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Exploring features associated with the clinical outcome of interest is a rapidly
advancing area of research. However, with contemporary sequencing
technologies capable of identifying over thousands of genes per sample, there
is a challenge in constructing efficient prediction models that balance accuracy
and resource utilization. To address this challenge, researchers have developed
feature selection methods to enhance performance, reduce overfitting, and
ensure resource efficiency. However, applying feature selection models to
survival analysis, particularly in clinical datasets characterized by substantial
censoring and limited sample sizes, introduces unique challenges. We
propose a robust ensemble feature selection approach integrated with group
Lasso to identify compelling features and evaluate its performance in predicting
survival outcomes. Our approach consistently outperforms established models
across various criteria through extensive simulations, demonstrating low false
discovery rates, high sensitivity, and high stability. Furthermore, we applied the
approach to a colorectal cancer dataset from The Cancer Genome Atlas,
showcasing its effectiveness by generating a composite score based on the
selected genes to correctly distinguish different subtypes of the patients. In
summary, our proposed approach excels in selecting impactful features from
high-dimensional data, yielding better outcomes compared to contemporary
state-of-the-art models.
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Introduction

Next-generation sequencing (NGS) techniques (Hu et al., 2021) can provide us with
information on the expression of more than 30,000 genes, which helps researchers
understand gene regulations and interactions to find treatments for diseases. However,
the number of genes associated with a particular disease is small (Yang et al., 2005).
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Therefore, we need to develop powerful tools to select genes that
work as a group and are associated with clinical outcomes. Feature
selection approaches were developed to choose the most relevant
and informative features for research questions from the original
raw set of features; therefore, they can help avoid overfitting, reduce
training time, handle the challenge of dimensionality, and simplify
data representations.

Survival analysis (Klein et al., 1992) is a statistical model
studying time-to-event data in which the event may not be
observed (censored) during the study because of loss to follow-up
or early end of the study. Due to the presence of censoring, which is a
unique characteristic in survival analysis, there is a need to develop
novel techniques to work with feature selections for survival data,
especially for high-throughput gene expression data in which most
of the potential predictors are unimportant, with nearly no effect on
the outcome (Friedman et al., 2010). The Cox proportional hazards
model is the most commonly used technique for analyzing survival
data. However, it was not designed for high-dimensional datasets
with a large number of predictors. Lasso (Least Absolute Shrinkage
and Selection Operator) introduces a penalty term to the Cox
model’s likelihood function, which penalizes the absolute values
of the regression coefficients. By forcing some coefficients to be
exactly zero, Lasso effectively performing variable selection. In
addition, there are models tailored to effectively handle situations
where the number of features outweighs the number of observations
(Li et al., 2018). Machine learning techniques that inherently handle
high-dimensional data have been adapted to handle censored data,
offering more flexible alternatives for analyzing high-dimensional,
right-censored, heterogeneous data. However, unlike statistical

models based on a mathematical framework, machine learning
approaches do not impose a specified relationship on the
predictors and outcomes and rely mainly on–data-driven
algorithms, which makes it hard to interpret results.
Furthermore, a lot of feature selection methods for survival
analysis use a scoring model (Neums et al., 2019) to measure
variations of features to select important features. Since the
scoring algorithm was developed specifically to take care of the
data censors and tie events of survival data, the results are biased
(Munson et al., 2009) which may lead to selecting nonimportant
features and provide a less accurate prediction.

We introduce a robust and effective “Pseudo-variables Assisted
Group Lasso” method built on the ensemble idea, i.e., “more heads
are better than one”, where features obtained from different selectors
are aggregated to enhance the final selection. Moreover, we
incorporated pseudo-variables which we know are irrelevant to
the outcome and the permutation technique to assist the
selection. The ensemble and pseudo-variables are nicely
embedded into the Group Lasso model to yield the final output.
Among aggregated features, only the features that consistently show
stronger signals than the pseudo-variables (known noises) across
permutations will be selected. We used colorectal cancer data from
The Cancer Genome Atlas (TCGA) for illustration of our proposed
approach. In addition, we performed simulation studies based on
two different settings, where the first one mimicked the colorectal
cancer data, and the second considered more complicated situations
under various scenarios. For each simulation, we first simulated gene
expression data for hundreds of genes and then generated survival
outcomes based on some causal genes. The proposed feature

FIGURE 1
Proposed pipeline. (A, B) Ensemble feature selection. (A) Feature selection based on different methods and aggregation of selected features. (B)
Pseudo-variables assisted group lasso. (C) Prediction for real data and simulation datasets.
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selection ensemble method was applied to “uncover” the causal
genes and compared to the existing methods.

Materials and methods

Colorectal cancer data set from
TCGA database

Raw gene expression counts were downloaded from colon
cancer (The Cancer Genome Atlas Network, 2012) datasets using
The Cancer Genomics Cloud (Lau et al., 2017); additional clinical
metadata was downloaded from cBioportal (Cerami et al., 2012).
The mRNA-Seq data from TCGA was produced using the
Illumina HiSeq 2000 platform and processed by the
RNAseqV2 pipeline, which used MapSplice for alignment and
RSEM for quantification.

A robust feature selection ensemble

The proposed pseudo-variable-assisted feature ensemble
procedure has two major steps: 1) aggregating the feature
selection results from multiple feature selectors (Figure 1A) and
2) fitting a group Lassomodel on the identified feature set with a new
permutation-assisted tuning strategy (Figure 1B). In the second step,
the group is defined based on the correlation structure, ensuring that
features are highly correlated within each group.

Aggregating the results from different feature selection
approaches is a critical step in ensemble learning. The outputs of
the different approaches can be various, either the subsets of selected
features, the rankings of all features, or both. We applied the same
scheme as in (He et al., 2022) to obtain the ranked feature set
depending on the types of outputs (Figure 1A), where the final rank
is an aggregation from each ranking. We assume that the

observations are (xi, yi), i � 1, . . . , n, where xi is a G-dimensional
vector in which each feature has its aggregated rank, and yi is a
survival outcome. Without loss of generality, we assume the G
features are quantitative variables (e.g., gene expressions).
However, the proposed method can be applied to categorical or
mixed-type variables. Similar to (He et al., 2022), we can rewrite the
G-dimensional vector xi as xi � (xTi1, xTi2, . . . , xTiB)T with xib of
dimension Lb, b � 1, . . . , B, ∑B

b�1Lb � G, based on their
correlation structure such that within each block, the absolute
value of pairwise correlation is all greater than a correlation
threshold ρT.

Next we consider a Group Lasso model (Utazirubanda et al.,
2021) on the ranked feature set (Figure 1B) for survival outcomes.
For commonly seen right censored survival data, yi � (Ti,Δi) is a
survival outcome, where Ti � min(Ui, Vi),
Δi � I(Ui ≤Vi) ∈ 0, 1{ }, with Ui and Vi denote the event time
of interest and the censoring time for the i th subject, respectively.
We model the relationship between the survival outcomes yi and
features xi using the Cox proportional hazards model (Deo
et al., 2021)

log
h t | xi( )
ho t( ) � β0 +∑B

b�1
xTibβb ≜ γβ xi( ),

where β0 is the intercept, and βb ∈ RLb is the parameter vector for
the bth block, ho(t) is the (unknown) baseline hazard function at
time t, and h(t | xi) is the hazard function at time t for the ith
subject with covariate vector xi. We aim to identify which gene
groups amongst the B groups associated with the
survival outcomes.

Based on the partial likelihood function,

L β( ) � ∏n
i�1

exp γβ xi( )[ ]
∑k ∈ Qj

exp γβ xk( )[ ]
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭
Δi

,

TABLE 1 Parameters used for feature selection methods.

Approach R package Parameter Description Value

MIM (select top k) praznik k Select top k features 25

MRMR (select top k)

RF Min Depth (select top k) randomForestSRC ntree Number of trees 1,000

RF Var Imp (select top k) mtry Number of variables to possibly split at each node default

nodesize Minimum size of terminal node 15

RF Var Hunt (select top k) k Select top k feature 25

nsplit Number of random splits for splitting a variable 10

Cox (select up to top k which have
p-value less than α)

survival k Select top k feature 25

alpha p-value threshold 0.05

LASSO glmnet lamba Tuning parameter grid values 10(−10,−9.9,. . .,0,. . .,9.9,10)

Ensemble1 ρT Minimum pairwise correlation within block 0.75

Ensemble2 K Total number of permutations 50

τ Threshold of selection percentage 0.5
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Qj � k: Tk ≥Tj{ }, we can obtain the estimation of the complete
parameter vector β by minimizing the following objective function.

Qλ β( ) � −L β( ) + λ∑B

b�1sb βb
���� ����2.

Recall that λ is the tuning parameter that controls the amount of
shrinkage (larger λ shrinks more coefficients to zero), and sb is used
to rescale the penalty to each group. To ensure the top-ranked
features are more likely to be selected, we put a small penalty on top-
ranked feature sets by proposing using the product of the minimum
rank among each feature set and

��
Lb

√
.

The objective of this study is more about selecting the important
features than improving the prediction accuracy. Therefore, we propose
to use the pseudo-variables assisted tuning strategy (He et al., 2022) to
facilitate the group-lasso tuning parameter selection. This strategy is
built on the idea of combining the original and permutated input
features (e.g., expressed genes), where the permutations work as a
control to determine the significance of each group. Hence, we can
select significantly important genes (not by chance).

It is known that the λ in group-lasso-type regularization controls
the amount of shrinkage. As λ increases, fewer groups are selected. A
group can be considered more important one if it is selected when λ

is large. Based on these observations, we can define an importance
measure Vb � sup λ{ : the coefficient for bth group is nonzero}, for
each of the 2B groups, including the B groups from original input
features (b � 1, . . . , B) and their B groups of permutated copies
(b � B + 1, . . . , 2B). For each permutation, groups from original
input features are selected if their Vb is larger than max

B+1≤ b≤ 2B
Vb,

i.e., the strongest signal among permutated groups which we have
known are irrelevant groups. After running K (e.g., K = 50) times of
permutations, we selected the groups of features that have been
selected more than a certain number of percentages τ (i.e., τ � 0.5)
among K permutations.

Feature selection and machine learning
algorithms

In our study, we evaluated nine different feature selection
methods, including seven existing feature selection methods and
two robust ensemble feature selectors we constructed. The nine
selectors can be divided into four major groups: (I) feature selection
algorithms based on mutual information optimization: mutual
information maximization (MIM) (Torkkola, 2003), minimum
redundancy maximum relevance (MRMR) (Radovic et al., 2017);
and (II) random forest-based approaches: a random forest minimal
depth (RF Min Depth) (Ishwaran et al., 2008; Ishwaran et al., 2011),
a random forest variable importance (RF Var Imp) (Archer and
Kimes, 2008), a random forest variable hunting (RF Var Hunt)
(Chen and Ishwaran, 2013); and (III) Cox-based approaches: Cox
hazard proportional (Cox) (Deo et al., 2021) and 1 penalized Cox
(Lasso) (Goeman, 2010); (IV) ensemble learners (Zhou, 2021). We
created two feature ensembles, Ensemble 1 and Ensemble 2, where
the first one is the ensemble of Lasso, Cox, andMIM, and the second
is the ensemble of Lasso, Cox, MIM, andMRMR. Parameters used in
the paper were included in Table 1.

To compare the results of our feature selection ensemble method
with others, we tested the selected features on five well-known
prediction models using machine learning and non-parametric
techniques: (I) the Cox model with 1 regularization (Lasso)
(Binder, 2015); (II) models based on boosted trees: xgboost
(XGB) (Chen and Guestrin, 2016) (III) boosted gradient linear
models: xgboost based on linear learner (XGB linear) (Chen and
Guestrin, 2016) and (IV) random forest-based methods: random
survival forest (RF) (Segal, 2004) and ranger (Wright and ranger,
2017). All feature selection methods and machine learning
algorithms assessed here can handle the time-to-event outcome.

TABLE 2 Simulation scenario.

Scenarios Label Sample size # Of genes Event rate Sparsity (# of causal
genes/# of genes)

β1 β2 β3

1 n100_G1200_er0.3 100 1,200 0.3 30/1,200 −6 8 −10

2 n100_G1200_er0.5 100 1,200 0.5 30/1,200 −2 3 −4

3 n100_G1200_er0.7 100 1,200 0.7 30/1,200 −2 −3 4

4 n100_G600_er0.3 100 600 0.3 30/600 −6 8 −10

5 n100_G600_er0.5 100 600 0.5 30/600 −2 3 −4

6 n100_G600_er0.7 100 600 0.7 30/600 −2 −3 4

7 n200_G1200_er0.3 200 1,200 0.3 30/1,200 −6 8 −10

8 n200_G1200_er0.5 200 1,200 0.5 30/1,200 −2 3 −4

9 n200_G1200_er0.7 200 1,200 0.7 30/1,200 −2 −3 4

10 n200_G600_er0.3 200 600 0.3 30/600 −6 8 −10

11 n200_G600_er0.5 200 600 0.5 30/600 −2 3 −4

12 n200_G600_er0.7 200 600 0.7 30/600 −2 −3 4
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Simulation

To mimic the correlation structure in real data, we conducted a
simulation based on the colorectal cancer data. Considering in the
real world, we usually do not often observe the causal variables
directly, but rather the variables that are highly correlated with the
causal variables, if any. Here we use a modified version of the
simulation strategy as in (Degenhardt et al., 2019; He et al., 2022) to

mimic this real-world situation. We first picked six correlated gene
expression blocks from the colorectal cancer data, where each block
included 6,7,8,7,8 and 9 highly correlated genes (correlation
coefficient greater than 0.5) respectively (Supplementary Table
S1). For each of the first three blocks, we randomly selected one
of the genes as the unobserved causal variables (z1, z2 , and z3) which
are in the boldface in Supplementary Table S1 and the rest of the
genes in the first three blocks as observed causal variables

FIGURE 2
The results for the TCGA colorectal cancer dataset. (A) Normalized selection frequency of the top 20 selected genes by each feature selection
approach. Each row represents an individual single gene, and each column represents the feature selection approaches. (B) Kaplan-Meier survival curves.
The low-risk group and high-risk group were defined by median of the composite score. The composite score was calculated as the linear combination
of those genes selected by ensemble approach and their coefficients in the cox proportional hazard model. (C–E) DCA of 2 year, 3 year and 5 year.
(F) Heatmap of concordance index (C-index). The heatmap shows the mean value of the C-Index across 5 repeats of 5-fold cross-validation for each
combination of machine learning algorithms (rows) and feature selectionmethods (columns). (G)Heatmap of Brier Score. The heatmap shows themean
value of the Brier Score across 5 repeats of 5-fold cross-validation for each combination of machine learning algorithms (rows) and feature selection
methods (columns).
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v(j)i , i � 1, 2, 3; j � 1, . . . , Ji − 1, J1 � 6, J2 � 7, J3� 8 }{ , while
considering the genes from the last three blocks
v(j)i , i � 4, 5, 6; j � 1, . . . , Ji, J4 � 7, J5 � 8, J6 � 9{ } as observed
noncausal variables. For i th block, the variables
{v(j)i , J � 1, . . . , Ji} were generated using multivariate normal
distribution with mean zero and the correlation matrix computed
based on the real data. Then we generated survival outcomes using
the three unobserved causal variables based on a Cox proportional
hazards model using the reda R package (Fu et al., 2022) (simEvent
function), with ho(t) set as 1,

log
h t | z( )
ho t( ) � β0 + β1z1 + β2z2 + β3z3

In addition, we generated G − 42 independent predictor
variables wk, k � 1, . . . , G − 42, which are uncorrelated with the
base variables v(j)i{ }, are simulated based on a uniform
distribution of (0,1). The input G � 1000 features consisted
of v(j)i ,{ i � 1, 2, 3; j � 1, . . . , Ji − 1, J1 � 6, J2 � 7, J3 � 8},
v(j)i , i � 4, 5, 6; j � 1, . . . , Ji, J4 � 7, J5 � 8, J6 � 9{ } and wk,{
k � 1, . . . , G − 42}. We generated paired replicates (two n × G

matrixes) with the first used for feature selection evaluation
and the prediction models training, and the second used for
assessing stability of feature selection and evaluating the
prediction performance, and we repeated the processes for
100 times. The details of this real-data-based simulation,
including the coefficients, full list of the gene blocks, and
names of the unobserved causal genes, are provided in
Supplementary Table S1. For ease of presentation, we will
refer this real-data-based simulation as Simulation A below.

To further evaluate the performance of the proposed method
under more diverse scenarios, we performed additional simulations
(referred as Simulation B below). Similar to Simulation A, we first
generate unobserved causal variables (z1, z2 , and z3) and then the
observed variables, where some are highly corrected with the causal
variables (i.e., observed causal variables), and the rest are irrelevant
(i.e., noise variables). The survival outcome is also simulated based
on a Cox proportional hazards model using the reda R package (Fu
et al., 2022) (simEvent function)

log
h t | z( )
ho t( ) � β1z1 + β2z2 + β3z3

FIGURE 3
Feature selection performance based on Simulation B. In each panel, x-axis stands for different simulation listed in Table 1, y-axis stands for different
evaluationmetrics including FDR, Sensitivity, F-1 and Stability. For example, n100_G1200_eta0.3 stands for sample size is 100with 1,200 candidate genes
and the event rate is 0.5. Each colored curve stands for different feature selection approaches.
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where ho(t) is set as 1. The three base variables (z1, z2 , and z3, the
unobserved causal variables) and three additional independent
base variables (z4, z5 and z6, the unobserved non-causal
variables) are independently sampled from a uniform
distribution of (0,1). For each of the base variables zi, we
generate a set of 10 correlated predictor variables v(j)i ,
denoting the j th variable in group i, for j � 1, . . . , 10 and
i � 1, . . . , 6, using the following formula:

v
j( )

i � zi + 0.01 + 0.5 j − 1( )
9

) × N(0, 0.3( ),
The correlation between the base variable zi and v(j)i decreased

as j increased. Please note that zi, i � 1, . . . , 6, are only used to
simulate correlated variables v(j)i , and are not included for feature
selection and classification. G − 60 independent predictor variables
wk, k � 1, . . . , G − 60, which are uncorrelated with the base variables
v(j)i{ }, are also simulated based on a uniform distribution of (0,1).
Here we assume that the base variables are not observed. Hence, the
input features consist of 30 observed causal variables
v(j)i , i � 1, 2, 3; j � 1, . . . , 10{ } and 30 correlated, non-causal

variables v(j)i , i � 4, 5, 6; j � 1, . . . , 10{ } and G − 60 uncorrelated,
non-causal variables wk, k � 1, . . . , G − 60{ }, a total of G variables.

We consider twelve different simulation scenarios (Table 2)
including 1) different event rates (η � 0.3, 0.5, 0.7) which are mainly
determined by the coefficients in the Cox proportional hazards
model; 2) sparsity of causal genes (2.5%, 5%) with a different
number of genes (G = 600 and 1,200); and 3) different sample
sizes (n = 100 and 200). Similar as in Simulation A, for each of the
scenarios, we generated 100 paired replicates, where each pair is
consisted of two n × G matrixes.

Model evaluation

In the real data studies, the causal variables are unknown.
Moreover, due to different algorithm, we may have different lists
of selected features across all methods. Therefore, to determine the
important rank of features, we proposed using a weighted relative
frequency (WRF) to measure the relative frequency that a feature is
selected across five different folds as in (He et al., 2022). The weight

FIGURE 4
Empirical power of the feature selection approaches based on Simulation B. Each panel represents different simulation scenario listed in Table 1. For
example, n100_G1200_eta0.3 stands for sample size is 100with 1,200 candidate genes and the event rate is 0.5. In each panel, x-axis stands for the causal
variable index.
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of each selection is reciprocal to the number of features selected,
i.e., larger set of selection adds less weight to each selected feature. A
higher WRF indicates this feature is more consistently and sparsely
selected across different folds.

Since the causal variables are known in simulation studies, we
can evaluate the feature selection performance by comparing the
selection to the truth (the known causal variables). Specifically, we
used the following four commonly used metrics: false discovery rate
(FDR), sensitivity, stability, F-1 score and empirical powers. FDR is
the proportion of false-positive features in the selected feature set.
Sensitivity is calculated as the proportion of selected causal variables
among all the causal variables. Stability is calculated using Jaccard’s
index: the ratio of the length of the intersection and the length of the
union of two sets, where the two sets are the selections from the
paired replicates. F-1 score is calculated as 2 precision*sensitivity

precision+sensitivity, serving
as a balanced metric (harmonic mean) between sensitivity and
precision (1-FDR). Empirical power could be calculated for each
of the causal variables. It is the ratio that this particular causal

variable is selected among the simulation replicates. A power of
1 indicates this casual variable was identified in each replicate, and a
power of 0 means it was never selected across replicates. For each
feature selection method and each of the twelve scenarios, we
reported the average FDR, sensitivity, stability, F-1 score, and
empirical powers across the first replicate of each of the
100 simulations.

Furthermore, to check the effectiveness on the predictions of
our selected features compared to other well-known models, we
used the Integrated Brier score (Ishwaran et al., 2008; Moradian
et al., 2017) to assess the accuracy of predicted survival
probabilities over a specified time period of events. Lower
values of the Integrated Brier Score indicate better predictive
accuracy, with 0 being the optimal score (perfect prediction) and
1 representing a model with no predictive ability. Harrell’s
C-statistic, also known as the concordance index (C-index),
was used to evaluate discrimination with a higher value
indicating better discrimination, meaning the model is better

FIGURE 5
Brier score based on Simulation B. Panels present the Brier score for the corresponding prediction approach as indicated. In each panel, x-axis
stands for different simulation scenario listed in Table 1. For example, n100_G1200_eta0.3 stands for sample size is 100 with 1,200 candidate genes and
the event rate is 0.5. Each colored curve stands for different feature selection approaches.
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at distinguishing between different outcomes. A C-index of
0.5 suggests that the model’s predictions are no better than
random chance, while a C-index of 1.0 indicates perfect
discrimination.

Results

Key features selected by the ensemble
feature selection approach on a colorectal
cancer (CRC) dataset

In the cohort of n � 253 colorectal cancer subjects,
encompassing 19,947 genes, the median overall survival (OS)
was 83.2 months, with a median follow-up time of 22.5 months.
We identified G � 2,303 genes with p-value less than 0.05 based
on the univariable Cox proportional hazard model to further
evaluate different feature selection and prediction approaches.

We then applied our proposed ensemble approach, where the
groups were defined based on the correlation structure of the G �
2,303 genes, such that within each block, the absolute value of
pairwise correlation is all greater than 0.75. The proposed
ensemble approaches (Ensemble 1 and Ensemble 2) show the
consistency of selected genes and their important rankings
compared to all genes, while other methods can only
recognize some of them based on WRF (Figure 2A). Notably,
the gene SLC30A3, although selected by Lasso with the highest
WRF, was not identified by other methods. However, it attained
the top rank in our proposed ensemble approach, showing the
strength of the ensemble approach. Conversely, several genes
(MOS, C1ORF61, and MBL1P) that did not rank highest in Lasso
achieved top positions in random forest approaches, contributing
to higher WRF in the ensemble approaches. Within the top five
genes based on WRF (Ensemble 1 and Ensemble 2), SLC30A3,
MOS, C1ORF61, and MBL1P genes were found to have an
association with CRC (Lin et al., 2007; Zheng et al., 2015; Yin

FIGURE 6
C-index based on Simulation B. Panels present the C-index for the corresponding prediction approach as indicated. In each panel, x-axis stands for
different simulation scenario listed in Table 1. For example, n100_G1200_eta0.3 stands for sample size is 100 with 1,200 candidate genes and the event
rate is 0.5. Each colored curve stands for different feature selection approaches.
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et al., 2020; Peng et al., 2021; Cui et al., 2022), gene PAGE2, a gene
from cancer-germline genes, was found to be upregulated in
Caco-2 colorectal cancer cell line (Yilmaz-Ozcan et al., 2014). On
the other hand, other methods identified some of the above genes
that has connections with colorectal cancers. Using these five
genes, we created a composite score by calculating a linear
combination of the gene expressions multiplied by their
respective coefficients in a multivariable Cox proportional
hazards model. Figure 2B presents the Kaplan Meier curves
for the subjects with a composite score above and below the
median composite score (which is −0.40), with a median OS of
54.6 months and not reachable (log-rank test p-value <0.001),
respectively. The DCA (Decision Curve Analysis) curves based
on 2 years, 3 years and 5 years (Figures 2C–E) consistently show
that the net benefit curve outperforms reference lines across
various threshold probabilities, indicating clinical utility. As
shown in C-index (Figure 2F) and Brier scores (Figure 2G), in
general, the prediction approaches have the most impact on the
prediction performance rather than the feature selectors. Lasso
has a higher C index, and random forest, XGB, and XBG linear
yield the lowest Brier scores, while Ranger demonstrates
relatively poorer performance.

Improved performance by the ensemble
feature selection approach based on
simulation studies

Our ensemble approaches consistently demonstrated superior
feature selection performance compared to other methods
(Supplementary Figure S1A; Figure 3) with Ensemble 1 and
Ensemble 2 exhibiting similar performance based on both
Simulation A and Simulation B. Although the Lasso method also
had low FDRs, it had the lowest sensitivity, reduced F-1 and lower
stability. The random forest approaches overall showed poor
performance. As expected, in general, a larger sample size
(200 vs. 100) resulted in improved performance for all feature
selection approaches. However, the impact of the gene sparsity of
(2.5% vs. 5%) and event rates (0.3, 0.5, 0.7) on prediction
performance was minimal, with slightly better performance
observed at lower sparsity. In Supplementary Figure S1B;
Figure 4, the empirical power of our ensemble approaches is
consistently higher than or at least equivalent to that of other
feature selectors across all thirteen scenarios (1 scenario for
simulation A, and 12 for simulation B) for all 30 causal variables.

Similar to the real data analysis, the overall impact on
prediction performance is predominantly driven by the choice
of prediction approaches rather than the feature selectors due to
models’ bias. This observation is expected, as feature selection
does not guarantee an improvement in prediction performance.
Nevertheless, feature selection proves valuable by reducing the
dimensionality and complexity of predictive models, leading to
quicker model training times and improved convergence.
Predictably, across all prediction approaches, feature selection
based on the univariate Cox proportional hazards model
consistently exhibited the least favorable performance, while
the various selector approaches appeared quite similar.
Notably, a higher event rate corresponded to larger Brier

scores (Figure 5) and smaller C-index (Figure 6), indicating
poorer prediction performance. A larger sample size
contributed to slightly improved prediction performance in
terms of Brier score and C-index. Interestingly, gene sparsity
did not exert a notable impact on prediction performance. While
our feature selection models may not have surpassed others in
terms of accuracy measurements, we observed that they provided
a stable and consistent accuracy across all measurements (as
shown in Figure 5, 6; Supplementary Figures S1C, S1D). This
suggests that the features we selected are significant and exhibit
less bias, contributing to the reliability of our selected features.
We also performed Simulation C with smaller effect sizes
(Supplementary Table S2) with the same setting as Simulation
B. The results (Supplementary Figures S2–S4) were consistent
with all the observations mentioned above.

Conclusion and discussion

This paper proposes a robust ensemble feature selection
approach tailored explicitly for survival analysis. The
ensemble feature selection approach is built on enhancing the
feature selection process by combining different feature
selection algorithms, ultimately improving the quality of
feature selection and providing stabilized results. This is
accomplished through a novel ranking algorithm integrated
with a group lasso model, which is particularly advantageous
when dealing with feature groups. Therefore, our proposed
model is well-suited for applications in genetic data studies,
where it is imperative to analyze genes as cohesive groups rather
than individual entities. The proposed approach demonstrates a
unique ability to select the most compelling features from top-
tier models.

The key benefits of ensemble feature selections are 1)
Robustness: by aggregating the results from diverse feature
selection methods, the final ensemble is less likely to be
influenced by the biases or limitations of a single feature selector;
2) Improved Generalization: the ensemble of multiple feature
selectors, each built on a different algorithm, can lead to
improved generalization and better performance on unseen data;
3) Model Agnosticism: feature selection ensembles are usually
model-agnostic, meaning it is not tied to or dependent on a
specific machine learning model. Instead, they can be applied
across various feature selection models without favoring one over
the other, making them widely applicable.

Though we only applied the proposed method to gene
expression data, our method can be applied to a wide variety
of data having very large number of features in genetics/genomics
studies and medical research in general, such as genomic data,
transcriptomic data, epigenomic data, proteomic data, clinical
and phenotypical data and so on. Besides, the proposed method
can smoothly take care of the correlated structure, and even
utilize the natural set from certain biological knowledge such as
pathway. Moreover, ensemble feature selection can be applied to
different response variable, including quantitative, qualitative
and time-to-event responses. Although the prediction gain is
incremental, the benefits of feature selection are still significant.
Firstly, it can enhance the interpretability particularly in the
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biomedical field and aims the discovery of meaning biological
insights. Secondly, it can greatly improve the computational
efficiency of downstream analysis, making it more feasible to
handle large-scale data sets. Thirdly, it can help filter out
irrelevant noise variable, avoid overfitting and enhance the
reliability of the analyses.
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