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Physiological processes are governed by intricate networks of transcriptional and
post-translational regulations. Inter-cellular interactions and signaling pathways
further modulate the response of the cells to environmental conditions.
Understanding the dynamics of these systems in healthy conditions and their
alterations in pathologic situations requires a “systems” approach. Computational
models allow to formalize and to simulate the dynamics of complex networks.
Here, we briefly illustrate, through a few selected examples, how modeling helps
to answer non-trivial questions regarding rhythmic phenomena, signaling and
decision-making in cellular systems. These examples relate to cell differentiation,
metabolic regulation, chronopharmacology and calcium dynamics.
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Introduction

Computational modeling is a powerful tool in physiology, allowing both to get
mechanistic information from a given set of observations and to deepen our
understanding of constantly evolving living systems (Keener and Sneyd, 2008). At the
cellular level, models are built on molecular data and thus enable to closely simulate
observed behaviors and make accurate predictions. However, despite the increasing use of
computational approaches, models are still sometimes perceived by cell biologists as
abstract and disconnected from concrete biological issues. A clear explanation, in
biological terms, of the contributions from modelling to solving focused questions can
help narrowing this gap. In this mini-review, we give four selected examples covering very
diverse fields of cell physiology in which data-based computational modeling has played a
significant role in providing insights into specific questions. We illustrate here how models
can provide mechanistic explanations to sometimes unexpected cellular behaviors.
Additionally, the predictive power of computational modelling can guide experimental
investigation. In the following, the first example, which concerns cell differentiation during
development, involves multistability. The three others, pertaining to the circadian clock, the
cell cycle and calcium dynamics, involve oscillations. Multistability and oscillations both
originate from non-linear interactions and multiple feedback loops (Goldbeter, 1996),
which makes the use of a computational approach particularly useful.
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How does a population of (nearly)
identical cells reproducibly give rise to
two distinct cell populations during
early embryonic development?

During development, cells from a population of common
progenitors evolve towards different cell fates characterized by
distinct levels of expression of specific transcription factors. This
evolution is governed by gene regulatory networks (GRN)
modulated by intercellular signaling. In the mammalian blastocyst-
stage embryo, cells of the innermass (ICM) differentiate into cells of the
epiblast (Epi) or of the primitive endoderm (PrE) through a process that
is both highly robust and noise-dependent. Indeed, the two populations
of cells are generated in precise proportions and with a reproducible
timing, but their spatial patterning is random as it exhibits a salt-and-
pepper pattern (Chazaud et al., 2006). Models of the associated GRN
revealed that ICM differentiation corresponds to a self-organized
system relying on bi- or tri-stability (Bessonnard et al., 2014;

Liebisch et al., 2020; Saiz et al., 2020; Raina et al., 2021; Stanoev et
al., 2021). These models are all based on the cross-inhibition between
the NANOG andGATA6 transcription factors that characterize the Epi
and PrE states, respectively. Both factors are also regulated by the ERK
pathway activated by extracellular FGF4. In the tri-stable scenario, cells
initially coexpress NANOG and GATA6, as observed in cells that
constitute the ICM. The time evolution of the FGF4-regulated GRN
(Figure 1A) can be described by a system of 4 ordinary differential
equations (Equations 1–4 in Figure 1B). For appropriate values of the
parameters, the system exhibits tristability (Figure 1C) in a range of
extracellular FGF4 concentrations (Fp). Initially, due to the presence of
FGF4 of maternal origin, cells are in the intermediate ICM state.
Evolution towards one of the differentiated states (De Mot et al.,
2016) is then governed by the self-regulated secretion of
FGF4 because cells secrete FGF4 at a rate that depends on their
NANOG expression level (Equation 5 in Figure 1B). This allows
cells to switch to the PrE state (when perceiving a high level of
FGF4, activating the ERK pathway and leading to the synthesis of

FIGURE 1
AGRNmodulated by signaling, exhibiting tristability, underlies specification of cells of during earlymouse development. Panel (A) shows a schematic
representation of the core gene regulatory network in which NANOG and GATA6, the key transcription factors characterizing the Epi and PrE states,
cross-inhibit and auto-activate. Cells secrete FGF4 at a rate that increaseswith the level of expression of Nanog. Because FGF4 activates the ERK pathway,
this inter-cellular signaling allows for a crosstalk between neighboring cells. Panel (B) shows the equations corresponding to the GRN schematized
in panel (A). Ordinary differential equations give the time evolution of GATA6 (G), NANOG (N), FGF receptors (FR), the fraction of active ERK signaling (ERK)
and secreted FGF4 (Fs). When simulating a population of cells, evolution equations and parameter values are identical for each cell. The amount of
FGF4 perceived by each cell (Fp,i) is given by the local average of the FGF4 secreted by neighboring cells, modulated by a noise term (γ). Panel (C) shows a
bifurcation diagram (De Mot et al., 2016) that indicates the steady states of a single cell GRN as a function of extracellular FGF4 (Fp). Equations 5 are thus
not considered. Stable and unstable steady states are depicted by plain and dashed lines, respectively. For intermediate concentrations of FGF4 (grey
area), the system has 3 stable steady states: one with high GATA6 and very low NANOG, corresponding to the PrE state (blue line), one with high NANOG
and very low GATA6 corresponding to the Epi state (red line), and one where both NANOG and GATA6 are co-expressed at intermediate levels
corresponding to the ICM state (black line). Panel (D) shows the outcome of a simulation of a population of 5 × 5 cells interacting through FGF4 signaling,
giving rise to the characteristic salt-and-pepper pattern of Epi and PrE cells (shown with a red and blue background, respectively). As observed in the
embryo, a small proportion of cells remain in the ICM state (shown with a grey background).
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GATA6) or to the Epi state (when perceiving a low level of FGF4,
deactivating the ERK pathway and allowing the synthesis of NANOG).
When simulating a population of cells interacting with their neighbors
through local secretion and perception of FGF4, a salt-and-pepper
pattern of PrE and Epi cells, comparable to the mosaic arrangement
observed in vivo, emerges (Figure 1D).

Validation of the proposed mechanism and related parameter
values relied on the comparison with observations and on
computational predictions. Simulations allowed to reproduce
observations carried out under various experimental conditions
including mutant embryos and embryos submitted to exogenous
treatments that interfere with FGF4 signaling (De Mot et al., 2016;
Tosenberger et al., 2017). Besides reproducing the outcome of these
experiments, the model could predict that in average, Epi cells are
specified earlier than PrE progenitors, which was validated
experimentally (Bessonnard et al., 2014).

A key question relates to the possible sources of cell-to-cell
heterogeneity initiating the specification of the ICM cells. As ICM
cells are initially identical and evolve according to the same GRN,
some asymmetry is required to trigger the separation of the
developmental trajectories. Internal noise due to molecular
fluctuations is not likely to play this role because once specified,
cells are not observed to change fate, which would be the case in the
presence of sufficiently large molecular noise (De Mot et al., 2016).
Early models assumed the existence of extracellular heterogeneity in
FGF4 concentration, reflected by the random and cell-specific value
assigned to the parameter γ (Equation 5 in Figure 1B) that appears in
the equation for the FGF4 concentration perceived by a cell
(Tosenberger et al., 2017). However, observations in mouse
embryos revealed the existence of heterogeneities in the levels of
expression of some genes among cells even before FGF4 secretion
(Allègre et al., 2022). This question was addressed by modelling as
this allows to investigate the possible outcomes of simulated cell
populations when varying the source of variability. Simulations
predicted that the behavior of the model, in terms of dynamics
of specification and final populations of cells of the different types, is
preserved with respect to the source of variability (Robert et al.,
2022). This property results from the existence of the intermediate
ICM state that acts as a “buffer” to noise. As in toggle-switch based
models that do not consider the existence of a third, intermediate
stable steady state, signaling through FGF4 appears as a key factor to
maintain reproducible proportions of the different cell types
(Mathew et al., 2019; Saiz et al., 2020; Raina et al., 2021).

More elaborated studies, based on a statistical analysis of
experimental data related to the levels of expression of the
various genes at early developmental stages, are thus required to
pinpoint the mechanism that drives the initial differentiation step
from a pool of common progenitors and robustly enables the
emergence of balanced proportions of the two cell types.

Why can ill-timed feeding lead to
altered metabolic regulation and
to diseases?

Many physiological processes are regulated by the circadian
clock and consequently follow a 24 h rhythmic pattern (Patke et al.,
2020). Besides the sleep-wake cycle, hormone release, feeding

behavior, nutrient absorption and digestion, and glucose
homeostasis change over the course of the day. The clock has
evolved to organize physiological processes in time in order to
optimize energy consumption and to anticipate predictable daily
environmental changes. Perturbing these conditions, for example
through jet lag or by ill-timed feeding, may lead to a dysregulation of
this timing system. This is manifested by alteration of the clock
genes expression and by metabolic syndromes. Feeding at the
“wrong” time or irregular meal timing can indeed disrupt the
ability of the organism to regulate blood glucose levels effectively.
If repeated, these perturbations can cause fluctuations in blood sugar
levels, potentially leading to insulin resistance and to an increased
risk of diabetes (Tahara and Shibata, 2016; Stenvers et al., 2019).

Glucose homeostasis relies on insulin secretion by pancreatic
beta cells. The clock of beta cells regulates the rhythmic transcription
of genes involved in glucose-stimulated insulin secretion (Stenvers
et al., 2019). This peripheral clock itself receives signals from the
brain pacemaker clock and from food uptake. Once these two
zeitgebers are not aligned (i.e. desynchronized), the amplitude
and phase of core clock genes (including Per, Bmal1, and
RevErbα) are altered. In turn, insulin secretion is not adjusted to
the need, which leads to hypoinsulinemia and hyperglycemia
(Mukherji et al., 2015a,b).

To better understand the interplay between the genetic
dysregulation of the pancreatic circadian clock and its
consequence for glucose homeostasis, a mathematical model was
proposed by Woller and Gonze (2018). The model accounts for the
circadian gene network (Figure 2A), as well as the clock-mediated
dynamics of the glucose-insulin circuit, and takes the form of a set of
ordinary differential equations governing the time evolution of gene
expression and the concentration of glucose and insulin. The Hill-
based functions used to describe the transcription rate as a function
of the transcription factors provide the nonlinearity required to
generate oscillations. Kinetic parameters are estimated by fitting the
dynamics of gene expression and of glucose/insulin profiles to
experimental time series obtained in mice (Mukherji et al.,
2015a,b). The model is then used to simulate the system in
pathological conditions, namely when food and light cues are
misaligned (reflecting ill-time feeding). These simulations suggest
that peripheral clocks may not completely uncouple from the central
clock when food intake is inverted but rather lead to a differential
phase shift in clock gene expression. Indeed, not all clock genes are
phase-shifted to the same extent (Figure 2A). The simulations
further show how this differential phase shift leads to a reduction
of insulin secretion and to an increase of glucose, as well as to a loss
of food anticipation. This study thus illustrates how computational
modeling can complement experimental observations to raise
hypotheses on the interplay between the genetic circadian
oscillator and the onset of clock-related metabolic disorders
(Woller and Gonze, 2021).

At what time should anti-cancer drugs
be administrated?

The progression of a cell through the different phases of the cell
division cycle is governed by a network of CDK/cyclin complexes,
which are sequentially activated through reversible
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FIGURE 2
Three examples of oscillatory behaviors successfully addressed by computational modeling. (A) Circadian oscillations originate from a gene
regulatory network involving interlocked transcriptional feedback loops (left panel). In peripheral tissues, such as the liver or the pancreas, the circadian
oscillators receive inputs from the pacemaker clock located in the brain and responsive to the light-dark cycle, and from nutrient uptake. Wrong-time
feeding disrupts the amplitude and phase relationship between the expression profiles of clock genes (right panel), which results in altered clock-
controlled outputs such as insulin secretion. In turn, these dysregulations lead to physiological disorders, including hyperglycemia. (B) The progression of
the cell into the successive phases of the cell division cycle is governed by a CDK/cyclin network (left panel). Healthy cells are well entrained by the
circadian clock such that cells tend to divide at a certain time of the day (top right panel). In cancer cells, the circadian control is often altered. When the
coupling strength is weak, many cells are not entrained and thus divide at any time of the day (bottom right panel). This feature can be exploited to
optimize the administration time of anti-cancer drugs (chronotherapy). (C) Elements of the Ca2+ signaling toolkit in T cells. Adhesion stimulates
phospholipase C (PLC) through the activation of the focal-adhesion kinases (FAK). The rise in IP3 that follows PLC activation provokes the release of Ca2+

from the endoplasmic reticulum (ER). The resulting local depletion in ER Ca2+ activates Ca2+ entry into the cytoplasm at the level of the ER/PM junction.
This localized Ca2+ entry creates Ca2+ microdomains, which are highly localized in time and space. Early after TCR/CD3 stimulation, the nicotinic acid
adenine dinucleotide phosphate (NAADP) synthesized by the Dual oxidase 2 (DUOX2) enzyme activates Ca2+ release via the ryanodine receptor (RyR),
which also creates Ca2+ microdomains with very similar characteristics. Later after stimulation, IP3 is further increased by TCR/CD3 stimulation (not
shown in the scheme) leading to global Ca2+ signaling in the form of Ca2+ oscillations. In physiological situations including Ca2+ influx, oscillations are

(Continued )
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phosphorylation/dephosphorylation (Figure 2B). The circadian
clock controls this regulatory network at the molecular level,
namely through the transcriptional regulation of several cell cycle
components (Feillet et al., 2015; Farshadi et al., 2020). As a
consequence, cells tend to replicate their DNA and to enter
mitosis at specific times of the day. In cancer cells, the circadian
clock is often impaired and sometimes decoupled from the cell cycle
(Feillet et al., 2015). This may result in less synchronized cell division
of cancer cells, which tend to divide independently of the time of the
day (Figure 2B). This feature explains, at least in part, why cell-phase
specific drugs exhibit differential effects depending on the time at
which they are administrated. Moreover, the pharmacokinetic and
pharmacodynamic parameters of drugs may also follow a circadian
pattern. Chronopharmacology aims at understanding and exploiting
these features in order to develop drug administration protocols
which minimize their toxicity and maximize their efficacy (Ballesta
et al., 2017; Amiama-Roig et al., 2022).

The cell cycle and the circadian clock can be seen as a system of
oscillators mutually coupled through several molecular mechanisms.
Understanding the dynamics resulting from such a complex system
is not straightforward but is required to develop
chronopharmacological treatments on a rational basis.
Computational models contribute to determine the conditions
under which the circadian clock effectively entrains the cell cycle
as well as the causes of loss of synchronization.

Gérard and Goldbeter (2012) used detailed computational
models for the two oscillators to show, through numerical
simulations, that the cell cycle can acquire a period of 24 h once
coupled to the circadian clock when its autonomous period is
around 24 h. In contrast, the CDK/cyclin oscillator exhibits
complex dynamics including chaos when its autonomous period
is out of the entrainment range or when the coupling strength is too
low. In these conditions cell division occurs independently of the
circadian clock. The simulations also indicate that the combination
of multiple modes of coupling does not necessarily facilitate
entrainment of the cell cycle, suggesting that impairing some
coupling mechanisms may not necessarily lead to a loss of
synchronization. Leung et al. (2023) investigated the circadian
forcing of the cell cycle at the population level in presence of
variability on kinetic parameters. Assuming that the coupling
strength is reduced in cancer cells, simulations predict that a
population of cancer cells will encompass a certain fraction of
non-entrained cells, which then may be targeted by a drug
administrated at a time at which healthy cells are not sensitive to
it. A characterization of the variability and of the coupling strength
would then be needed to make such models quantitative so that their
predictions may guide further experimental investigations.

In the above studies, the authors focused on the regulation of the
cell cycle by the circadian clock. The reverse coupling was taken into

account by Yan andGoldbeter (2019) and by Almeida et al. (2020). Yan
and Goldbeter (2019) reported that including the effect of the cell cycle
on the circadian clock leads to an increased robustness, to a reduction of
complex oscillations, and to the emergence of multi-rhythmicity
(coexistence of different coupling modes). Almeida et al. (2020)
investigated the role of growth factors (GF) and dexamethasone
(Dex) on the entrainment pattern of the cell cycle once coupled to
the circadian clock. The authors predict that addition of GF, which
stimulates the synthesis of the mitosis-promoting factor, leads to a
decrease of the period of the coupled system, while increasing the level
of Dex may drive the system from a 1:1 regime (one cell division per
circadian cycle) to a 3:2 regime (2 cell divisions every 3 circadian cycles).
The authors also simulated the effect of a pulse of Dex and observed a
time-of-the-day-dependent response, i.e. a shift to a 3:2 synchronization
mode. The results of these two studies may explain the emergence of
distinct groups of cells in unsynchronized cell population, as observed in
experiments. Findingways to control the synchronizationmode and the
entrainment phase is critical in chronotherapy because this will dictate
the optimal time of drug administration.Mathematical models allowing
to test various situations and to characterize complex behavior for large
parameter ranges may be helpful in this task.

How does Ca2+ signaling activate the
immune response in T cells?

Changes in Ca2+ concentrations are widely used to convey the
information from outside to inside the cell, which led to qualify this ion
as a “universal second messenger”. Strikingly, the temporal and spatial
characteristics of these changes in Ca2+ concentration in the cell
cytoplasm play a crucial role in the specificity of the physiological
responses of the cell to Ca2+ signaling. These take most of the time
the form of oscillations with various amplitudes, shapes and frequencies
(Berridge, 1997). Highly localized and short durations Ca2+ increases,
creating Ca2+microdomains, have also been observed and reported to be
associatedwith specific functions (Berridge, 2006). These events rely on a
rather limited number of Ca2+ transporters and channels allowing for
Ca2+ transfers between the cytoplasm and the other cell compartments,
such as the extracellular medium, the endoplasmic reticulum or the
mitochondria. Based on a kinetic description of these Ca2+-transporting
elements arranged in a cell type- and stimulus-specific manner (Berridge
et al., 2000; Parys and Bultynck, 2023), computational modeling is much
used to help deciphering the molecular mechanisms underlying each
specific type of Ca2+ response (Dupont et al., 2016).

Ca2+ signaling plays an essential role in T cell activation, which is
key to initiate an adaptative immune response (Trebak and Kinet, 2019;
Wang et al., 2020). Themain elements of the T cell “calcium toolkit” are
schematized in Figure 2C. As a first step in the transition from a
quiescent to a fully activated state, Ca2+ microdomains (Wolf and Guse,

FIGURE 2 (Continued)

long-lasting, with a low frequency (top right panel), inducing the translocation of nuclear factor of activated T-cells (NFAT) and the activation of the
immune response. These oscillations are based on the STIM/ORAI mechanism. In the absence of influx, oscillations are faster and of the bursting type
(bottom right panel), which reveals the interaction of other potentially active oscillatory mechanisms.
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2017; Gil Montaya et al., 2023) are created in the junctions between the
plasma membrane (PM) and the endoplasmic reticulum (ER). Such a
small scale Ca2+ signaling sensitizes T cells allowing them to respond
efficiently once fully activated (Weiß et al., 2023). The ER-PM junctions
have a depth of approximately 15 nm and an extension of ~200 nm
(Hogan, 2015). Microdomain formation is dependent on Ca2+ entry
from the extracellular medium through store-operated Ca2+ entry
(SOCE). The latter mechanism relies on the stromal interaction
molecules (STIM1 and/or STIM2) that are ER Ca2+ sensors
regulating the activity of the Orai1 PM Ca2+ channels that allow
Ca2+ entry from the extracellular medium into the cell. Thus, upon
local depletion of the ER Ca2+ store, Ca2+ dissociates from STIM, which
allows recruitment of Orai1 to the junction and their gating. Although
current techniques in microscopy allow the observation of Ca2+

microdomains in the ER-PM junctions, they fail to fully address the
mechanism of their formation that involves Ca2+ changes in the portion
of the ER apposed to the junction. In particular, models are required to
predict the number and spatial arrangement of the channels inside the
junction (McIvor et al., 2018; Gil et al., 2021; Gil et al., 2022). Spatially
resolved models using Comsol Multiphysics (COMSOL Multiphysics®

v. 5.4. www.comsol.com) can simulate the Ca2+ fluxes at the ER-PM
junction and accurately reproduce observations based on high
resolution microscopy. In this framework, partial differential
equations describe changes in Ca2+ concentrations due to diffusion
in the different compartments while Ca2+ channels/pumps enter in the
model through the appropriate boundary conditions. Taking into
account measured values for the rates of Ca2+ fluxes, modeling
shows that Ca2+ microdomains corresponding to those seen in
experiments can be simulated when considering that cell adhesion
activates FAK (focal adhesion kinase), stimulating the IP3-synthetizing
enzyme PLC (phospholipase C). Quantitative agreement between
observations and simulations is best achieved when assuming that
IP3 increases are such that they provoke the opening of 3–6 IP3
receptors/Ca2+ channels (Gil et al., 2021). The resulting local
depletion of the ER activates the opening of a corresponding
number of ORAI1 channels that create the microdomain.
Interestingly, the model predicts that the microdomains created in
the first ~15 s following T cell receptor activation, although similar in
spatial and temporal extents, are in contrast created by the openings of
~7 large conductance ryanodine receptors (RyR) following the
stimulus-induced increase in the local concentration of NAADP (Gil
et al., 2022).

Later after T cell receptor activation, Ca2+ signaling takes the
widespread appearance of repetitive spikes that, by stimulating the
activity of the Ca2+-sensitive calcineurin phosphatase, promote the
translocation of the nuclear factors of activated T cells (NFAT) to
the nucleus. There, it promotes cellular responses such as cytokine
production, proliferation, metabolism or differentiation (Trebak and
Kinet, 2019; Wang et al., 2020). Because NFAT translocation is highly
dependent on the temporal pattern of cytosolic Ca2+ changes (Fisher
et al., 2006; Cooling et al., 2009), deciphering the molecular mechanism
driving Ca2+ oscillations is key to understand–and possibly
control–T cell immune responses. This mechanism differs from that
occurring in most cell types and remained unclear until recently, largely
because apparent conflicting results about the respective contributions
of internal and extracellular Ca2+ stores. A recent study, involving both
observations and modelling based on ordinary differential equations,
allowed to clarify this question (Benson et al., 2023).

Two qualitatively different types of oscillations can be observed in
this cell type. In conditions allowing Ca2+ influx from the external
medium, low period (~1 min), sinusoidal Ca2+ oscillations can be
initiated by any means associated with a decrease of ER Ca2+. This
includes increases in IP3 or in the RyR agonist NAADP, which are both
synthesized in response to stimulation (Kurneth et al., 2003). In
contrast, when Ca2+ influx is hindered, fast oscillations (~10s) of the
bursting type are observed following an increase in IP3 concentration.
Importantly, in natural conditions, TCR stimulation activates IP3
synthesis and the extracellular Ca2+ concentration is elevated. From
a theoretical point of view, slow and smooth oscillations are known to
often result from a negative feedbackmechanism involving a time delay
(Goldbeter, 1996). Here, Ca2+ entry is inhibited by ER refilling, which is
a slow process that involves the dissociation of STIM-ORAI complexes
and the translocation of STM proteins (Croisier et al., 2013). On the
other hand, oscillations of the bursting type generally involve the
interplay between two oscillators (Borghans et al., 1997). This led
Benson et al. (2023) to propose that fast Ca2+ oscillations in T cells
result from a modulation of the IP3 concentration associated with an
autocatalytic feedback due to Ca2+-induced Ca2+ release. The distinction
between two oscillatory mechanisms is crucial given that STIM-ORAI
based Ca2+ oscillations activate NFAT, while this step that is crucial for
T cell activation is not induced in the absence of Ca2+ influx (Trebak and
Kinet, 2019; Benson et al., 2023).

Conclusion

From circadian clocks to development, the dynamics of cellular
systems is dictated by regulated gene expression, post-translational
modifications and signaling. Operating at the level of single cells,
these molecular mechanisms give rise to well-organized and robust
behaviors, while keeping the ability to adapt their conduct to
changing conditions or to react acutely to a particular stimulus.
Because of the ever-increasing accumulation of quantitative data
and the power of technical methods for their analysis, computational
modeling represents a unique way to decipher the molecular
mechanisms that dictate cell’s survival and functioning. There is
no doubt that the synergy between experimental observations and
computational approaches will keep playing an increasing role in
cell physiology.
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