Mtb-host interaction, within individual TB
hosts that is critical to prediction of host outcomes (Cadena et al.,
2017; Lyadova, 2017; Cicchese et al., 2020). Host-scale dynamics
are also heterogeneous and fall into at least three groups that exist
on a spectrum: hosts that will clear the infection, control the
infection, or fail to control infection and thus suffer active disease
(Lin and Flynn, 2018). The dynamics of Mtb infected cohorts are
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also heterogeneous, e.g., some hosts improve with drug treatment
rapidly while others do not. Thus to understand host infection
progression and treatment, it is imperative to study TB at
multiple scales and decipher how small-scale interactions
influence large-scale findings (Figure 1B), making it an ideal
candidate to test the MID framework.

To demonstrate our ability to study virtual cohorts using a MID
framework, we implemented and tested our framework on multiple
versions ofHostSim, our next-generation, within-host to whole-host
scale computational model of Mtb infection. These versions include
a negative control version of HostSim, wherein infection of virtual
TB hosts is left untreated, as well as three simple drug intervention
versions for comparison. We implemented and tested these drug
interventions in our virtual cohort and demonstrated that MID is an
effective framework type to yield multi-scale virtual patient insights

on complex biological problems that both include and explain
patient heterogeneity at each scale.

2 Methods

Creating a MID framework requires three interconnected
components: 1) a virtual cohort VH{ }, 2) a pair of related model
versions: a control model M0 and an intervention model MP to
represent these hosts, and 3) an impact quantification: a method of
evaluating and comparing the projected trajectories and final states
of the virtual hosts between model versions. We present these
components in the context of TB as an example. We also
describe an updated version of HostSim, our previously published
model of a whole-host, which captures the immune response to

FIGURE 1
(A)Multi-scale intervention design to study over three physiological scales. We include a collection of virtual patients, a virtual cohort, that can each
be represented by a control model or represented under various interventions applied (e.g., HostSim and a perturbed version, such as with drugs or
vaccines). The virtual patient can be evaluated in each scenario, and impact level quantified by observing differences in specific patient outcomes. This
can be quickly repeated for many patients in parallel to determine an overall population-scale impact (cohort effect), or to examine which
subpopulations respond to interventions. (B) We illustrate three of the operative scales critical to understand TB. Lung granulomas encompass the
complex dynamics ofMycobacterium tuberculosis (Mtb) populations and their interactions with various lymphocyte populations. Clinical classification of
the patient (active or latent disease) is determined by multiple granulomas interacting with the patient’s lymphatic system. At the population scale,
patients within a cohort vary in their susceptibility to infection and response to treatment, complicating our understanding and prediction of the
demographic of clinical classifications. Note: we created Panel (B) using BioRender.com.
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infection with Mtb within 3 physiological compartments: lungs,
lymph nodes, and blood that represent pulmonary TB.

2.1 Creating the virtual cohort - a collection
of 500 virtual hosts, VH{ }

In our virtual cohort, each virtual host represents a typical host
infected with Mtb with no comorbidities, and our virtual cohort will be
generated to well-represent the demographic range of untreated patient
outcomes observed in the biological context. We give our virtual hosts
as an infection inoculum, 13 founding Mtb and one to five resting
macrophages on day 0. Our virtual hosts represent Mtb infection
progression in individuals up to 400 days post-infection, tracking
granuloma cellular and bacterial composition once per day. In
practice, each virtual host (VHi) in the cohort ( VH{ }) is recorded
as a granuloma and whole-host scale parameter set Pi that is preserved
between all versions of that virtual host (whether disease, treatment,
etc.), which we refer to as the virtual patient (host) identity.We choose
our virtual cohort of 500 virtual hosts ( VH{ }) such that we capture the
demographic of clinical outcomes observed in reality (Cadena et al.,
2017). We select these parameter values by using the Latin Hypercube
Sampling (LHS) method to generate values within a biologically viable
range that we calibrate to multiple datasets (Section 2.3), ensuring that
we accurately capture the heterogeneous spectrum of host outcomes.
Note that the LHS method of parameter selection promotes stochastic
and stratified coverage of the parameter space under the assumption of
uniform distribution of each parameter within the experimental ranges
(Helton and Davis, 2003; Cacuci and Ionescu-Bujor, 2004; Marino
et al., 2008).

2.2 TB virtual host model: HostSim as M0

Briefly, the HostSim model is based on known biology of
pulmonary TB. When inhaled, Mtb is phagocytosed by
macrophages. These inactive macrophages are unable to fully
digest Mtb, which slowly replicates inside of them. Eventually,
the macrophage bursts after reaching a carrying capacity of
internal Mtb, and the cycle continues. In part due to the slow
Mtb replication rate, inflammatory signals and antigen presentation
occurs more slowly - and in NHPs, the lymph nodes (LNs) show no
metabolic activity until 2–4 weeks post-infection (Coleman et al.,
2014; Ganchua et al., 2018; Ganchua et al., 2020). Multiple
granulomas form, typically one for each Mtb colony forming unit
(CFU) (i.e., an individual Mtb bacterium) that lands within the lung
(Martin et al., 2017). Mtb-specific T-cells arrive from LNs to activate
macrophages and allow them to destroy intracellular Mtb and
induce apoptosis of infected macrophages. These dynamics result
in the development of a complex structure called a granuloma that
comprises Mtb, live immune cells, and dead tissue (caseum).

HostSim, our untreated virtual host model, is a multi-scale
computational model of an individual host that represents both the
tissue-scale and whole-host scale response to pulmonary Mtb infection
(Joslyn et al., 2022a; Joslyn et al., 2022b). We created a next-generation
version of HostSim herein to include additional biological features and
better capture Mtb infection immunobiology (see Supplementary
Material S1 Section 2 for model updates, and Supplementary

Material S2 for a complete model description and list of equations).
We represent three physiological compartments in our hybrid
computational model HostSim: lungs, LNs, and blood. The lung
compartment captures a collection of lung granulomas represented
as agents in an agent-based model. Each agent is itself comprised of a
system of 22 nonlinear ordinary differential equations (ODEs)
describing interactions between macrophages, three subpopulations
of Mtb - intracellular, extracellular, and non-replicating; cytokine
signals (e.g., IL-4, IL-10, IL-12, and TNF-α), and different T-cells in
various states of differentiation (Figure 2). Granulomas allow antigen-
presenting cells to travel to LNs proportional to the Mtb burden within
a granuloma, and the LN clonally expands Mtb-specific T-cells. T-cells
are released from the LN compartment (described by ODEs) into blood
(also represented by ODEs) where they may be recruited into lung
granulomas. Since each granuloma has its own instantiation and
parameterization within our ODE system, and formation of new
granulomas makes the number of granuloma ODE trajectories
variable, we consider HostSim to be a hybrid agent-based model.
HostSim is simulated in MATLAB using the ode15s variable order
ODE solver for time-stepping the ODE portions of HostSim.

When running simulations, cytokine signals and antigen
presenting cells circulate to a virtual host’s LN compartment,
which selectively clones Mtb-specific CD4+ and CD8+ T-cells. We
have newly-calibrated parameter ranges to a variety of data from
both NHPs (Gideon et al., 2015; Marino et al., 2016; Cadena et al.,
2018; Darrah et al., 2019) and our fine-grained model of a single
granuloma, GranSim, to capture the heterogeneity both between
hosts and between granulomas within a single host (see Section 2.3).

2.3 Calibrating the virtual cohort VH{ } to be
represented in M0

We first need to calibrate HostSim in order for it to be a credible
M0 in our MID framework. With 201 varied parameters and
3 compartments, HostSim requires careful calibration that leverages
known constraints and biological ranges. As in (Joslyn et al., 2022a;
Joslyn et al., 2022b), we calibrate our model by comparing its outputs
to data taken from 646 NHP granulomas assembled over the last
15 years (Gideon et al., 2015; Marino et al., 2016; Cadena et al., 2018;
Darrah et al., 2019). We use our previously published calibration
method, CaliPro (Joslyn et al., 2023), to refine both granuloma and LN
parameter ranges from our previously calibrated values (Joslyn et al.,
2022b). Our calibration criteria are implemented at the granuloma
scale, and each criterion tests the proximity of simulated granulomas
to granuloma data collected from NHPs (Gideon et al., 2015; Marino
et al., 2016; Cadena et al., 2018; Darrah et al., 2019), as well as synthetic
data from our fine-grain model of a single granuloma, GranSim
(Segovia-Juarez et al., 2004; Pienaar et al., 2017;Warsinske et al., 2017;
Sarathy et al., 2019; Cicchese et al., 2020; Budak et al., 2023).

Briefly, CaliPro is a calibration method that incorporates a broad
range of model parameters and multiple and varied datasets. Using
LHS, we choose a stratified collection of parameter values out of a
broad parameter (Marino et al., 2008). CaliPro evaluates the model
at each of these parameter values and determines whether the
outputs are sufficiently close to the given dataset(s) to be
admitted to a “pass set”, i.e., meeting heuristic criteria that
suggest that model output is biologically relevant. CaliPro then
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shrinks the parameter ranges to exclusively capture the pass set while
still covering the broadest possible set of parameters. This process is
iterated multiple times. After calibration, 90% of granulomas
“passed” all tests against calibration criteria, which are described
in Supplementary Material S1 Section 2.2. Our calibrated parameter
ranges are listed in Supplementary Material S2 Section 5.

2.4 Validation that our virtual cohort hosts
capture population demographics for TB

Our goal is to use HostSim simulations to determine, on
3 physiological scales: population-scale, host-scale, and

granuloma-scale, which features drive both granuloma and whole
host infection outcomes. As such, our virtual cohort should reflect
epidemiological contexts for TB (Joslyn et al., 2022b; WHO, 2022),
and our use case ofHostSim is to generate a collection of virtual hosts
whose trajectories agree with distributions of available global data on
humans for TB. To do this, we define virtual host classifications in a
clinically interpretable way. For studying TB, our classifications are
clinically latent, bacteria sterilizing, and active disease. We classify
virtual hosts as having active TB if either 1) they have higher total
lung CFU than an active-host cutoff of 3.2 · 105; or 2) they have at
least one granuloma which increases by more than 10% CFU
between days 100 and 150 post-infection. We chose these times
post-infection because primary infection sites have a transient peak

FIGURE 2
Diagram of HostSim model construction, M0 . (A) Granulomas within lungs (blue compartments) are linked to lymph node (purple) and blood (red)
compartments (details in Supplementary Material S2). We represent interventions as being applied to the equations governing Mtb development. (B)
Diagram of a simplified granuloma as represented in HostSim. In the central caseum sub-compartment, nonreplicating bacteria are trapped within a
hypoxic/necrotic core. All other species, including macrophages, T-cells, and extracellular bacteria, are in the viable cellular zone. Note that in
HostSim, the viable cellular zone is treated as well-mixed for the sake of cell-cell interactions. (C) Lung granulomas and lymph nodes of virtual TB host at
t = 250 days post-infection shown within the context of a lung and body triangulation of a nonhuman primate [courtesy of Henry J. Borish in JoAnne
Flynn Lab, University of Pittsburgh]. Cylinders on the trachea represent the lymph node compartments, and spheres (colored by their CFU count and sized
based on their cellular composition) represent granulomas. The branching blood vascular surface is colored based on blood effector CD4+ T-cell
concentration. (Details of visualization are in Supplementary Material S1 Section 3).

Frontiers in Systems Biology frontiersin.org05

Michael et al. 10.3389/fsysb.2023.1283341

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1283341


of increasing bacterial numbers around day 30 before the immune
system responds and forms a proper granuloma (Cadena et al.,
2017). We define active disease based on data taken from 4 NHPs
that were necropsied early due to severe Mtb infection (see
Supplementary Material S1 Section 1, courtesy of the JoAnne
Flynn lab). We classify virtual hosts as sterilizing hosts if their
total lung CFU count has dropped to zero at or before 400 days post-
infection. We consider all other hosts as having clinically latent TB,
and there is a spectrum of outcomes within this group as is observed
in humans and NHPs (Lin and Flynn, 2018). After performing
calibration on the host and granuloma scales, our virtual cohort had
a distribution of outcomes: approximately 90% of virtual hosts
classified with latent TB, 6% with active TB, and 4% of virtual
hosts sterilizing their infection entirely. This indicates that our
virtual cohort reflects observed trends in patient outcomes at the
population scale (Cadena et al., 2017; Lin and Flynn, 2018). Note our
classifications are flexible as new data become available.

2.5 Developing intervention models MP for
our virtual cohort

Our goal is to create a cohort that we can test different model
perturbations such as antibiotic treatment, vaccines, or other
interventions. To do this, our goal is to build versions of our
model that represent a control version M0 and an intervention
version, MP. The intervention version should i) observe both the
host and granuloma scale mechanisms from M0, and thereby
maintains credibility, and ii) sufficiently represent intervention
dynamics to identify key drivers of host-response. Here, in the
interest of demonstrating the MID framework and its use, we use a
highly-simplified model of antibiotic treatment of TB as an example
of an intervention model MP. Our objective is to capture
heterogeneity in the host-response to treatment over multiple
physiological scales. To establish this approach, we use coarse-
grained representation of 3 TB antibiotics, where we qualitatively
represent the impact on bacterial burden in time by capturing the
known modes of action of different antibiotics. These simplified TB
drugs represent 3 different classes of drugs that are currently used to
treat TB: isoniazid (INH), bedaquiline (BDQ), and pyrazinamide
(PZA). While these drugs are typically used in combination therapy,
here, for example, purposes, we implement each one individually.
We model these drugs based only on their known killing
(bactericidal) or bacteriostatic behaviors (Zhang and Mitchison,
2003; Jayaram et al., 2004; Sarathy et al., 2018; Budak et al.,
2023), omitting for this simple model any consideration of
pharmacokinetics or transport limitations in accessing portions
of the granuloma as we have done in other work (Budak et al.,
2023). We define an INH-like intervention version MINH, a PZA-
like intervention MPZA, and a BDQ-like intervention MBDQ (each
version representing an MP). Here, we note some differences in
these drugs’mechanisms that we will phenomenologically capture: i)
INH is able to penetrate into caseum and kill bacteria but is not
taken up by infected macrophages (Jayaram et al., 2004; Prideaux
et al., 2015; Nahid et al., 2016; Sarathy et al., 2016; Sarathy et al.,
2018); ii) BDQ kills bacteria that it can reach more effectively but
takes much longer to penetrate into caseum (Dhillon et al., 2010;
Chahine et al., 2014; Prideaux et al., 2015; Sarathy et al., 2016;

Sarathy et al., 2018); and iii) PZA is a bacteriostatic drug that slows
bacterial replication but takes a long time to penetrate into caseum
(Zhang andMitchison, 2003; Prideaux et al., 2015; Nahid et al., 2016;
Sarathy et al., 2016; Sarathy et al., 2018).

We represent dosing our virtual hosts by modifying the
equations governing bacterial growth with the following unitless
treatment values Ai after intervention time t � 200 days.

d

dt
BE � A1 Replication( ) ± conversion toBI( ) − A2 Death( )

d

dt
BI � A3 Replication( ) ± conversion toBE, BN( ) − A4 Death( )

d

dt
BN � conversion fromBI( ) − A5 Death( )

where our control model M0 HostSim is recovered if each Ai � 1.
ForMBDQ, we set A2 � 5 · 107, A4 � 5000 and A5 � 10; intervention
parameters A1 � 1 and A3 � 1 since we do not treat BDQ as
bacteriostatic. In MINH, we define these action coefficients
relative to MBDQ - in MINH, we set A2 � 2500 since INH is less
effective at killing extracellular bacteria; we set A5 � 5 since more
INH ends up in caseum though it is less effective at a given
concentration than BDQ, and A4 � 1 because our simplified INH
does not get taken into macrophages; for INHwe also setA1 � 1 and
A3 � 1 as it is not bacteriostatic. For MPZA, the bacteriostatic effect
is captured by setting A1 � A3 � 0.5, halving bacterial replication
rates for all hosts. We set A2 � 1, A4 � 1, and A5 � 1 since PZA is
not bactericidal. It is important to remember that the virtual patient
(host) identity parameter values (Pi) used to define the virtual cohort
VH{ } are independent ofM0 andMP. By running simulations using
eitherM0 orMP with the same parameters Pi and initial conditions
- and thus each virtual host VHi - the entire virtual cohort can be
represented in every model version, while the treatment values Ai

are preserved across the cohort.

2.6 Impact quantification method for our
MID framework

The final component of our MID framework is an impact
quantification method that directly quantifies and compares the
impact of the intervention model versionsMINH,MPZA, andMBDQ

against the negative-treatment M0 at multiple physiological scales.
In principle, comparisons between virtual hosts and model versions
may use any outcomes and measurements that may be relevant to
the system under study. Importantly, the selection of impact
quantification is implicitly related to the model’s question of
interest and context of use, since models may have different
levels of credibility depending on which outcome is being
observed. The multi-scale component of a MID framework
comes from comparing the outcome of VHi represented in MP

(i.e.,MP(VHi)) to VHi represented inM0 (i.e.,M0(VHi)) for each
virtual patient in the virtual cohort. Here, we perform this
quantification by directly comparing CFU counts between model
versions over time. SinceM0 andMP have identically formatted and
nonnegative outputs - time-series data of all HostSim variables
computed once per day - the ratio of the outputs may be
considered at all scales. On the host scale, we examine the ratio
of total lung CFUs as
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Host Impact score � HS t; VHi( ) � log
M0 CFU VHi( ) + 1
MP CFU VHi( ) + 1

( ) t( )
(1)

In this way, hosts with HS ≈ 0 have very little treatment
effectiveness, HS > 0 have a positive influence on the system
outcome, and HS < 0 have a deleterious effect. Capturing impact
score over time informs many aspects of the score, including
projected time until expected results of intervention. We can also
compute an impact score at other physiological scales. For example,
at the granuloma scale, we compute an impact score for each
granuloma in the lung to obtain the granuloma impact,

Granuloma Impact Score � GS t;VHi( )

� log
M0 CFU VHi( ) + 1
MP CFU VHi( ) + 1

( ) t( ). (2)

2.7 Sensitivity analyses

As an additional form of impact quantification in a MID
framework, we can also evaluate the impact of MP via sensitivity
analysis, which allows us to identify parameters and initial
conditions that drive specific features of model output. We
use the partial rank correlation coefficient (PRCC) method,
which is a computationally efficient and accurate method for
performing sensitivity analysis on high-dimensional models
(Marino et al., 2008; Renardy et al., 2019; Renardy et al.,
2021). When given a set of model runs and a numerical
output of that model, the PRCC method determines for each
input parameter: i) a coefficient that measures the correlation
between that parameter and the model output and ii) a p-value
determining the statistical significance of that measurement. We
typically use this method to understand the impact of parameter
impacts on M0 outputs. However, since the same virtual cohort
VH{ } is being represented in both models, (M0( VH{ }) and
MP( VH{ })), sensitivity analysis methods apply to composite
models f[M0, MP]( VH{ }). Since impact quantification methods
such as expressions [1] and [2] satisfy the requirements of a
composite model, we can perform sensitivity analysis on these
scores as well to determine what patient characteristics correlate
with intervention scores.

3 Results

3.1 Constructing a MID framework

If we run thousands of simulations, allowing for patient-to-
patient variability and representation of each virtual host with and
without interventions, we refer to our collection as a virtual cohort.
We introduce ourMID framework, our goal for which is to create an
easily implementable layer for most computational modeling
systems that represent individual patient dynamics. MID is a
framework for making meaningful comparisons between the
outcomes of individual virtual patients’ outcomes in between a
negative control model M0 and a perturbed intervention version
of the model MP (see Figure 1A for a schematic).

To be specific, we require three interconnected components to
create ourMID framework, and they are: 1) a virtual cohort VH{ }, 2)
a pair of related and validated models to represent those patients: a
control model M0 and an intervention modelMP, and 3) a method
of evaluating and comparing the projected trajectories and final
states of the virtual hosts in either model version (see Section 2.6).
One of the only model prerequisites is that there be a natural
representation, or a biological justification, for how the same
virtual patient VHi is represented by M0 and MP. For example,
if M0 contains a simplified representation of pathogen replication
time andMP contains a detailed pathogen life cycle interacting with
a drug intervention, we must ensure that MP matches the “control
limit” as the drug level approaches 0.Wemust also use caution if two
model versions have notably different representations of the same
biological process. There must be some biologically-rooted
justification as to why we can reasonably assume that the same
host is being represented in both model versions.

Lastly, an impact quantification method should be specified that
compares trajectories of individual virtual hosts represented in both
the M0 and MP versions in a biologically-interpretable manner.
These should be specific to the particular model system and made to
ensure that comparisons between the models are relevant to the
intended goal of the intervention. For example, a drug intervention
may have an outcome evaluation that weighs time to sterilization,
pathogen burden, and drug toxicity. The MID framework
components are simple enough that they can be applied to many
models from multiple biomedical applications. We list a few
examples of potential MID framework implementations in
Table 1. Note that if we want to perform a MID framework
study using highly stochastic models, we must take care in
defining virtual host outcomes. For example, we might work with
Mean(M) and Var(M). Measurable features for impact
quantification should be able to capture differences in dynamics
betweenM0 andMP at the scale at which the intervention is applied.
As HostSim is deterministic (except for rare dissemination events)
once the initial agent properties are defined, we omit such
considerations from our TB application.

3.2 HostSim providesM0 for MID to study TB
over multiple scales

A key step of developing our MID framework study is to declare
a control model,M0. This model represents the unperturbed system
that we are interested in studying, which in our case is Mtb infection.
We want this model to be well calibrated and validated, and to
mechanistically represent our system at the scale that our
intervention is going to perturb. For M0, we use an updated
version of HostSim, our whole-host model of Mtb infection.

We update our TB simulation HostSim (Joslyn et al., 2022b) and
recalibrate it to additional published datasets from NHPs across
granuloma, host, and population scales (Gideon et al., 2015; Marino
et al., 2016; Cadena et al., 2018; Darrah et al., 2019).We calibrated using
our CaliPro procedure (Joslyn et al., 2023), integrating these data by
using a population of 500 virtual hosts VH{ } sampled from within
experimentally viable parameter ranges (see Section 2). Supplementary
Figure S2 shows several state variable trajectories over time for a single
representative virtual host with latent Mtb infection.
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We validated our virtual hosts at multiple scales according to
the ten simple rules credibility standard (Erdemir et al., 2020;
Fogarty et al., 2022; Nanda et al., 2023; Tatka et al., 2023). Figures
3A–E shows trajectories of 6,500 primary granulomas and whole-

host CFU counts taken from 500 virtual hosts generated after we
calibrated to multiple datasets from different NHP studies. At the
population scale, clinically latent hosts had a range of
1–12 primary granulomas that eliminated all bacteria while

TABLE 1 Examples of potential application of theMID framework to biomedical systems. The virtual patient definition can be flexibly adapted and generalized to a
broad set of virtual subjects and intervention types. Note that in all cases,M0 andMP should be validated such that theymaymake credible claims about outcomes
used in impact quantification. In some cases, finding a small impact may provide useful results (e.g., that a proposed treatment will not impact patient outcomes,
or that a model simplification is sufficient to capture outcomes).

Model Virtual cohort members Model versions Example impact quantification

HostSim (Joslyn et al., 2022a; Joslyn et al.,
2022b)

Virtual host: a vector of parameters
describing host PK/PD in each
granuloma; Initial conditions of each
granuloma and lymph node

HostSim, which encompasses all
equations, dynamics, component
interactions

Ratio of bacteria load between untreated
host and host with antibiotic intervention
for each granuloma and host; demographic
of clinically Latent, Active, or Sterilizing
patients

(Tuberculosis)

M0 - No treatment

MP - With antibiotic treatment

Drug Interventions in GranSim (Pienaar
et al., 2017; Sarathy et al., 2019; Cicchese
et al., 2020; Budak et al., 2023)

Virtual granuloma: vector of parameters
for individual granuloma’s immune
response; initial conditions and grid
configuration

GranSim, which encompasses all agent
probabilities, dynamics and cell
behaviors, agent interactions

Function designating granulomas as
controlling, non-controlling, or sterilizing
as a function of their end state; expected
bacterial counts by subpopulation(Tuberculosis)

M0 - No treatment

MP - With antibiotic treatment

Tuneable Resolution with GranSim
(Segovia-Juarez et al., 2004;
Fallahi-Sichani et al., 2012a;
Fallahi-Sichani et al., 2012b; Kirschner
et al., 2014; Pienaar et al., 2016)

Virtual granuloma: vector of parameters
for individual granuloma’s immune
response; initial conditions and grid
configuration

GranSim, which encompasses all agent
probabilities, dynamics and cell
behaviors, agent interactions

Function designating granulomas as
controlling, non-controlling, or sterilizing
as a function of their end state; the
predicted growth phenotypes of bacteria
and activation levels of immune cells

(Tuberculosis) M0 - Coarse grained representation of
TNF-α, NF-κB, or metabolism

MP - Fine grained representation of
TNF-α, NF-κB, or metabolism

Antibody-drug conjugate simulation
(Menezes et al., 2020; Menezes et al.,
2022)

Virtual tumor: vector of parameters for
individual tumor’s vascularization state,
immune response, and initial grid
conditions

Model that encompasses all agent
probabilities, dynamics and cell
behaviors, agent interactions

Function designating tumors as growing or
shrinking as a function of structure and
cancerous cell count

(Solid tumor)
M0 - Untreated control

MP - Added antibody-drug conjugate
treatment

Quantitative systems pharmacology
simulation (Norton and Popel, 2014)

Virtual patient: vector of parameters for
virtual patient’s pharmacological
parameters in the untreated case

Quantitative systems pharmacology
simulation which describes immune-
cancer interactions

Function quantifying the relative
shrinkage of carcinoma with immune
checkpoint inhibitors(Hepatocellular carcinoma)

M0 - Untreated control

MP - Added immune checkpoint
inhibitors

Immune Response Agent-based Model
(Cockrell and An, 2017; Larie et al., 2021)

Virtual patient, wound, and environment:
parameters determining of distributions
of i) sustained endothelial tissue damage,
ii) patient response thereto, iii) initial
microstate, iv) external variables known to
affect patient prognosis

Stochastic and mechanistic model of
inflammatory response

Functions comparing the expectations,
variances, and other descriptive
distribution parameters of predicted
oxygen deficit or cytokine levels in time
with vs without treatment

(Sepsis)
M0 - Untreated control model

MP - Model of proposed treatment or
medical intervention for clinical sepsis

Fibrin contraction simulation (Britton
et al., 2019; Michael et al., 2023)

Virtual clot: collection of spatially
arranged platelets embedded within a
fibrin mesh

Subcellular element model that
represents multiple platelets pulling on
fibrin fibers to cause the emergent
contraction of a blood clot

Function quantifying the relative amount
of contraction of the blood clot and
distribution of multi-platelet clusters(in vitro Blood clot contraction)

M0 - Untreated control

MP - Blebbistatin treatment to weaken
contractile forces
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hosts with active infection had 2–12 sterilized granulomas
(Figure 3F). This recapitulates the common thinking that a
single high-burden granuloma may determine the state of the
Mtb host (i.e., active infection) (Lin et al., 2016). HostSim predicts
that a small portion of granulomas are able to clear infection with
innate response during early infection, which is presently not
feasible to test in vivo. This is a feature of all of our
computational and mathematical models of TB and it is
believed to be a phenomenon that occurs in humans. On both
the granuloma and host scale, we witness the presence of a
transient high-CFU peak at approximately day 20, consistent
with experimental observations (Gideon et al., 2015; Marino
et al., 2016; Cadena et al., 2018; Darrah et al., 2019) (see
Supplementary Material S1 Section 2 for details). Our updated
HostSim model also is able to examine predictions that would
match a PET-CT scan of a primate (human or NHP). We refer to
this as FDG avidity, one of the only sources of time-series
granuloma-scale data from live hosts and obtained via PET-CT
scans (see Supplementary Material S1 Section 3 for details). FDG
avidity is a measure of immune cell activity at the infection site
within granulomas (Lin et al., 2013; Esmail et al., 2016).
Supplementary Videos S1, S2 show the same representative
latent virtual host developing granulomas over 400 days post-
infection, with coloration based on their predicted FDG avidity
values (comparable to NHP PET-CT images in Figure 1A of
Ganchua et al. (Ganchua et al., 2018)).

3.3 Generating a virtual host VH at the
whole-host scale and a virtual cohort VH{ } at
the population scale

Our goal is to create a cohort of virtual hosts that mechanistically
produce the trajectories of bacterial burden in time. We will use this
virtual cohort to test interventions - either a treatment intervention,
e.g., drugs, vaccines, etc. (or in some cases, a model modification).
For an experimental treatment study, a cohort can be defined as both
an infection population and an uninfected (negative) control
population. Our “healthy” state is represented by steady-state
levels of T-cells in the blood and LNs and resting macrophages
within lungs (as we currently do not track host toxicity or tolerability
inHostSim, we only use the infection model for drug studies). In our
MID framework, we use a unique virtual population, our virtual
cohort, on which we test our interventions to compare against the
same virtual cohort against the untreated treatment control scenario
M0. To that end, we want to have a virtual cohort whose members,
(i.e., the virtual hosts) have a meaningful identity that can be
interpreted independently from any specific model version.

We represent our virtual hosts, members of our virtual cohort
VH{ }, by a collection of model parameters, Pi chosen from a set of
biologically valid ranges. We created a virtual cohort of 500 virtual
hosts in this way by sampling from calibrated experimental ranges, as
described in Section 2. Since our model versions share all parameter
fields (except intervention parameters Ai that do not vary between to

FIGURE 3
Virtual hosts and cohort for Mtb infection usingHostSim. (A–D) Bacteria loads (CFU) for the total bacterial population and subpopulation trajectories
for each granuloma. Curves showing granuloma CFU over time for each of the 13 primary granulomas in 500 hosts for 400 days post infection. Panel (A)
shows total CFU per granuloma as well as the analogous measurements from NHPs at specific points (Gideon et al., 2015; Marino et al., 2016; Cadena
et al., 2018; Darrah et al., 2019), (B) shows intracellular bacteria, (C) shows extracellular bacteria, and (D) shows nonreplicating bacteria. (E) Curves
showing total lung CFU for each of 500 virtual hosts. Trajectories are colored by the virtual host classification as sterilizing, latent, or active. We have also
show whole-lung CFU counts from published NHP studies (Gideon et al., 2015; Marino et al., 2016; Cadena et al., 2018; Darrah et al., 2019) by summing
CFU across all lung granulomas. (F) Population scale histogram of the number of sterilizing granulomas per virtual host out of 500 virtual hosts.
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virtual hosts), the same virtual host can be easily represented in either
model version, known as the virtual patient (host) identity.

3.4 Drug interventions using HostSim (MP)

A key aspect of creating a MID framework is to test interventions.
For example, given the large drug regimen design space for diseases
like TB, where multiple drugs are given for long periods of time, the
possible combinations are on the order of 1017 (Cicchese et al., 2017)!
The ability to explore the effects of drugs at the tissue, host, and
population scales simultaneously in a virtual cohort is necessary to
help screen this large space with the goal of identifying candidates that
will be the best to test within a human cohort. A key goal of creating a
MID framework is to use the impact of an intervention over multiple
scales and to examine the wealth of synthetic data by comparing the
outcomes of our virtual cohort with and without interventions.

To create an example intervention companion model MP to
HostSim, we will define a single-drug-like intervention. We will
assume that these drugs solely affect either bacterial replication and/
or death rates depending on their known drug actions (Figure 2). INH,
BDQ and PZA are three antibiotics that are commonly used to treat TB
(Chahine et al., 2014; Prideaux et al., 2015; Nahid et al., 2016; Sarathy
et al., 2016). INH and BDQ are known to have bactericidal activity,
althoughBDQ ismore efficient at killingMtbwithin the necrotic caseum
region of granulomas and can also be taken inside of infected
macrophages. PZA is a bacteriostatic drug whose action we represent
by halving the bacterial replication rate (see Section 2.5). Our simple
representations of drug interventions here do not include consideration
of pharmacokinetics, or the ability of drugs to penetrate well into
granulomas as we have done previously (Pienaar et al., 2017; Budak
et al., 2023). We define our impact quantifications in this setting to be a
host impact score HS and a granuloma impact score GS. These are
derived fromCFU ratios betweenMP andM0, where zero-score is zero-
efficacy, and positive scores indicate a beneficial intervention for virtual
hosts (see Section 2.6). Importantly, the outcomes being measured are
credible from both M0 and MP respectively as i) mechanistically
predicting CFU trajectories falls within their context of use, and ii)
our goal for using our exampleMP to calculateHs andGs is to examine
qualitative behavior of CFU reduction by Mtb subpopulation.

We described above how we generate our virtual cohort VH{ }.
We then represent and simulate this virtual cohort in both the
control version M0 and drug intervention versions of HostSim:
MINH,MBDQ, andMPZA, and we calculate the granuloma and host
impact scores (see Section 2.6, expressions [1] and [2]). Together,
these components give us a way to study the impact of interventions
on our virtual cohort, allowing us to analyze intervention efficacy
across the cell/tissue, whole-host, and population scales.

3.5 Granuloma and host scale analyses of
drug intervention capture
mechanistic insights

As the final component of our MID framework, we want to
understand how the perturbation or treatment MP affects our virtual
cohort over multiple physiological scales. With our drug interventions
defined above, we use the impact quantification method described in

Section 2 to compare outcomes of granulomas and hosts in the non-
treatment control scenario against the three drug treatment scenarios.
Figure 4 shows the impact quantification of the 3 different drug
interventions at all three physiological scales. We begin treatment at
day 200 and treat for 200 days post-infection. At all three scales, the
impact scores suggest that MBDQ is the most effective drug, which is
consistent with how we defined it as compared toMINH. Interestingly,
there is a wide range of impact scores on both the granuloma and host
scales, even if statistics on CFU counts at the population scale would not
directly reveal this (Figure 4; Table 2). In many granulomas, treatment
did not help much - indicated by an impact score near 0. Many
granulomas with low impact scores either cleared in both model
versions or cleared in the MP version only (as a result of
granulomas starting treatment with low CFU burden in the control
case). However, we observed many granulomas with low impact scores
(<0.5) that remained infected in bothM0 andMP, indicating that some
granulomas resist treatment more than others. This may depend on the
action of a drug, on the host immune response or on the bacterial levels
at the start of treatment. The population scale comparison between the
control and intervention cases suggests that bactericidal interventions (as
in the case of MBDQ and MINH) are a more effective action for a drug
intervention (middle and bottom rowpanels).We observe, however, that
the pooled cohort data (top row panels) cannot be used as accurately to
predict whether or not a drug will help an individual host. This
demonstrates the importance of developing a MID framework that
captures both granuloma-scale and host-scale intervention responses
that cannot be detected purely at a population level.

Another way to explore intervention impact scores is to
understand variance of intervention efficacy. We analyzed host
and granuloma impact scores as model outputs using a
sensitivity analysis that considers non-linear correlations, called
partial rank correlation (see Section 2.7). This method correlates
non-linear model parameters to outputs of interest, and in this case,
we can use both scale impact scores as a readout. The results shown
in Table 3 suggest that many host model parameters impact the
BDQ-like drug intervention. As BDQ is shown to have the largest
possible intervention impact score of the three drugs that we studied
(Figure 4; Table 2) as well as the widest variance of impact scores, we
found it surprising that BDQ also interacts with the highest numbers
of host parameters. It may be that interventions that interact with
many model components may both reach higher efficacy but also
have a more complex range of host responses. Moreover, we find
that parameters that correlate with the impact of drug interventions
also overlap with the parameters that impact FDG avidity outputs
(i.e., a measure of host immune activity) (SupplementaryMaterial S1
Section 3.2). What this tells us is that expressions FDG avidity, as
predicted by expressions [S1-S2], is driven by the same parameters
that drive our impact score. This may suggest that FDG avidity is a
good predictor of projected intervention efficacy, or that both
quantities are affected by the same mechanisms.

4 Discussion

We introduce a model analysis framework that can be used to
track a virtual cohort and the impacts of interventions or other
model perturbations across multiple physiological scales patient,
that we refer to as a MID framework. The three components of a
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FIGURE 4
Impact quantification of three single-drug-like interventions across granuloma, host, and population scales. (A) Column showing the three scales
(across rows) at which we analyze outcomes in our MID framework study. (B–D) Columns showing population, host, and granuloma scale impact
quantification scores for (B) MINH , (C) MBDQ, and (D) MPZA versions of HostSim. Granuloma and host scale plots show the granuloma and host impact
scores (Eqs 1, 2) across time for each granuloma and host, respectively. An impact score of 0 indicates equal CFU in M0 and MP and higher impact
scores indicate more favorable host outcomes. Blue lines show granuloma and host trajectories that are sterilized in the control group by day 400, green
lines show granulomas and hosts that sterilized only in the intervention version, and black lines indicate trajectories that sterilized in neither control nor
intervention cases. The population scale bar plots show a direct comparison between the control version and the intervention version at day 400,
highlighting that the variation of the impact efficacy is obfuscated if individual host trajectories are not tracked.

TABLE 2 Impact of interventions of three different drugs on a virtual cohort with 500 hosts across multiple scales.

Feature M0 MINH MPZA MBDQ

Percentage of sterilizing hosts in population 3.6% 4.2% 5.0% 12.0%

Percentage of hosts with active infection in population 5.6% 4.4% 4.0% 3.8%

Hosts that reduced CFU by 200 days post-intervention - 53% 91% 96%

Granulomas that reduced CFU by 200 days post-intervention - 16% 26% 32%

Granulomas that sterilized 67% 68% 69% 77%

TABLE 3 Descriptions of parameters significantly driving variance in granuloma impact scores for three different treatments. PRCC values remained unchanged
qualitatively between days 200 and 400 so, for simplicity, only the trends are shown. We use + to indicate a positive correlation after intervention, and - to indicate
a negative correlation, and “n/a" indicates no significant correlation. Trends indicated correspond to PRCC values that were filtered by PCC z-test (Marino et al.,
2008) to control for the absolute magnitude of the intervention impact.

Parameter description Efficacy correlation withMINH Efficacy correlation withMBDQ Efficacy correlation withMPZA

In-macrophage carrying capacity of Mtb ++ ++ ++

Resting macrophage infection rate constant n/a + ++

Half-saturation of Mtb in infected macrophages n/a - -

Decay rate constant of Interleukin-10 n/a - n/a
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MID framework are i) a cohort of a virtual patients (or virtual hosts)
consistent across model versions; ii) validated control and
intervention model versions; and iii) an explicitly defined method
of impact quantification. A MID framework leverages the ability of
models to perform “what-if” experiments on the same virtual patient
under different interventions and is able to decompose the spectrum
of patient responses to predict system parameters - and thereby also
individual model components - as being principally responsible for
patient placement within a spectrum.

As part of creating a MID framework, we developed an updated
version of our whole-hostmodel of TB,HostSim, which ranges from the
cell/tissue scale to the population scale.We calibrated thismodel to both
experimental data from the Flynn lab (Gideon et al., 2015; Marino et al.,
2016; Cadena et al., 2018; Darrah et al., 2019), and to synthetic data
from our fine-grained model GranSim, which is an agent-based model
that represents formation and function of individual granulomas. TB is
an ideal candidate for implementation of a MID framework as it is
complex and intrinsically multi-scale, which necessarily requires many
parameters. Moreover, model outcomes fromHostSim (e.g., CFU count
and FDG avidity) are directly comparable to existing data and can be
used to create and interrogate intuitive impact quantification measures.

We presented an example MID framework implementation to
generate examples of quantitative, mechanism-based outcome
predictions for interventions that are challenging to obtain
experimentally and may be used to forecast outcome heterogeneity
for future experiments. We used our TB-focused MID framework to
analyze the impact of three different drug interventions–each of which
phenomenologically represents a drug commonly used to treat TB–on
a virtual cohort of 500 virtual hosts. In doing so, we captured and
quantified the impact of different interventions at multiple scales,
which is typically inaccessible to an experimental-like research design
that usually occurs over a single scale. Our method shows that the
parameters - and thereby mechanisms - most correlated with host
responsiveness to drugs overlap with the parameters most that
correlate with our prediction a non-invasive, spatial measurement
of TB infection progression, FDG avidity.

Thoughwe use aMID framework to study virtual human patients in
the context of virtual clinical trials, the method is not tied to this
application. Given amodel system, one may develop interventionmodel
versions for other forms of interventions after you have a suitable control
version–e.g., host-directed therapies, vaccines, or booster efficacies.
Indeed, there are existing model studies that employ virtual-cohort-
like methods of analyses. However, without specific attention paid to
each of the three components of a MID framework, ad hoc approaches
may face i) an ill-defined notion of a virtual patient (or subject), such that
it is difficult to determine whether the “same subject” is being
represented in both model versions; ii) non-rectifiable or non-
credible model versions, where the control version M0 and the
intervention version MP are intractably different as in the case of a
singular perturbation, and iii) an improperly constructed intervention
quantification method which may bias or overly-abstract model outputs
and thus preclude meaningful interpretation. Improper impact
quantification selection may cause us to use model output outside of
its context of use, and lead to subtly non-credible comparisons.

Another use of theMID frameworkmay be to examine impacts of
model updates, allowing us to demonstrate model consistency. If a
model is updated extensively, we could use the original model asM0

and the updated model as a new versionM0
′ instead of anMP. In this

case, minimal deviations would suggest that very little changed by way
of introducing the new components–perhaps ideal for surrogate
modeling, or more informative about the impact of fine-graining a
model (Kirschner et al., 2014). Any simplification or re-representation
of a model subcomponent could be examined in this way if model
outputs and classifications are able to be meaningfully compared.

There are other advantages to having a MID framework. First, a
calibrated virtual cohort annotated with MID-framework outcomes
may be used to store virtual reference cases. That is, for
computationally intensive models, it may be useful to store
virtual hosts across a heterogeneous virtual cohort along with
their control (M0) and intervention (MP) outcomes for
comparison to quantitatively-similar real hosts. If a clinical
patient or an experimental subject can be measured in such a
way that we can find their nearest digital partners, then pre-
simulated fine-grained virtual patients may be used to
approximate both their untreated and treated outcomes. In this
way, we may quantitatively rank the most effective treatment for a
given real host, scaled with some confidence measure representing
the “closeness” of the clinical host to their nearest digital partner. If
the model is not entirely identifiable given live patient data, this will
yield a twofold benefit: 1) a family of nearest digital partners
identified by what data is available together with a forecast cone,
which quantifies how those partners diverge over time; and 2) a clear
and immediate use for new, multi-modal data. Including new data
will whittle down the family of digital partners and narrow the
forecast cone. We may also use the digital partner framework with
existing models to best identify what modes of new data will best
improve patient forecasting and illuminate what types of data will
best improve parameter identification. This is particularly important
when using mechanistic models for generating synthetic data for
other applications (An and Cockrell, 2023). Lastly, we can continue
to add more and more virtual patients to virtual cohorts as needed:
generating virtual patients around a given human subject whose
nearest digital partner lies in a sparsely-sampled region of parameter
space will allow us to dynamically populate the virtual patient cohort
to the needs of the real patient population.

Related efforts have been made to create tools that leverage
computational models for medical decision supplementation and
research (Vodovotz and An, 2019; Foy et al., 2020; Joshi et al., 2020;
Wright and Davidson, 2020; Laubenbacher et al., 2022;
Venkatapurapu et al., 2022), or for autonomous medical
decision-making (Hoffmann et al., 2020; Singh et al., 2022; Yang,
2022) as a form of personalized medicine. A digital twin is a tool that
predicts future states within a specific, real, complex biomedical
system using a flexible, calibrated multi-scale computational model
that integrates available real-time host-specific data. Medical digital
twins (MDTs) have been developed to replicate and predict the
trajectory of specific patients’ diseases (Wright and Davidson, 2020;
Masison et al., 2021; Laubenbacher et al., 2022).With recent demand
for standardization of and development of MDT validation,
uncertainty analysis, model linkage, and interpretable outcomes
(Wright and Davidson, 2020; Laubenbacher et al., 2022), the
ability to find digital partners within virtual cohorts created from
digital twins and the associated response to treatment would be a
powerful decision supplement tool.

It is worth noting the distinction between aMID framework and
several related sensitivity analysis tools. Existing sensitivity analyses,
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including both local and global methods, uncover dependencies
between a model’s input variables and outcomes. While these tools
(such as PRCC, used in this paper) are extremely valuable, they often
include comparison of many parameter values distributed through a
range. Often in experiments, intervention methods are defined
regimens - a procedure applied to all subjects of the study (e.g.,
having multiple patients test the same FDA-approved drug dosage).
In these cases, it is preferable to have an in-depth look at the impact
of a single intervention regimen on an individual, as opposed to
sampling a “gradient of intervention magnitude” - e.g., testing with/
without drug, as opposed to various dosages. This is also true in the
case of MDTs: having more detailed information on the projected
impact of two mechanistically distinct interventions on a single
patient may be invaluable. Moreover, MP and M0 may differ by
more than a single parameter perturbation (e.g., a new cell type
being considered in MP). In these cases, comparison between M0

and MP is substantially distinct from a local sensitivity analysis.
Importantly, using aMID framework is not a substitute for rigorous

and validated model construction, nor do we wish anybody to consider
our MID framework as such. Instead, it is a method to analyze
differences between two highly-related, credible, multi-scale models
by separating out those components that are patient-specific and those
components that are intervention-specific. Each individual model
version should be considered as a trial procedure - such as
experimental or a placebo group protocol-that is being applied to
the same virtual host. Each model version should be able to make
credible claims about host outcomes in each intervention scenario; and
the MID framework is a systematic method for examining drivers of
heterogeneity of the response to those interventions.

In the future, our HostSim-derived virtual cohort may be
improved by the use of experimental distributions for each
parameter in the model, instead of uniformly sampling from
each range. This would ensure that the virtual cohorts in our
MID framework capture the demographic of host heterogeneity
in more detail. This may grant us more insights both into subtle
differences between common presentations of TB at each scale, or it
may allow us to predict outlier or unusual host presentations or
responses. It is also worth noting that the three steps of creating a
MID framework, while conceptually simple, must be considered
carefully. Creation of intervention models may be straightforward in
some cases, but there should be a limiting case where the control case
can be recovered by reducing the intervention’s amplitude.
Representing a real-world entity (e.g., in the case of MDTs) in
each model version may embed assumptions about that host that
could be inconsistent between the model versions if each version’s
assumptions are not stated explicitly. Finally, the intervention
impact quantification method should be free of biases that might
favor one phenotype as more easily impacted than another and
should not overreach the context of use of either model version.
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