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The function of the claustrum and its role in neurological disorders remains a
subject of interest in the field of neurology. Given the claustrum’s susceptibility to
seizure-induced damage, there is speculation that it could serve as a node in a
dysfunctional epileptic network. This perspective article aims to address a pivotal
question: Does the claustrum play a role in epilepsy? Building upon existing
literature, we propose the following hypotheses for the involvement of the
claustrum in epilepsy: (1) Bilateral T2/FLAIR magnetic resonance imaging (MRI)
hyperintensity of the claustrum after status epilepticus represents a radiological
phenomenon that signifies inflammation-related epileptogenesis; (2) The ventral
claustrum is synonymous with a brain area known as ‘area tempestas,’ an
established epileptogenic center; (3) The ventral subsector of the claustrum
facilitates seizure generalization/propagation through its connections with
limbic and motor-related brain structures; (4) Disruption of claustrum
connections during seizures might contribute to the loss of consciousness
observed in impaired awareness seizures; (5) Targeting the claustrum
therapeutically could be advantageous in seizures that arise from limbic foci.
Together, evidence from both clinical case reports and animal studies identify a
significant role for the ventral claustrum in the generation, propagation, and
intractable nature of seizures in a subset of epilepsy syndromes.
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1 Introduction

In epilepsy, a disorder characterized by recurring, spontaneous seizures, the challenge of
diverse etiologies complicates both seizure localization and treatment decisions (Watson
et al., 2021a). Although significant progress has been made in understanding the neural
underpinnings of epilepsy by viewing it as a brain network disorder, the ability to leverage
this network for therapeutic purposes remains elusive. To overcome these shortfalls and
identify novel targets for epilepsy therapeutics, recent studies have delved into themolecular
and epigenetic changes that occur in key brain regions associated with seizure activity,
namely, the hippocampus (Conboy et al., 2021; Pires et al., 2021). But another avenue has
emerged based on neuroimaging results pointing to an obscure brain region, the claustrum,
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which appears to have a role in aberrant networks that give rise to
the hyperexcitability underlying epilepsy.

Situated beneath the insular cortex, between the external and
extreme capsules, the claustrum is a distinctive subcortical structure
whose geometry can be described as a thin sheet of glutamatergic
projection neurons, extending across the anteroposterior extent of
the forebrain. The claustrum’s connectivity is extensive, innervating
the entire cerebral cortex, including the contralateral cortex, as well

as receiving inputs from both hemispheres (for review see Smith
et al., 2019a). These connections are topographically organized
based on modality across the claustrum’s dorsoventral extent,
with limbic connections concentrated in its ventral portion
(Smith and Alloway, 2014; Watson et al., 2017; Marriott et al.,
2021). In fact, renewed interest in the role of the claustrum in
epilepsy stems from these limbic connections with brain regions
frequently identified as seizure foci, such as the mediodorsal

FIGURE 1
Role of the claustrum in seizures. (A) Claustrum sign in a 24 year old female 7 days from onset of status epilepticus after febrile illness refractory to
antiseizure medications (Meletti et al., 2015). Horizontal (top row) and coronal (bottom row) sections show extent of bilateral claustrum FLAIR MRI
hyperintensity. Red arrows point to claustrum hyperintensity in one section. (B) Limbic connections of the ventral claustrum. Reciprocal connections
(orange lines) are shown with the hippocampal system, basolateral amygdala, piriform cortex, entorhinal cortex, insular cortex, medial PFC, and
ACC. (C) Claustrum seizure generalization network. Schematic illustrates the claustrum as a secondary node propagating seizures arising from limbic
brain structures to ipsi- and contralateral motor-related cortices. (D) Physiologically defined ‘area tempestas’ in epilepsy patients using EEG-fMRI.
Overlayed colored areas correspond to approximated areas of interictal discharge-related positive hemodynamic responses in studies color coded
within panel. Pink: Laufs et al., 2011, group EEG-fMRI analysis for amixed cohort of focal epilepsy patients (n = 19). Green and yellow: Fahoum et al., 2012,
group EEG-fMRI analysis results of temporal lobe epilepsy group (n = 32) for hemodynamic response functions peaking at 3s (green) and 5s (yellow) after
interictal epileptic discharges. Red: Garganis et al., 2013, discharge-correlated BOLD change in a patient experiencing recurrent focal seizures following
temporal lobectomy. Blue: Flanagan et al., 2013, group EEG-fMRI random effects analysis for a mixed epilepsy cohort (n = 27). Purple: Coan et al., 2014,
group EEG-fMRI T-maps frommesial temporal lobe epilepsy patients with hippocampal sclerosis (n = 13). Refer to studies for original EEG-fMRI overlays
t-score values, and p-values. Abbreviations: ACC, anterior cingulate cortex; BOLD, blood-oxygen-level-dependent; cc, corpus callosum; EEG,
electroencephalogram; fMRI, functional magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery; PFC, prefrontal cortex.
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thalamus, hippocampus, and amygdala (Jackson et al., 2020; Smith
et al., 2020; Benarroch, 2021).

Clinically, claustrum lesions that cause seizures often encompass
surrounding structures, complicating the identification of the
claustrum’s specific role. Recent structural magnetic resonance
imaging (MRI) studies have identified a distinctive signature that
prominently features the claustrum in patients with intractable
seizures, providing compelling evidence of its involvement in
epilepsy. To support this perspective, we begin by reviewing case
study evidence of radiological signals in the claustrum of new-onset
seizure patients with acute encephalopathies. Subsequently, we turn
to rodent models of epilepsy to precisely define the claustrum’s
involvement, allowing us to distinguish subregions implicated in
seizure generation and propagation, particularly its ventral portion
known to have significant connections with the limbic system
(Watson et al., 2017). The culmination of these separate
approaches has led us to the novel hypothesis that the ventral
claustrum is in fact synonymous with the so called ‘area

tempestas,’ a non-circumscribed brain area traditionally
implicated in seizure propagation and epileptogenesis. We also
speculate that disruption of claustrum connections with the
thalamus and cortex may impair consciousness during certain
seizure subtypes. With this evidence, we conclude by exploring
therapeutic development centered on the claustrum and identifying
the indications most likely to benefit from claustrum remediation.

2 Misleading signs? The claustrum’s
role in de novo status epilepticus

Case reports of patients with status epilepticus (SE) have
provided valuable insights into the involvement of the claustrum
in seizures (Meletti et al., 2015; Meletti et al., 2017; Atilgan et al.,
2022). In the acute phase of SE, a distinct hyperintensity localized to
the claustrum emerges in T2-weighted-fluid-attenuated inversion
recovery (T2/FLAIR) MRI images latent from seizure onset, as

TABLE 1 Appearance of Claustrum Sign in Cases of Generalized Tonic-Clonic Seizures and Status Epilepticus.

Case Study Patient Seizure Type EEG MRI Findings Diagnosis

Ayatollahi et al.
(2021) (North
America)

18 y/o F GTCS Theta/delta slow-wave activity Unremarkable day 7, bilateral claustrum T2/
FLAIR hyperintensity day 21, near-complete
resolution one month after

COVID-19 post-
infectious
encephalitis

Di Dier et al. (2023)
(Europe)

39 y/o F Focal evolving
into SE

N/A Bilateral claustrum T2/FLAIR hyperintensity FIRES

Guo and Hong
(2023) (Asia)

19 y/o F SE Bilateral multifocal discharges, left
hemisphere predominance

Bilateral claustrum T2/FLAIR hyperintensity
day 19

FIRES

Humayun et al.
(2023) (Asia)

6 y/o F GTCS Moderate amplitude 4 Hz theta,
intermixed delta

Bilateral claustrum T2/FLAIR hyperintensity COVID-19 post-
infectious
encephalitis

Hwang et al. (2014)
(Asia)

28 y/o F SE Generalized spike and waves at 1-1.5 Hz Bilateral claustrum T2/FLAIR hyperintensity
day 27†

SE with unknown
etiology

Ishii et al. (2011)
(Asia)

21 y/o M GTCS evolving
into SE

Slow basic rhythms with epileptic
discharges

Unremarkable day 7, bilateral claustrum T2/
FLAIR hyperintensity day 13, resolution day 26

Mumps encephalitis

Muccioli et al.
(2022) (Europe)

40 y/o F SE Bilateral asymmetric lateralized
periodic discharges, predominance in
right fronto-temporal region

Bilateral claustrum T2/FLAIR hyperintensity FIRES

Nixon et al. (2001)*
(Europe)

35 y/o M GTCS evolving
into SE

Generalized slow wave Unremarkable day 7, bilateral claustrum T2/
FLAIR hyperintensity day 13 (4 days after SE
onset)

SE with unknown
etiology

Safan et al. (2023)
(Asia)

30 y/o M GTCS evolving
into SE

Continuous left-sided epileptiform
discharges, left middle temporal
predominance

Bilateral external/extreme capsule
hyperintensities with bilateral claustrum
sparing day 9, resolution day 37

Seronegative limbic
encephalitis

Silva et al. (2018)
(Europe)

6 y/o F SE Occipital intermittent rhythmic delta
activity

Bilateral external/extreme capsule
hyperintensities day 22, reduction at month 3

NORSE

Silva and Sousa
(2019) (South
America)

16 y/o F SE N/A Bilateral claustrum T2/FLAIR hyperintensity
day 21†, resolution 4 months later

N/A

Sperner et al.
(1996) (Europe)

12 y/o F SE followed by focal
impaired awareness

Severe generalized slowing, right-sided
sharp slow waves

Bilateral claustrum T2/FLAIR hyperintensity
and T1 hypointensity day 21, resolution day 25,
normal MRI at week 7

SE with unknown
etiology

Dates of MRI findings extrapolated from first instance of symptoms reported within case studies. See articles for list of negative laboratory findings. Diagnoses are listed as presented in case

studies. Note that all cases show T2/FLAIR hyperintensity restricted to the claustrum with diffusion into the external and extreme capsules without involvement of other brain regions. See

Meletti et al., 2015; Meletti et al., 2017 for cohort population reports in patients with FIRES and NORSE. See Atilgan et al., 2022 for additional case studies involving hyperintensities in other

brain regions appearing with claustrum sign. Abbreviations: EEG, electroencephalogram; F, female; FIRES, febrile infection-related epilepsy syndrome; FLAIR, fluid-attenuated inversion

recover; GTCS, generalized tonic-clonic seizures; M, male; MRI, magnetic resonance imaging; NORSE, new-onset refractory status epilepticus; SE, status epilepticus. *Case resulted in death. †

Timeframe approximated based on article text.
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illustrated in Figure 1A. This radiological occurrence, termed
‘claustrum sign,’ is notable for its association with generalized tonic-
clonic seizures and its reversibility following SE resolution (Table 1).
Intriguingly, claustrum-related imaging abnormalities are rare in
patients with SE but are strongly linked to a de novo SE that
typically develops in young, healthy patients that are refractory to
antiseizure medications. In some cases, autoimmune antibody positive
encephalitic syndromes have been reported, including some cases of
COVID-19 post-infection encephalitis (Ayatollahi et al., 2021;
Humayun et al., 2023). However, the etiology in most cases remains
undetermined with patients being described in the context of febrile
infection-related epilepsy syndrome (FIRES) and new-onset refractory
status epilepticus (NORSE) (see updated terminology in Hirsch et al.,
2018). Thus, the claustrum sign serves as a distinctive radiological
biomarker, suggesting a potential link to inflammation-related
epileptogenesis and cytokine-mediated neuroinflammation. But does
this hyperintensity indicate a causative role for the claustrum in
inflammation-related SE, or does the claustrum sign simply signify
inflammation?

Unlike claustrum damage resulting from a hemorrhagic stroke or
penetrating head injury, which infrequently leads to seizures, viral and
autoimmune encephalitic etiologies canmanifest claustrum sign (Table 1;
see Atilgan et al., 2022, for additional case summaries). Two hypotheses
may explain the appearance of this radiological phenomenon. The first
involves postinfection neuronal loss, encompassing gliosis, spongiform
degeneration, and demyelination during the recovery phase (Kimura
et al., 1994; Sperner et al., 1996; Nomoto et al., 2007; Ishii et al., 2011).
Lending credence to this hypothesis, the presence of ischemic cell changes
and acute astrocytic reaction (astrogliosis) were observed in the claustra
during histopathological analysis of a patient’s brain after a fatal SE case
(refer to Table 1; Nixon et al., 2001). Conversely, a comprehensive
neuropathological study found no abnormalities in the claustra of
patients with chronic epilepsy and SE (Margerison and Corsellis,
1966). Another hypothesized mechanism is focal edema, gaining
support from recent case studies of claustral edema in the context of
refractory SE following consumption of Sugihiratkae mushrooms
(Kuwabara et al., 2005; Nishizawa, 2005; Nomoto et al., 2007). Edema
localized to the claustrum may therefore contribute to an aspect of the
refractory nature of SE.

The claustrum sign may not solely be a structural abnormality
but could instead signify network dysfunction, although it is seldom
observed outside of encephalopathies (Steriade et al., 2017; Silva
et al., 2018; Altigan et al., 2022). This prompts an exploration into
whether viral-induced connectional changes are causative factors
behind the appearance of this hyperintensity. A clue may reside in
the claustrum’s strikingly high density of inhibitory kappa-opioid
receptors (KORs) compared to other subcortical brain regions
(Peckys and Landwehrmeyer, 1999; Stiefel et al., 2014; Cahill
et al., 2022). The potential link between viral-induced KOR
dysfunction and the claustrum sign, potentially driven by
runaway excitation due to reduced dynorphin expression,
necessitates careful consideration (Solbrig and Koob, 2004;
Solbrig et al., 2006; Silva et al., 2018). More intriguingly, most
case studies reporting claustrum sign in the literature originate
from Asia and Europe, raising questions about the veracity of
this signal’s physiological significance, or whether it represents an
underreported, time-dependent radiological phenomenon
appearing around one to three weeks from symptom onset (Table 1).

3 Gene expression changes in
claustrum during seizures

The hypothesis that MRI hyperintensities may indicate aberrant
hyperactivity within nodes of an epileptic network has been proposed
(Silva et al., 2018; Ayatollahi et al., 2021). Examining the claustrum’s role
as a nodewithin a limbic epileptic network is a potential avenue to clarify
its relationshipwith seizure activity. Asmentioned previously, the ventral
most region of the claustrum connects to various limbic brain structures
that are implicated in seizure generation and epileptic pathology (Smith
et al., 2020). These regions include the piriform, medial prefrontal,
orbitofrontal, and entorhinal cortices, the amygdala (basolateral, central,
and medial nuclei), and the anterior and mediodorsal nuclei of the
thalamus (Fernandez-Miranda et al., 2008; Watson et al., 2017; Smith
et al., 2019b) (Figure 1B). Despite its anatomical significance, the
involvement of this limbic subsector of the claustrum has largely
been overlooked in seizure research, potentially due to its obscurity
and the ability to selectively modulate it without affecting neighboring
white matter (Watson and Kopell, 2022).

An alternative method to delve into the claustrum’s potential
involvement in seizures involves measuring its neuronal activity in
validated animal models of epileptogenesis. Numerous studies
investigating c-fos expression in temporal proximity to SE induced
by various methods consistently show increased expression in limbic
regions connected to the claustrum such as the hippocampus, piriform
cortex, medial prefrontal cortex, entorhinal cortex, amygdala, and
anterior nucleus of the thalamus (Morgan et al., 1987; Sitcoske
O’Shea et al., 2000; Szyndler et al., 2009; Barros et al., 2015; Siow
et al., 2020) (Figure 1B). Studies utilizing kainic acid, pentylenetetrazol,
lithium-pilocarpine, and kindling exhibit increased c-fos expression and
evidence of neuronal cell death in the claustrum itself (Willoughby et al.,
1997; Zhang et al., 1997; Covolan andMello, 2000; Sitcoske O’Shea et al.,
2000; Zhang et al., 2001; Siow et al., 2020; Druga et al., 2024). In fact, a
region we recently delineated as being a part of the ventral claustrum in
rodents, the dorsal endopiriform nucleus, shows c-fos expression during
SE only after the first convulsive seizure, corresponding to the
appearance of claustrum sign after the onset of SE in humans
(Table 1; Smith et al., 2020; see Majak and Moryś, 2007 for review).

In light of the emerging evidence supporting the ventral
claustrum’s role in epilepsy through gene expression studies, a
compelling avenue of exploration lies in understanding its
potential influence on specific aspects of seizures. Building upon
these insights, we next delve into a distinct aspect of claustrum
involvement - its potential role in impaired awareness seizures.

4 A case for involvement of the
claustrum in impaired
awareness seizures

Brain regions with changes in c-fos expression during seizures
provide a biological anchor by which to interpret resting-state
functional MRI (rs-fMRI) data. In one of our recent rs-fMRI
studies, we observed functional connections between the claustrum
and the thalamus, amygdala, and prefrontal cortex that are weakened
under isoflurane anesthesia (Smith et al., 2017). Building on these
results and findings in human rs-fMRI studies, we implicated the
ventral claustrum as a critical node within both the salience and
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default-mode intrinsic connectivity networks (ICNs): interconnected
brain regions that are functionally co-activated or co-deactivated
during specific cognitive activities that are found to be impaired
throughout epileptogenesis (Luo et al., 2011a; b; Smith et al., 2017;
Smith et al., 2019b). Interestingly, a decrease in default-mode ICN
activity is shown during generalized tonic-clonic seizures, and
selective impairment to this ICN during seizures is associated with
loss of consciousness (Danielson et al., 2011; Crone et al., 2015). This
presents the possibility that ventral claustrum output could be
impaired during seizures, and in turn alter ICN-mediated
consciousness.

The claustrum’s role in consciousness, speculated by Crick and
Koch (2005) has sparked renewed interest in research on the
subject. A study on a refractory epilepsy patient undergoing
stimulation mapping demonstrated that electrical stimulation
near the claustrum could reversibly disrupt consciousness
(Koubeissi et al., 2014). However, a later study involving several
epilepsy neurosurgical patients contradicted this finding, as
electrical stimulation of the claustrum did not lead to a loss of
consciousness (Bickel and Parvizi, 2019). Nevertheless, we do not
entirely rule out the possibility of the claustrum’s involvement in
seizures that impair awareness via ICN alterations. Cases with
claustrum sign often report impairment in consciousness (see
Atilgan et al., 2022 for review). Furthermore, most focal
impaired awareness seizures arise from the temporal lobe,
where many of its structures directly project to the ventral
claustrum, with more than half evolving into focal to bilateral
generalized seizures (Kumar and Sharma, 2023).

An ongoing clinical trial (NCT04897776, 2024) stimulating
the intralaminar thalamus to restore arousal in temporal lobe
epilepsy patients with impaired conscious awareness may offer
mechanistic insight. As shown in Figure 1C, seizures emanating
from limbic brain structures could impair interactions between
the claustrum, cortex, and thalamic nuclei. A robust and common
target of both the intralaminar thalamus and the claustrum is the
anterior cingulate cortex: where seizures often lead to impaired
consciousness and motor manifestations, often involving the
temporal lobe (Alkawadri et al., 2016; Benarroch, 2021). We
previously hypothesized that the connectivity between the
claustrum and cingulate cortex plays a major role in salience
and default-mode ICNs (Smith et al., 2019a; Kou et al., 2023).
Building upon this, we further hypothesize that disruption to this
critical network connection may impair awareness during
seizures originating from temporal lobe structures through its
interaction with motor-related cortical areas (cingulate cortex)
and the thalamus. We therefore support the viewpoint that while
the claustrum can influence the consciousness “master switch” of
a brainstem and diencephalic origin, it is not the master switch
itself (Blumenfeld, 2014; Gummadavelli et al., 2015).

5 The ventral claustrum is synonymous
with ‘area tempestas’: a brain region
imlicated in seizure generation and
propagation

It is plausible that the claustrum is a node by which seizures
can generalize or propagate from limbic-connected structures to

cortical regions considering the functional connectivity data
discussed above. Supporting this possibility, from animal data,
amygdaloid kindling studies reveal that claustrum lesions
destabilize or entirely block seizure generalization (Wada and
Kudo, 1997; Wada and Tsuchimochi, 1997; Mohapel et al., 2000).
Interestingly, a non-circumscribed anatomical region termed
‘area tempestas’ traditionally described within the deep
piriform cortex (primary olfactory) demonstrates strikingly
similar kindling results (Löscher et al., 1995). Upon further
research, the dorsal endopiriform (rodents) and pre-
endopiriform (human) nuclei (i.e., ventral claustrum)
correspond to this physiologically defined area (see Majak and
Moryś, 2007; Vaughan and Jackson, 2014 for review).

Insight into the exact functional relationship amongst the
ventral claustrum and limbic brain structures during seizures can
be further gleaned from a formative electroencephalogram
(EEG)-fMRI study involving focal epilepsy patients (Laufs
et al., 2011). Regardless of the localization of interictal and
ictal activity, the study identified a common, tightly localized
brain region attributed to be the “human equivalent of area
tempestas,” exhibiting increased hemodynamic responses in
relation to interictal epileptiform discharges. Based on the
reported Talairach coordinates, we previously hypothesized
that this area corresponds to the ventral claustrum (Meletti
et al., 2015). To further support our hypothesis, we show
EEG-fMRI results from this and subsequent studies that
attribute interictal discharge-related hemodynamic responses
to ‘area tempestas’ that correspond to the location of the
ventral claustrum (Figure 1D).

Interestingly, Laufs et al. also found reduced benzodiazepine-
GABAA receptor binding complex expression in ‘area tempestas,’ as
measured by flumazenil positron emission tomography, in patients
experiencing more frequent seizures. The claustrum notably harbors
a significant population of GABAergic interneurons, which are
influenced by anesthetic agents that interact with benzodiazepine
GABAA receptor binding complexes. Consequently, reductions
observed in the expression of these complexes may in fact occur
within the claustrum. This reduction may also be linked to the
decreased effectiveness of benzodiazepines observed in cases of
refractory SE (Singh et al., 2014; Borroto-Escuela and Fuxe, 2020;
Kim et al., 2020; Luo et al., 2023).

In line with these results, in Figure 1C we illustrate a putative
seizure generalization network from limbic-associated brain
structures to motor-related cortical areas via the ventral
claustrum. We hypothesize that seizures arising from temporal
lobe structures can generalize broadly across ipsi- and
contralateral neocortices (e.g., generalized tonic-clonic seizures)
through ventral claustrum projections. Considering this
subcortical generalization network, we further speculate that
anterior temporal lobectomy and other temporal lobe resection
techniques utilized in epilepsy could, in some cases, resect the
ventral portion of the claustrum or transect limbic fibers to this
subregion (Feindel et al., 2009; Borger et al., 2021; Dalio et al., 2022).
The incidence, benefits, and/or altered outcomes of these surgical
possibilities are unknown. However, a recent case study provides
strong evidence that not fully resecting ‘area tempestas’ may cause
seizure recurrence following temporal lobectomy (Garganis et al.,
2013; Figure 1D).
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6 Is the claustrum a suitable therapeutic
target in epilepsy?

Our perspective on available evidence implicates the ventral
claustrum as a key node within a dysfunctional epileptic network.
To review, four key pieces of evidence from clinical and animal studies
point to the claustrum as a useful target for therapeutic development in
epilepsy: (1) Neuroimaging data that show increased activation in a
region that stereotactically corresponds to the ventral claustrum; (2)
Histopathological data in both animals and humans that reveal
neuronal cell death and cellular alterations in the ventral claustrum
after uncontrolled seizures; (3) Electrical kindling data revealing that the
ventral claustrum has a low threshold and high susceptibility to seizure
induction, and lesions to this region can profoundly mitigate or block
seizure generalization; (4) Seizure-induced disruptions to claustro-
cortico-thalamic interactions that constitute brain wide ICNs could
impair consciousness during certain seizure subtypes. Considering this
evidence, we conclude that the ventral claustrum represents a viable
target in correcting a dysfunctional epileptic network. Below we review
several therapeutic possibilities.

Targeting endogenous opioids has recently gained attention as a
promising therapy to treat temporal lobe epilepsy (Zangrandi and
Schwarzer, 2022; Lankhuijzen and Ridler, 2024). As described
earlier, the claustrum has a high density of KORs, presenting a
unique opportunity to target this brain region with KOR agonists to
reduce neuronal excitability, especially during SE (Kumar et al.,
2023). Therefore, the use of KOR agonists as anticonvulsants,
specifically for refractory SE, should be explored further. More
work is also needed to explore how the use of benzodiazepine
and non-benzodiazepine GABAA modulators can be used to
selectively target claustrum interneurons during seizures.

We previously discussed data hinting at the possibility that resecting
the ventral claustrumcould, theoretically, provide benefit in patientswith
generalized seizures that arise from temporal lobe structures (Feindel
et al., 2009; Borger et al., 2021; Dalio et al., 2022). However, this
viewpoint is highly speculative and requires formal investigation to
support or refute. Magnetic resonance-guided focused ultrasound to
selectively ablate the ventral claustrum may provide a starting point to
test this hypothesis (Ranjan et al., 2019). Long-standing
neuromodulation techniques can also be used to target the
claustrum, especially with closed-loop, state-dependent stimulation
(Wong et al., 2021; Watson and Kopell, 2022). It is conceivable that
claustrum electrical stimulation may help correct an aberrant epilepsy
network or prevent seizure generalization, but confounding variables
such as the alteration of consciousness seen in theN-of-1 study discussed
(Koubeissi et al., 2014), and the possibility of off-target white matter
stimulation effects may make this modality less favorable (Kurada et al.,
2019). Owing to the claustrum’s unique anatomy, more advanced cell-
and pathway-specific neuromodulation techniques to effectively target
this structure are warranted (Watson et al., 2021b).

An emerging tool that could selectively target the claustrum to
treat epilepsy is gene therapy (Shaimardanova et al., 2022; Boileau
et al., 2023; Miyakawa et al., 2023). Diffuse or more targeted use of
viral promoters (e.g., adeno-associated viruses, AAVs) are being
used to restrict vector expression to select populations of neuronal
subtypes. Gene therapy would address the issue of non-specific
neuromodulation and the systemic targeting of many antiseizure
medications. For example, selectively attenuating glutamatergic

projection neurons in the ventral claustrum through gene therapy
may prevent seizure generalization or impaired awareness as
previously discussed. Even developmental and epileptic
encephalopathies such as Dravet syndrome may benefit from
selective targeting of Nav1.1 parvalbumin neurons in the
claustrum (Vormstein-Schneider et al., 2020; Niibori et al., 2023).

As we contemplate the therapeutic potential of targeting the
claustrum, the prospect of correcting a dysfunctional epileptic
network becomes both promising and challenging. This
perspective article opens new avenues for understanding the
intricate interplay between the claustrum and limbic brain
structures, providing a foundation for future research and
potential breakthroughs in epilepsy therapeutics.
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