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Uncertainty is ubiquitous in biological systems. For example, since gene
expression is intrinsically governed by noise, nature shows a fascinating
degree of variability. If we want to use a model to predict the behaviour of
such an intrinsically stochastic system, we have to cope with the fact that the
model parameters are never exactly known, but vary according to some
distribution. A key question is then to determine how the uncertainties in the
parameters affect the model outcome. Knowing the latter uncertainties is crucial
when a model is used for, e.g., experimental design, optimisation, or decision-
making. To establish how parameter and model prediction uncertainties are
related, Monte Carlo approaches could be used. Then, the model is evaluated for
a huge number of parameters sets, drawn from the multivariate parameter
distribution. However, when model solutions are computationally expensive
this approach is intractable. To overcome this problem, so-called spectral
expansion (SE) methods have been developed to quantify prediction
uncertainty within a probabilistic framework. Such SE methods have a basis in,
e.g., computational mathematics, engineering, physics, and fluid dynamics, and,
to a lesser extent, systems biology. The computational costs of SE schemes
mainly stem from the calculation of the expansion coefficients. Furthermore, SE
effectively leads to a surrogate model which captures the dependence of the
model on the uncertainty parameters, but is much simpler to execute compared
to the original model. In this paper, we present an innovative scheme for the
calculation of the expansion coefficients. It guarantees that the model has to be
evaluated only a restricted number of times. Especially for models of high
complexity this may be a huge computational advantage. By applying the
scheme to a variety of examples we show its power, especially in challenging
situations where solutions slowly converge due to high computational costs,
bifurcations, and discontinuities.
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1 Introduction

Every mathematical model in systems biology is subject to uncertainty and incomplete
knowledge (Geris and Gomez-Cabrero, 2016; Gutenkunst et al., 2007; Mitra and Hlavacek,
2019; van Mourik et al., 2014). This can be in the form of unknown model structure,
unknown model parameters and imperfect experimental data. Characterizing and
quantifying these sources is crucial, as the uncertainty can translate into inaccuracies in
the model predictions. Information about the quality of model predictions is vital when
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applied as support for decision-making or optimization routines
such as experimental design and parameter estimation (Raue et al.,
2013). The aim of uncertainty quantification (UQ) is to determine
the likeliness of certain outcomes, given that some aspects of the
system under study are not (exactly) known.

Generally, uncertainty is distinguished into two classes (Bruno,
2007; Ghanem et al., 2017; Le Maître and Knio, 2010). The first class
is so-called aleatoric uncertainty. Aleatoric uncertainty stems from
the intrinsic variability found in the system under consideration, for
this reason it is also referred to as statistical uncertainty. For
example, in the case of parameter estimation, this uncertainty is
related to the fact that parameters may essentially vary over the
system components (e.g., cells) (Elowitz et al., 2002), so that for the
system as a whole only a distribution of parameter values can be
estimated, and not one precise value per parameter. Gene expression
noise is often a source of varying conditions (e.g., initial conditions
or protein production rates) in cells resulting in variability of process
parameters such as the protein production rate (Thattai and van
Oudenaarden, 2001; Elowitz et al., 2002; Blake et al., 2003; Lev, 2014;
Schultheiß Araújo et al., 2017).

In contrast, the second class of uncertainty, termed epistemic (or
systemic) uncertainty, is caused by a lack of information (Bruno,
2007; Ghanem et al., 2017; Le Maître and Knio, 2010). For example,
in parameter estimation, uncertainty in the estimates may be caused
by imperfect data sets that contain noisy, incoherent, or even
missing data points (Sullivan, 2015). In such cases, the
uncertainty can in principle be reduced by performing extra
experiments (Banga and Balsa-Canto, 2008; Kreutz and Timmer,
2009; Barz et al., 2010), but practical restrictions often prohibit this.

In biological systems both types of uncertainty are typically
present (Geris and Gomez-Cabrero, 2016). In terms of modelling,
both are usually dealt with by employing a probabilistic framework
(Kirk et al., 2016), in which model parameters are represented
according to a probability density function (PDF) (van Mourik
et al., 2014; Bruno, 2007). The choice of the type of PDF and the
corresponding distribution of parameters is usually based on
previous knowledge. For example, the case of a completely
unknown parameter is described by a uniform distribution on a
broad (positive) interval. In other cases a parameter could be known
to follow a normal or lognormal distribution with known mean and
variance, established in previously performed experiments
(Tsigkinopoulou et al., 2018).

Among the field of UQ, Monte Carlo (MC) methods are most
commonly used (Barbu and Zhu, 2020; James, 1980). In an MC
approach the parameter PDFs are sampled and model responses for
each sample recorded, thus providing a distribution of model
outcomes and an indication of the uncertainty therein (e.g., by
analyzing the distribution moments). These methods are simple in
their implementation and are widely applicable. However, for
models that have a large number of parameters or are
computationally expensive, these MC procedures are often not
feasible (Bruno, 2007; Le Maître and Knio, 2010).

As an alternative to MC, meta-modelling techniques, also
referred to as surrogate modelling, are frequently adopted to deal
with models that would otherwise be intractable. Support vector
machines (Noble, 2004), artificial neural networks (Tadeusiewicz,
2015) and Bayesian networks (Wilkinson, 2007) are examples meta-
modelling techniques used in systems biology. In this work, we focus

on spectral expansion (SE) methods, an approach that is widely used
in engineering systems (Ghanem et al., 2017; Le Maître and Knio,
2010) and to a lesser extent in biological systems (Martin-Casas and
Mesbah, 2016; Paulson et al., 2019; Streif et al., 2014; Renardy et al.,
2018) for UQ purposes. In such an approach the model response is
represented in the form of a series expansion. The advantage of such
a representation is that an approximation of the model response is
obtained for all values of the parameters at once. This allows
immediate evaluation of statistics of the model outcome, either
analytically or through sampling of the stochastic parameters, which
can be done significantly faster than through MC methods for
models that are problematic and computationally expensive (Xiu
and George, 2002).

These advantages come at the cost of the need to calculate
expansion coefficients. For this, two classes of spectral methods are
in use. In the first class the governing equations of the model are
reformulated such that each variable is represented by a spectral
expansion. This results in a system of differential equations for the
expansion coefficients and is known as intrusive spectral projection
(Bruno, 2007). In the second class, based on so-called non-intrusive
spectral projection, the expansion coefficients are determined
without changing the original model equations (Eldred et al.,
2008). This is the line followed in this paper. The advantage of a
non-intrusive approach is that it requires only straightforward
deterministic model evaluations and does not involve any
reformulation of the model. It is particularly attractive in case of
models where intrusive methods would become too laborious.

In the past, SE methods have been shown to converge very
slowly or not at all for models involving non-smooth functions (Joel
Chorin, 1974; Le Maıtre et al., 2004). This is indeed a critical
challenge for biological models, which often show complex, non-
linear behaviour such as bifurcations and spatial discontinuities. In
this work, we provide a scheme for non-intrusive spectral projection
that may overcome these problems. It is easy to implement and we
show its power through applying it to a number of various biological
models. The scheme straightforwardly allows the use of different
basis functions for the expansion, such as Haar wavelets in case of
models with bifurcations. We also present a simple segmentation
method resulting in a piecewise continuous approximation of the
model at hand which helps to deal with complex models avoiding
the necessity of high order expansions. The examples treated in this
paper have been chosen such that each one shows how a specific
problem can be overcome. The MATLAB code used for each
example is publicly available on GitHub (see Section 8)

2 Methods

2.1 Spectral expansion

Let us consider a modelΩ that depends on a vector of stochastic
input parameters θ. The model response Y can be any chosen
quantity, e.g., the concentration of one of the model components
or a function thereof. Here, the uncertainty parameters
θl, l � 1, . . . , U, are assumed to be uncorrelated and thus
independently distributed, each with PDF Pl(θl). So,

Y � Ω θ( ), θ ~ P θ( ), (1)
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where P(θ) is the joint probability density function (PDF) for all U
uncertainty parameters: P(θ) � ∏U

l�1Pl(θl). The case of correlated
parameters is discussed in Section 2.2.3. For reasons of clarity, we
restrict the explanation in this section to the univariate case, i.e., Y
and θ, as shown in Equation 1, are scalars. In Section 2.2 we show
how to deal with more than one uncertainty parameter.

The underlying model could be of any type, e.g., an ODE, a PDE,
an algebraic, or a statistical model. This implies that Y may also
depend on time and space. The challenge is to analyse the behaviour
ofY as a function of θ. In cases where the numerical evaluation of the
underlying model takes a considerable amount of computational
time, this tends to obstruct any form of comprehensive analysis. In
this paper we present a method that aims at making this tractable.
The idea is to replace the original model by a meta-model, which is
achieved by representing the outputY in terms of an expansion. This
meta-model can be constructed such that it represents the
underlying model to a high degree of accuracy, but having the
advantage that it is much faster to evaluate than the original model.

This meta-model can be used to determine the distribution of
the model response Y or reconstruct the function accurately at given
points in the parameter space. In the spectral expansion (SE)
approach the model response is represented by

Y θ( ) � ∑∞
n�0

cnϕn θ( ), (2)

where cn are the expansion coefficients (which can be time and/or
space dependent) and ϕn are functions that are orthonormal with
respect to the distribution of the uncertainty parameters as weight
functions for an inner product, as dealt with in Supplementary
Material S1. For example, suitable basis functions for uniformly
distributed parameters are Legendre polynomials, while for
normally distributed parameters Hermite polynomials qualify.
For any practical purpose the expansion given in Equation 2
needs to be truncated to a certain degree:

Ys θ( ) � ∑N
n�0

cnϕn θ( ), (3)

where N is the truncation degree. For the meta-model Ys N
expansion coefficients have to be calculated. The advantage of
Equation 3 is that the statistics of the model response Y can be
evaluated very fast, either analytically or through sampling of the
parameters θ. The main computational cost of the SE approach
stems from the computation of the coefficients cn. Below, we provide
an easy-to-implement scheme for the calculation of these
coefficients.

The most commonly used method for determining the
coefficients in the SE approach is through Gaussian quadrature
schemes (Bruno, 2007). Here, we propose an alternative scheme. It is
applicable to any set of orthonormal functions, allowing the
flexibility to tackle different modelling challenges. A key feature
in the scheme is the introduction of the symmetric matrix:

B̂n,m � ∫ ϕn θ( ) θ ϕm θ( )P θ( ) dθ. (4)

Since this matrix is symmetric, its eigenvalues λ(l), l � 1, 2, . . ., are
real and its eigenvectors u(l) orthonormal. In the Supplementary
Material S1 we show that these eigenvalues and eigenvectors can be

used to derive an explicit expression for the coefficients cn. After
substitution of this expression, Equation 3 then reads as

Ys θ( ) � ∑N
l�1

Y λ l( )( ) u l( )
1 ψs

l θ( ), (5)

where

ψs
l θ( ) ≡ ∑N

n�0
u l( )
n+1 ϕn θ( ). (6)

The striking point here is that this expansion requires evaluation of
the model only N times, namely, for each of the eigenvalues
λ(l), l � 1, . . . , N. Note that all terms in the expansion that do
not depend on the uncertainty parameter θ can be calculated in
advance, so once and for all. This saves computation time for any
future application. For models that take a long time to evaluate the
use of Equation 5 is a very fast alternative, compared to e.g., a
Monte-Carlo approach. What’s more, statistical moments like mean
and variance follow directly from the expansion coefficients (Bruno,
2007), thus requiring no further calculation. Note that the expansion
in Equation 5 is only exact in the limitN → ∞. Taking a finite value
forN introduces inaccuracy. Therefore,Nmust be chosen with care
and it is often not obvious beforehand which value of N will give
reliable results. In the examples below we have chosen N by visual
comparison with e.g., an analytical solution or withMC solutions. In
cases when a high level of accuracy is needed a more robust
comparison or measure of convergence will be required, see for
example, (Vincent et al., 2013) where a leave-one-out technique is
used as a stopping criterion. In Section 2.2.4, we propose an easy-to-
use scheme to deal with cases where a high degree of expansion
might result in infeasible computation times.

2.2 Practical aspects

Here, we treat some specific aspects of the method
presented above.

2.2.1 PDFs and basis functions
We already mentioned Legendre and Hermite polynomials as

possible basis functions for SE. Legendre polynomials are defined
over the interval [−1, 1] and are orthogonal with respect to the
uniform distribution U(−1, 1). The Hermite polynomials are
defined over the whole real axis R and are orthogonal with
respect to the Gaussian distribution N (0, 1), with mean 0 and
standard deviation 1. Both polynomials can be normalized with
appropriate prefactors to ensure orthonormality. These two families
of polynomials are most often used to represent biological
parameters. The uniform distribution is typically applied in
uninformed cases and the lognormal distribution in cases where
there is prior information available on a parameter. In practice,
sometimes other classical orthogonal polynomial families are
appropriate, e.g., Laguerre polynomials that are related to
Gamma distributions. The method is also known as Polynomial
Chaos Expansion in the case of polynomial basis functions, first
introduced by Norbert Wiener in 1938 (Wiener, 1938). However,
note that non-polynomial functions may also be applied in SE
methods, such as spherical harmonics and wavelets. The
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approach presented in this paper can be used for any set of
orthonormal functions.

As mentioned above, Legendre are related to the standard
uniform distribution U(−1, 1) and Hermite polynomials to the
standard normal distribution N (0, 1). In practice, however, the
biological parameters often do not fit these precise restrictions. In
some cases this can be repaired by applying an isoprobabilistic
transformation, as we will show underneath. For example, to obtain
a normally distributed random variable k with mean μ and variance
σ, so k ~ N (μ, σ), starting from a θ ~ N (0, 1), we need
the transform

k � μ + σθ, θ ~ N 0, 1( ). (7)
To obtain a uniformly distributed random variable k on the interval
[a, b], so k ~ U(a, b), from θ ~ U(−1, 1), we need the transform

k � b + a( )/2 + b − a( )θ/2, θ ~ U −1, 1( ). (8)
A lognormally distributed random variable k ~ Lognormal(μ, σ) is
obtained from θ ~ N (0, 1) via the transformation

k � μ exp αθ − α2

2
[ ], θ ~ N 0, 1( ), (9)

Equations 7–9 show the most common transformations. Other
transformations are, of course, possible as well. where α �








ln(1 + σ2

μ2)
√

.

2.2.2 Multiple uncertainty parameters
Typically, biological models involve more than one random

parameter, which means that the SE basis {ϕn(θ), n ∈ NM} is
multivariate. Extending Equation 5 to the M-dimensional case is
straightforward:

Ys θ1, . . . , θM( ) � ∑N
l1�1

. . . ∑N
lM�1

Y λ l1( ), . . . , λ lM( )( )u l1( )
1 . . . u lM( )

1 ψs
l1

θ1( ) . . .ψs
lM

θM( ).

(10)

As other similar approaches, SE suffers from the curse of
dimensionality (Ghanem et al., 2017; Xiu, 2007). Note from
Equation 10 that the number of times the model has to be
evaluated scales as NM, where N is the expansion order and M
the number of uncertainty parameters.

2.2.3 Correlated uncertainty parameters
To handle correlated parameters we propose transforming the basis

functions. Here, we discuss the case of two correlated parameters; in
Supplementary Material S2 we show the general case. Let P(θ1, θ2) be
the common distribution for the uncertainty parameters θ1 and θ2, and
let P(θ1) and P(θ2) be the corresponding marginalised distributions.
Assuming that P(θ1, θ2) ≠ 0,∀θ1, θ2, we may write the new basis
functions as (for details see Supplementary Material S2):

ψs
l1 ,l2

θ1, θ2( ) �











P θ1( )P θ2( )
P θ1, θ2( )

√
ψs
l1

θ1( )ψs
l2

θ2( ), (11)

where the functions ψs
n are orthonormal with respect to P(θ) and are

given by Equation 6. The expansion of a function depending on
correlated parameters can be written as:

Ys θ1, θ2( ) �











P θ1( )P θ2( )
P θ1, θ2( )

√ ∑
l1 ,l2

Y λ l1( ), λ l2( )( )ωl1 ,l2ψ
s
l1

θ1( )ψs
l2

θ2( ),

(12)
with

ωl1 ,l2 � ∫ 

















P θ1( )P θ2( )P θ1, θ2( )√

ψs
l1

θ1( )ψs
l2

θ2( )dθ1dθ2. (13)

2.2.4 Segmentation
In cases where either an expansion to high order is needed to

obtain the requested approximation accuracy or the model is
computationally expensive, one needs to switch to optimised or
more effective methods (Le Maître and Knio, 2010; Sullivan, 2015).
Models that show complex response surfaces (e.g., bifurcations) will
require high order expansions to capture the inherent complexity.
To overcome these problems, we present here a simple and easy to
implement scheme that segments the parameter intervals into
subintervals, yielding a piecewise continuous approximation of
the original function. Within each of these segments we then
perform a separate expansion. In this approach we have to deal
with a trade-off: the number of expansions is increased, but per
expansion we have a (much) lower order of expansion. Below, we
argue why the second positive aspect greatly counterbalances the
first negative aspect.

To determine the segments we define a scaling function gm with
M ∈ N and L ∈ R by:

gm: −L, L[ ] → Im � 2m − 1( )L
2M + 1

,
2m + 1( )L
2M + 1

[ ], m ∈ −M,M[ ] ⊂ Z,

θ ↦ gm θ( ) � 2mL

2M + 1
+ θ

2M + 1
.

(14)
This scaling function gm divides the interval [−L, L] into 2M + 1

segments Im of equal length. Of course, L must be larger than or
equal to any value of θ. For example, consider the case L � 1. Then,
the whole interval is [−1, 1]. For a segmentation granularity of
M � 1, this interval is divided into three subintervals:
I−1 � [−1,−0.33], I 0 � [−0.33, 0.33] and I+1 � [0.33, 1]. The
expansion of Y on any subinterval Im is given by:

Y gm θ( )( ) � ∑N
l

Y gm λ l( )( )( )u l( )
1 ψl θ( ). (15)

Upon a variable transformation y � gm(θ), Equation 15 becomes:

Y y( ) � ∑N
l

Y gm λ l( )( )( )u l( )
1 ψl g−1

m y( )( ): y ∈ Im. (16)

After segmentation, the expansion on the interval [−L, L] as a whole
is a superposition of the expansions on the subintervals:

Y y( ) � ∑M
m

∑N
l

Y gm λ l( )( )( )u l( )
1 χm y( )ψl g−1

m y( )( ): y ∈ −L, L[ ],

(17)
where χm(y) is an indicator function for selecting the
correct segment:
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χm y( ) � 1: y ∈ Im,
0: y ∉ Im.

{ (18)

We can also define an index function to select m* ∈ [−M,M] for
which χm(y) � 1:

m* � z y( ) � 2M + 1( )y
2L

+ 1
2

⌊ ⌋ for |y|≤L. (19)

Using both index functions we can finally write the segmented
reconstruction as:

Y y( ) � ∑N
l

Y gz y( ) λ l( )( )( )u l( )
1 ψl g−1

z y( ) y( )( ): y ∈ −L, L[ ]. (20)

The number of model solutions required now scales as
(2M + 1)KNK, where K is the number of uncertainty
parameters, M the segmentation granularity, and N the
expansion order. The reduced accuracy by using a lower order
expansion is compensated by evaluating the model more often, as a
result of zooming in. Expanding up to the N-th order for p
uncertainty dimensions requires solving the system Np times.
Reconstruction requires the summation of N2p terms. Therefore,
it is advantageous to keep N as low as possible. Normally, the
reconstruction error is large for low N, but this is mitigated by
segmentation. Segmentation requires to evaluate the system
(2M + 1)pNp times, but due to segmentation N can be taken
much smaller.

To illustrate this with an example, we take a system with
2 species of interest and 5 uncertainty parameters θi. The
expansion order is taken as N � 8. This implies summing over
2 × 810 � 2, 147, 483, 648 terms per time point and per parameter set
(θ1, . . . , θ5). In the case of segmented expansion, we can choose a
lower N, for example, N � 3 with a segmentation granularity of
M � 1. The number of terms to be summed over is
2 × 310 � 118, 098. This is dramatically more efficient and stems
from the fact that one only has to determine the segment in which
the parameter set (θ1, θ5) falls and choose the corresponding
expansion coefficients. Example II in Section 3.2 shows that
segmentation may indeed be very beneficial.

2.2.5 Haar wavelet expansion
Traditional SE methods are known to have difficulties with

capturing discontinuous behaviour (Joel Chorin, 1974; Le Maıtre
et al., 2004). Spectral convergence is only observed when
solutions are sufficiently regular and continuous. Just like
Fourier expansions, SE suffers from Gibbs phenomena at
discontinuities, resulting in slow convergence (Le Maître and
Knio, 2010). Haar wavelets have been suggested to overcome
these difficulties (Le Maıtre et al., 2004; Sullivan, 2015). In
contrast to global basis functions like the aforementioned
polynomial systems, wavelet representations lead to localized
decompositions, resulting in increased robustness at the cost of a
slower convergence rate (Sullivan, 2015; Le Maître and Knio,
2010). Here, we discuss that Haar wavelets can be easily
incorporated in the framework presented above and in
Example IV in Section 3.4 we show how they can be applied
in practice.

As mother wavelet we take

ψW y( ) � 1 for 0≤y< 1
2

−1 for
1
2
≤y< 1

0 otherwise

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ . (21)

By introducing a scaling factor j and a sliding factor k, we may
construct the wavelet family

ψW
j,k y( ) � 2j/2ψW 2jy − k( ), j � 0, 1 . . . ; k � 0, . . . , 2j − 1.

(22)
Given the uncertainty parameter θ with its cumulative distribution
function F(θ), we define the basis functions as

Wj,k θ( ) ~ ψW
j,k F θ( )( ). (23)

By concatenating the indices j and k into one index i ≡ 2j + k, we
may expand the meta-model Y similarly as we did in Equation 2:

Y θ( ) � ∑∞
n�0

cn Wn θ( ). (24)

2.2.6 Sensitivity analysis
In sensitivity analysis one quantifies the effects of changes in the

parameters on the variability of the model response. Here, we show
how our SE approach allows for sensitivity analysis in an elegant
way. In the case of local sensitivity analysis, small parameter
variations around a certain point in parameter space are used to
determine the effect on the model output (Brian, 2013). This
sensitivity is estimated via calculation of the partial derivatives of
model output with respect to parameters, evaluated in that point
(Ingalls, 2008). Alternatively, global sensitivity approaches do not
specify a specific point in parameter space (Saltelli, 2008). For
example, Sobol indices are a popular sensitivity measure as they
provide a measure of global sensitivity and accurate information for
most models (Ilya, 2001). Sobol indices are based on the
decomposition of the variance of the output Y as a function of
the contribution of the parameters (and possibly their combination),
also called the ANalysis of VAriance, or ANOVA (Ilya, 2001).
Thanks to the orthonormality of basis functions in SE, Sobol
indices can be determined analytically from the coefficients of
the SE (Sudret, 2008; Blatman and Sudret, 2010a) So, once these
coefficients are known, one gets the Sobol indices nearly for free.
Given the SE of output Y, the total variance of the model output is
given by

D̂ � ∑
i∈I− 0{ }

c2i , (25)

where I is the multi-index set of all variables and ci the expansions
coefficients. The 0th coefficient is not included as this is a constant.
The partial variance is given by

Dθi � ∑
i∈Iθi

c2i , (26)

where Iθi is the multi-index set of parameter θi, i.e., where the ith

term in the multi-index is larger than 0. The Sobol indices are then
given by
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Sθi �
Dθi

D̂
, (27)

In this way the relative contribution of parameter θi to the variance
of the output is easily calculated.

2.3 Monte Carlo sampling

In the examples in Section 3.5 we compare SE with Monte Carlo
sampling. For efficiency reasons we apply Quasi Monte Carlo methods
using Sobol sequences, since these show a faster rate of convergence than
standard sequences of pseudorandom numbers (Soboĺ, 1990). In order
to test for convergence, we use the so-called blocking method. In this
method the error is estimated in a straightforwardmanner. The quantity
of interest (i.e., the model response Y) is divided into several groups (or
blocks). Then, for each block, we determine the moment of interest (e.g.,
mean or variance). The spread (variance) of values between blocks gives
an estimate of the error. Finally, to test for convergence, we choose a
threshold on the between-block variance. Note that the convergence rate
of MC methods do not depend on the dimensionality of the parameter
space that is being sampled, unlike SE. MCmerely scales by




N

√
, where

N is the number of samples (Christian, 2004).

2.4 Summary of implementation

In this section we provide an overview of the steps needed to
arrive at a meta-model using SE:

1. Determine which of the model parameters is stochastic in nature
and decide upon an appropriate PDF for such parameters.

2. Choose a truncation degree N.
3. Based on the PDF in the previous steps, calculate the

appropriate basis functions ϕn(θ), n � 0, 1, 2 . . . , N.
4. Determine the N × N matrix B̂ as defined in Equation 4. For

example, for Legendre polynomials B̂ reads as

B̂n,m � n





2n + 1

√ 






2m + 1

√ δnm+1 + m





2n + 1

√ 






2m + 1

√ δnm−1, (28)

where n, m � 0, 1, 2 . . . , N.
For Hermitian polynomials B̂ reads as:

B̂n,m � 

n

√
δnm+1 + 



m
√

δnm−1. (29)

5. Calculate the eigenvalues λ(l), l � 1, 2, . . . , N and
orthonormal eigenvectors u(l).

6. Calculate ψs
l(θ) � ∑N

n�0u
(l)
n+1 ϕn(θ).

7. Calculate Y(λ(l)), l � 1, 2, . . . , N by evaluating the model
N times.

8. Arrive at the metamodel Ys(θ) � ∑N
l�1Y(λ(l)) u(l)1 ψs

l(θ).
9. Eventually, apply post-processing through, e.g., sensitivity analysis.

3 Results

To test the performance of the present SE approach in biological
simulations, we have chosen six typical examples. Through these

examples, we show how to deal with several challenges usually
encountered in systems biology.

The first example has only one uncertainty parameter. Its
simplicity allows comparison between the results of our approach
with an exact solution.

The second example concerns a biochemical reaction network
and is higher dimensional, i.e., it contains more than one uncertainty
parameters. We use it to highlight the advantages of segmentation.

The third example is the glycolytic oscillator, which shows
bifurcations, i.e., different dynamic behaviour for different
parameter sets (Strogatz, 1994). We use it to demonstrate the
power of global sensitivity analysis, which in the SE framework
can be achieved without significant additional computational costs
once the SE coefficients have been calculated. In addition, this
example allows us to show the use of mixed expansions, since
the parameter PDFs follow different distributions. This leads to a
combination of different families of basis functions, thus
highlighting the flexibility of the SE approach when applied to
varying input uncertainties.

The fourth and fifth examples have a spatial dimension. First, we
consider the Schnakenberg model which is a well-known model of
pattern formation and comes with challenges such as shifts from
non-patterning to patterning regions (D Murray, 2007). In this
example we demonstrate the advantage of using Haar wavelets over
polynomial basis functions for systems with bifurcations. Second, we
study a model describing pattern formation in plants, more
specifically patterning of the hairs found on top of leaves, so-
called trichomes (Bouyer et al., 2008). In this model we show
how to adapt the approach such that the computational costs are
reduced as much as possible by carefully choosing the quantity of
interest, without changing the standard set of steps.

The final example is a model of plasmid transfection, where we
consider correlated parameter distributions. This model predicts the
distribution of two different plasmid constructs among a population
of dividing cells. Upon division the plasmids are distributed among
the daughter cells according to a bivariate Poisson distribution.

3.1 Example I. Exponential decay: comparing
performance of SE to MC and an
analytical solution

For this example case, we consider the simple reaction consisting
of one decaying species:

.

Its dynamics is described by A(t) � A0 exp−kt, where A0 is the
initial concentration ofA at t � 0 and k the rate of decay. We test the
SE method against: 1) the exact, analytical solution and 2) the
classical Monte Carlo approach.

We assume that k is distributed according to a lognormal
distribution with known mean and variance,
i.e., k ~ Lognormal(μ, σ), and we choose μ � 0.5, σ � 0.2. The
PDF for k is shown in Figure 1 and the derivation for the exact
PDF for A is given in the Supplementary Material S2.

Next, we determine how the uncertainty in k propagates through
the model and affects concentration A(t). To that end, we expand
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the function A(t) � A0 exp−kt in terms of Hermitian polynomials,
following the steps given in the summary and using thematrix derived
for Hermitian polynomials given in Equation 29. Using Equation 9, k
is transformed into a standard normal variable θ. To arrive at the
meta-modelYs(θ) we truncate the expansion to orderN, as shown in
Equation 3. ChoosingN is not straightforward and will involve some
experimentation. In Figure 1 we compare results for N � 5 to the
analytical solution for different k values. This shows that for this
expansion order the reconstructed function accurately matches the
analytical solution. Note that this is only based on visual inspection.

In Figure 1, we focus on the distributions ofA(t � 1) andA(t � 5).
This is achieved by sampling the SE using a large sample set χ of
reduced (i.e., standard normally distributed) variables θ,
χsim � {θj, j � 1, . . . , nsim}. The truncated series is then evaluated
onto this sample: Ys

sim � {ηj � ∑N
n�0cn ϕn(θj), j � 1, . . . , nsim}.

These PDFs are obtained by kernel smoothing (Bowman and
Azzalini, 1997) using a sample set with nsim � 106, drawn from the
standard normal distribution with μ � 0 and σ � 1. The kernel density
estimator is given by

f̂Y y( ) � 1
nsimh

∑nsim
j�1

K
y − ηj
h

( ), (30)

with kernel function K(t) � 1


2π

√ exp−t2/2 and bandwidth h, which is
determined by Silverman’s rule of thumb (Silverman, 1986). Figure 1
shows that both MC and SE perform well (using kernel smoothing
with the kernel defined in Equation 30) in reproducing.

3.2 Example II. Biochemical reaction
network: segmentation to deal with higher
dimensions

In this example we present a simple model with multiple
uncertainty parameters. It allows us to illustrate the
computational advantage of segmentation as explained in Section
2.2.4. The model describes the dynamics of two proteins x1 and x2

which bind together to form a dimer x3. We consider the
following reactions:

FIGURE 1
Quantifying the uncertainty propagated by the decay rate in the exponential decaymodel. (A) Probability density function of the decay rate k(θ)with
μ � 0.5 and σ � 0.2. The colour gradient corresponds to the value of k(θ). (B) The concentration of A up to t � 6 seconds. The solid lines indicate the
analytical solution and the dots indicate the reconstruction using SEwith Hermite basis functions and an expansion orderN � 5. The colour for each of the
solutions correspond to the colour of the line in A, which indicates the value of k(θ) used for each of the depicted solutions. (C) The dashed lines in
(B) indicate a vertical cross-section along the model response space at t � 1 for the red line, and at t � 5 for the grey line, determined through three
methods. First, the exact dynamics of the model (solid lines), second through MC sampling using the exact model dynamics (dashed lines) and finally,
through MC sampling of the reconstructed function as obtained through SE (dots).
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(31)

(32)

(33)

(34)

In this network, the proteins x1 and x2 are produced at rates k1
and k4. Proteins x1 and x2 reversibly bind to form species x3, with
binding rate k2 and unbinding rate k3. All three proteins are
degraded at the rate k5.These interactions are visualized in a

reaction scheme in Figure 2. The ODEs for thesystem given by
Equations 31–34 are:

_x1 � k1 − k2x1x2 + k3x3 − k5x1 (35)
_x2 � k4 − k2x1x2 + k3x3 − k5x2 (36)
_x3 � k2x1x2 − k3x3 − k5x3. (37)

We use for the parameters k1 − k5 log-normal distributions
and expand the functions x1 − x3 in terms of Hermitian
polynomials. In Figure 2 we compare the results of the
segmented expansion, see Equations 14–20, with the non-
segmented expansion and the exact results. For this
comparison we chose the degree of expansion and
segmentation granularity such that the same number of model
evaluations were required. We found that the subsequent
summation to reconstruct the solutions for the differential
equations improved by factors of 1,000–30,000 when using the
segmented expansion. See Table 1. As mentioned in the Methods
section, this improvements stems from the large reduction in the
number of terms to be summed over in the segmented case
compared to the non-segmented expansion.

Dividing the parameter intervals into smaller sub-intervals
is a relatively straightforward and simple way to circumvent
huge computation times. Other, more intricate methods have
been developed to tackle models with an even larger amount of
parameters (Blatman and Sudret, 2010b; Xiu, 2007; Nobile et al.,
2008). For example, using an adaptive algorithm that is based on
classical statistical learning tools can result in a “sparse” SE, that
consists of only the significant coefficients in the expansion,
thereby reducing the computational cost. This method has been
tested on models of stochastic finite element analysis with up to
21 parameters (Blatman and Sudret, 2010b).

FIGURE 2
Comparing the segmented expansion with the standard non-segmented expansion. (A) Interaction scheme of the model in Equations 35–37. Note
that x1 , x2 and x3 all have the same degradation rate and x1 , x2 have production rates in the model but this is not indicated in the scheme. (B)
Reconstruction of the system by a Hermitian expansion. For the segmented reconstruction we used N � 2,M � 1 (crosses) and N � 3,M � 1 (dots). For
non-segmented expansion the expansion order was N � 6 (dashed lines) and N � 9, (dash-dotted lines). Note that these lines overlap with the true
model solution (solid lines). We used two log-normal distributions with mean and standard deviation μ1 � 0.1, σ1 � 0.1 for k1 , k4 , k5 and μ2 � 0.4, σ2 � 0.1
for k2 , k3.

TABLE 1 Benchmarking of segmented and non-segmented expansion. An
overview of the number ofmodel evaluationsNλ, the number of summation
terms NΣ and the time in seconds spent on summation (tΣ), for different
orders N of expansion, both segmented M � 1 and non-segmented M � 0.
The last column highlights the speed-up factor when segmentation is used
(keeping Nλ constant), i.e., N = 2, M = 1 is roughly 1,000 times faster than
N = 6.

N M Nλ NΣ tΣ[s] Speed-up factor

6 0 7,776 1.81E + 08 31.96

9 0 59,049 1.05E + 10 5,402

2 1 7,776 3.07E + 03 0.03 1,065

3 1 59,049 1.77E + 05 0.17 31,776
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3.3 Example III. Glycolytic oscillator:
different uncertainty PDFs and global
sensitivity

Living cells obtain energy by breaking down sugar in the
biochemical process called glycolysis. In yeast cells, this glycolysis
was observed to behave in an oscillatory fashion, where the
concentration of various intermediates were increasing and
decreasing within a period of several minutes (Hess and Boiteux,
1968). This glycolytic oscillator can be modelled as a two-
component system with a negative feedback (Strogatz, 1994):

_x � −x + αy + x2 y (38)
_y � β − αy − x2y. (39)

where x and y are the concentrations of ADP (adenosine
diphosphate) and F6P (fructose-6-phosphate) and α, β are kinetic
parameters. Depending on the values of α and β the system will be in
a stable limit cycle or a stable fixed point (Strogatz, 1994). In this
example, we assume α to be uniformly distributed on the interval
[0.1, 0.5] and β to follow a lognormal distribution with μ � 0.3 and
σ � 0.1. Because the two uncertainty parameters come from
different distributions, we use as basis functions multivariate

polynomials ΨN,M which are tensor products of the univariate
polynomials. In this case, Legendre polynomials are used to
expand α(θ1) and Hermite polynomials for β(θ2), where
θ1 ~ U(−1, 1) and θ2 ~ N (0, 1). Note that the eigenvalues and
eigenvectors used in the expansion are readily available from the
matrices given in Equations 28, 29, corresponding to Legendre and
Hermite polynomials, respectively. This results in a mixed polynomial
for the overall expansion. As illustration, we show in Figure 3 the
shape of the product of a 3rd order Legendre polynomial ~L3 and a 3rd
order Hermite polynomial ~H3, giving Ψ3,3 � ~L3 · ~H3.

The distributions of the uncertainty parameters were chosen
such that they include the bifurcation point from stable limit cycle to
the stable fixed point (Figure 3). For the purpose of this example we
are interested in the concentration of y only and therefore
reconstruct this model response using SE. A good approximation
is obtained with a truncation degree of the SE ofN � 10. This value
is relatively high, due to the bifurcation in the system. However, this
case shows that convergence can be reached using SE despite such
challenges. It is important to note that the computational costs are
still quite low.

In post-processing we may use the SE coefficients to determine
the first order Sobol indices for the parameters α and β at each time

FIGURE 3
Example of a system of glycolysis as defined in Equations 38, 39 where SE is performed for the concentration of species y and for two uncertainty
parameters. (A)Example of amultivariate polynomial, consisting of the tensor product of a 3rd Legendre polynomial of the first randomvariable ~L3(θ1) and the
3rd Hermite polynomial of the second random variable ~H3(θ2). (B) Solutions of concentration of fructose-6-phosphate (y) in the glycolytic oscillator model
for two different points in the parameter space, obtained by solving the ODEs (lines) and reconstructing via SE (dots). α � 0.1, β � 0.46 produces an
oscillation (dark coloured) whereas α � 0.5, β � 0.46 gives a stable fixed point (light coloured). We used N � 10 as expansion order for the Legendre and
Hermite polynomials. (C) The first order Sobol sensitivity index Ŝθi for the two random variables in the glycolytic oscillator model for the first 20 time points.
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point, providing a representation of the global sensitivity based on
variance decomposition. The Sobol indices are readily available from
the SE coefficients, as shown in Section 2.2.6. They have the
advantage of being global measures of sensitivity. In Figure 3 we
show the first order Sobol indices given in Equation 25–27 for the
first and second random variable. They indicate the contribution to
the total output variance of either θ1 or θ2 individually. Higher-order
terms would give an indication of interaction effects between θ1 and
θ2, which are also readily available from the SE coefficients but are
not considered here for brevity.

3.4 Example IV. Schnakenberg model:
dealing with spatial discontinuities

In this example we introduce a spatial component. We consider
the Schnackenberg model, which is one of the simplest, but yet
realistic two-species system that can produce spatially oscillating
solutions and therefore has become a prototype for reaction
diffusion systems. The Schnakenberg model consists of the
following (dimensionless) equations for the concentrations u and
v of the two species (D Murray, 2007)

_u � ∇2u + γ α − u + u2v( ), (40)
_v � d∇2v + γ β − u2v( ). (41)

α, β are reaction rates, γ a scale parameter and d the ratio of diffusion
constants between the species u and v. The species u is auto-catalytically
produced by the u2v term in Equation 40, whereby species v is
consumed. There are certain combinations of the parameters α, β, γ
and d for which the systemwill exhibit a stable pattern (Liu et al., 2013);
this region of parameter space is called the Turing space (TS). For
illustrational purposes we limit the number of uncertainty parameters to
one: the parameter α, fixing the other parameters at β � 1, γ � 5 and

d � 20. We assume α to be distributed as α ~ U(0.001, 0.45) and
determine the TS for a range of α (Figure 4) using linear stability
analysis [for details see (DMurray, 2007; Liu et al., 2013)]. To that end,
the model is simulated on a 1D grid of 20 cells. We focus on the
concentration of species v at steady state and compare expansions in
terms of Legendre polynomials and of Haar wavelets.

SE using polynomial basis functions is known for being
inaccurate in regions that contain discontinuities (Le Maître and
Knio, 2010; Le Maıtre et al., 2004; Joel Chorin, 1974). In this
example, the lack of convergence in SE can be seen along the
boundary of the patterning space (TS) in Figure 4, where the
expansion by Legendre polynomials is indicated with the dashed
lines. For the reconstruction of concentration v in terms of Legendre
polynomials, we used a segmented expansion with N � 18 and a
segmentation granularity of M � 3, leading to a total of 126 model
evaluations used in the expansion. To show that Haar wavelets
performmuch better in such a region, we also consider an expansion
in terms of Haar wavelets (Equations 21–24). As resolution level we
take N � 6, which means a total of Nw � 128 wavelets are used in
the expansion. In Figure 4 the performances of Legendre
polynomials and Haar wavelets are compared in the vicinity of α �
0.23 (middle inset, Figure 4), showing that the Haar-wavelets
provide an improvement in accuracy at the bifurcation point,
while using the same number of model evaluations (i.e., the same
amount of information and computational cost) for the expansion.

3.5 Example V. Trichome patterning: dealing
with spatial discontinuities

As an extra example of pattern formation we consider a model
that describes trichomes. Trichomes are hairs found on the
epidermal layer of leaves. In Arabidopsis Thaliana these
trichomes form a regular pattern, where each trichome is

FIGURE 4
Reconstruction of the concentration of species v of the Schnakenberg model, as defined in Equation 41 at steady state, comparing Legendre and
Haar wavelet expansions. We consider the patterning of v in the Schnakenberg model for α ∈ [0.15,0.3], as indicated on the main x-axis and assuming
α ~ U(0.001,0.45), while fixing β � 1, γ � 5 and d � 20. The colour along this axis indicates the region in the 1D-parameter space whether a stable pattern
will form (i.e., α is inside the Turing Space (TS), indicated by green colouring), or a homogeneous spatial distribution of v (grey colour). We highlight
three examples of the patterns formed for different values of α, one inside the TS (left inset, α � 0.22), one close to the boundary (middle inset, α � 0.23)
and one outside the TS (right inset, α � 0.24). Within these examples we compare the true solution Y (solid black line) to the reconstructed function of v by
SE in terms of Legendre polynomials Ys

L by a segmented expansion with polynomial order N � 18 and segmentation granularity M � 3 (dashed line), and
Haar wavelets Ys

Ha (dots), using the first 128 wavelets in the expansion, i.e., N � 6 resolution levels.
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separated by around three to four epidermal cells (Hülskamp, 2004).
The model studied here consists of three proteins and their
interactions which can explain features of trichome patterning
(Bouyer et al., 2008; Pesch and Hülskamp, 2004). Protein
TRANSPARARANT TESTA GLABRA1 (TTG1) binds to the transcription
factor GLABRA3 (GL3) which together form a trichome-promoting
complex, called the activating complex (AC) (Bouyer et al., 2008).
Experimental data suggests that TTG1 is depleted from cells
neighbouring a trichome (Bouyer et al., 2008). For this reason
the interaction between TTG1 and GL3 is modelled in a
substrate-depletion form (Figure 5), where TTG1 acts as a
substrate for the formation of AC (Bouyer et al., 2008). After
non-dimensionalisation this model consists of four parameters,
none of which have been experimentally determined, highlighting
the substantial amount of uncertainty within this model (Pesch and
Hülskamp, 2009; Scheres, 2000). Here, we examine the propagation
of uncertainty in the parameters to the predicted pattern.

The trichome patterning is described by the following set of
coupled ODEs (Bouyer et al., 2008):

_TTG1j � α − λTTG1j − TTG1jGL3j + δL̂TTG1j (42)
_GL3j � βAC2

j − GL3j − TTG1jGL3j (43)
_ACj � TTG1jGL3j − ACj, (44)

where α, λ, δ and β are parameters in the model and L̂ describes the
coupling between the cells. The subscript j indicates the jth cell. We
solve Equations 42–44 for 400 cells, grouped on a hexagonal grid of
20 by 20 cells.

In this example we focus on the parameter α, the basal
production for TTG1. We assume this parameter to be uniformly
distributed on the interval [0.4, 0.9]. We are interested in the
number of trichomes that are predicted by the model, therefore
we consider the trichome density ρ (total number of trichomes
divided by the total number of cells in the simulated tissue) as the
model response of interest. The number of trichomes is determined
by simulating the system until steady state is reached and counting

the number of cells for which the concentration of AC exceeds a
threshold. The amount of AC is considered to be an indicator for
trichome cell fate in plants. However, the biological threshold for
this is unknown. We set this threshold to the half-maximum of AC
in the system. This leads to the following description of
trichome density:

ρ � |T |
N

, (45)

where T is the set of cells which exceed the AC threshold,J is the set
of all cells on the grid, N is the total number of cells and |T | is the
cardinality of T .

Our present goal is to study the uncertainty in ρ as a result of the
uncertainty in α. To this end, we employ two different approaches.
For both approaches we first transform α to a standard uniform
variable by α � T−1(θ), using the transform function for a uniform
variable given in Equation 8. The first approach, referred to as the
indirect approach, is the same as used in Example IV in Section 3.4.
To reconstruct the concentration at steady state for all cells, we
expand the concentration of AC in terms of Haar wavelets. From the
result we may determine ρ. In this process we discriminate between
cases where there is a pattern and where there is no pattern. Through
linear stability analysis we determine beforehand whether a pattern
will form or not, i.e., whether the chosen parameter set is in the
Turing Space (TS) (D Murray, 2007). For a certain realisation θ we
can determine ρ (Equation 45) by:

ρ θ( ) �
|T s|
N

if θ ∈ TS

0 if θ ∉ TS

⎧⎪⎪⎨⎪⎪⎩ , (46)

where T s is the set of trichomes as determined from the
reconstructed AC concentration profile.

Our second, direct approach is to directly reconstruct ρ as

ρs θ( ) � ∑N
l�1

Y λ l( )( ) u l( )
1 ψs

l θ( ). (47)

FIGURE 5
Uncertainty quantification for the trichome system. (A) Schematic of the model. (B) Example of a simulation of the model on a 20-by-20 grid. The
colorbar indicates the levels of the activating complex (AC) in the cells relative to themaximum. (C) Probability density function of the trichome density in
the Turing Space using either the indirect (dashed red line) or direct expansion (dotted blue line) method and for comparison the solution of the real
model (solid black line). A resolution level of 3 (i.e., a total of 16 wavelets) has been used for the expansion.
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Similarly, as we did for ρ(θ) we can define Y(λ(l)) as

Y λ l( )( ) � |T |
N

if λ l( ) ∈ TS

0 if λ l( ) ∉ TS

⎧⎪⎪⎨⎪⎪⎩ . (48)

In other words, we only solve the system and determine the trichome
density if the parameter set falls within the Turing space. This lends
robustness to the SE for the non-smooth parts of the function Y(θ)
and at the same time limits the amount of simulations to be
performed, as the non-patterning parameter combinations need
not be solved for.

One of the nice features of this Example is that it illustrates there
are multiple ways in which the uncertainty in the output can be
captured: first, an indirect method (Equation 46) where the model
output consists of concentration profiles from which the pattern
features have to be extracted in post-processing, and second, by
taking the density as model output (Equations 47, 48). In Figure 5
results for the indirect and direct approaches are compared. We
conclude that both have similar levels of accuracy and in both cases
the expansions converge to the real solution at resolution level N = 6,
which means a summation of 128 wavelets. The PDF in Figure 5 is
constructed using 103 samples which costs 4.7 s for the wavelet
reconstruction as opposed to 80.9 s for solving the full model a
1,000 times in an MC approach.

3.6 Example VI. Plasmid transfection: dealing
with correlated parameters

It can happen that in parameter space a structure occurs,
i.e., that the multivariate joined probability cannot be written as
a product of univariate distributions. In this section we exemplify
how to handle such a case. As an example we choose the transfection
of mammalian cells (e.g., Human embryonic kidney cells, HEK293)
with two plasmids: plasmid pl1 with the construct for induction

(e.g., through chemical or optogenetics (Yoshida and Sato, 2009)),
and plasmid pl2 with the reporter construct. In short, one of the
plasmids is required to activate the cell (pl1), the other is used for
read-out (pl2). In the part below we describe a model that predicts
the distribution of both types of plasmids among a population of
cells, assuming that the plasmids will have to be distributed among
daughter cells upon division (Figure 6A). We assume that this
distribution of plasmids is accurately described by a bivariate
Poisson distribution (example given in Figure 6B), as we will
argue below.

Denoting by n the number of pl1 plasmids and bym the number
of pl2 plasmids in a specific cell, the corresponding reaction
scheme reads:

(49)

(50)

(51)

where xn,m and yn,m are the concentrations of molecule x and y,

resp., in a cell with plasmid composition nm. S is the concentration

of the reporter molecule in the bulk (i.e., the read-out produced

by the reporter construct of plasmid pl2). α and γ are

the corresponding production rates per plasmid and β, μ are

the degradation rates. I(t) is the external induction signal

(i.e., the signal required to activate the plasmid pl1). In what

follows we will set I(t) � 1 for t≥ 0.
For sake of clarity we keep the system simple and ignore all

complicating effects, such as gene expression noise, maturation of
the reporter construct (e.g., GFP). However, for transient
transfections of the mammalian cells, we need to take into

FIGURE 6
Plasmid distribution model. (A) Schematic overview of plasmid distribution upon cell division, showing all possible combinations of how to divide
three plasmids among two daughter cells. This is for a single type of plasmid. The probability of finding these combinations is given by Equation 56. (B)
Distribution of plasmid combinations for two types of plasmids, assuming a bivariate Poisson distribution given by Equation 59with λ � 1 and ξ � 0.9 and a
population of 100.000 cells. The x-axis indicates the number of type n andm plasmids as a tuple (n,m), visualized in a few example cells above the
bars, where the light-blue circles indicate plasmids of type n and the dark blue plasmids of typem. The y-axis shows the number of cells that have a certain
amount of n,m-type plasmids.
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account the distribution of plasmids among the cells, which is not
constant due to cell division. The set of Ordinary Differential
Equations describing the reactions given by Equations 49–51 read:

_xn,m � nαI t( ) − βxn,m (52)
_yn,m � mγxn,m

1 + ηxn,m
− μ + κ( )yn,m (53)

_Qn,m � ω 1 − ‖Q‖1
Nmax

( )∑
p,q

Lp,q
n,mQp,q (54)

_S � vκ∑
n,m

Qn,myn,m − δS. (55)

The parameter η captures the saturation of the expression capacity
of the cells. We set η � 0.2V−1 throughout the calculations. V is the
unit of the volume of the cells, e.g., V � μm3. Qn,m is the number of
cells that have n,m plasmids which are growing by ω. To follow the
partition of plasmids upon division, the tensor L is introduced and
described in Equations 57, 58 below. ‖Q‖1 � ∑n,mQn,m � Ntot which
is the total number of cells at time t and Nmax is the maximum
number of cells due to environmental constraints. The growth rate is
set to ω � 0.034 h−1 based on a doubling time of 20 h as being
measured for HEK293T cells (Tan et al., 2021; Zhang et al., 2024). S
is the reporter [e.g., SEAP (Berger et al., 1988)] accumulated in the
bulk due to secretion by the cells with rate κ. For non-secreted
reporters (e.g., YFP) for single cell measurements, κ is set to zero. v is
a volume correction factor, set to v � 10−8.

We assume that the rate of dilution of the plasmids corresponds
to the growth rate of the cells, i.e., plasmids are lost upon division. In
reality, the plasmids are also degraded, but we assume the time scale
of this degradation is much longer than the experimental duration
and can therefore be ignored. To model the partition of plasmids
upon cell division we assume that any partition of the number of
plasmids is possible, see, for example, Figure 6A. The probability of
finding a certain partition is given by the binomial distribution

Pk
n � θkn

k

n
( ) 1 − q( )k−nqn, (56)

where n is the number of plasmids in the mother cell, k the number
of plasmids in one of the daughter cells and q the probability, which
for equal cell division is q � 0.5. θkn is the discrete unit step function

with θkn � 1 for k≥ n and θkn � 0 else. We can write the rate of change
in the pools of cells as

_Qn,m � 2∑
k,p

Pk
nP

p
mQk,p − Qn,m � ∑

k,p

2Pk
nP

p
m − δknδ

p
m( )Qk,p. (57)

δkn � 1 for k � n and δkn � 0 else. From this, we can define the tensor
used in Equation 54:

_Qn,m � Ω(2∑
k,p

Pk
nP

p
mQk,p − Qn,m) � Ω∑

k,p

2Pk
nP

p
m − δknδ

p
m( )Qk,p. (58)

We treat the plasmid uptake as a Poisson process, i.e., the number of
plasmids inside a cell is Poisson distributed. Assuming that the mean
number of plasmid taken up is the same for pl1 and pl2 and a
correlation exists between the uptake of two plasmids, the
distribution is given by (Berkhout and Plug, 2004):

P n,m( ) � λ − ξ( )m
λ − ξ( )n

−1( )nξn
n!m!

U −n, 1 − n +m,− λ − ξ( )2
ξ

( )e−2λ+ξ ,
(59)

where U is Kummer’s confluent hypergeometric function (Olver,
2010), λ is the mean number of plasmids taken up, and 0≤ ξ ≤ λ is
the correlation parameter. Note that for ξ → 0 we find:

lim
ξ→0

P n,m( ) � P n( )P m( ), with :P x( ) � λx

x!
e−λ. (60)

The correlation between n and m reads:

corr n,m( ) � cov n,m( )












var n( )var m( )√ � ξ

λ
. (61)

In Figure 7A we show P(n,m) for λ � 3 and ξ � 2.4. The asymmetry
due to the correlation corr(n,m) � 0.8 can be clearly seen. The
orthonormal basis function ϕp(n) with respect to the Poisson
distribution read (Ogura, 1972):

ϕp n( ) � 2F0 −p,−n; ;−1
λ

( ) 


λp

p!

√
. (62)

2F0 is a generalised hypergeometric function (Olver, 2010). The
matrix B̂ defined in Equation 4 can be calculated analytically and is
given by:

FIGURE 7
Expansion with respect to a bivariate Poisson distribution. (A) Bivariate Poisson distribution given by Equation 59 with λ � 3 and ξ � 2.4. (B)
Comparison of the exact solution for yn,m(t) given by Equation 53 (solid lines) to the spectral expansion with N � 6 (dots). Parameters: α � 2 (Vh)−1,
β � 2h−1, γ � 6h−1, η � 0.5V−1, μ � 1.5h−1, κ � 0h−1.
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B̂n,m � n + λ( )δnm − 


nλ

√
δn−1m − 




mλ
√

δnm−1. (63)
Note the dependence on the parameter λ, in contrast to the matrices
given in Equations 28, 29.

We first consider a system in which the mammalian cells do not
secrete the reporter molecule, e.g., YFP. In this case we set κ � 0, and
consequently S(t) � 0, ∀t. In Figure 7B we show yn,m(t) for different
plasmid compositions and compare the expansion of yn,m(t), using
Equations 11–13 and Equations 59–63, of the orderN � 6 (dots) to the
exact results (solid lines). A question of interest is what is the measured
distribution of fluorescence intensities of the mammalian cells. The
distribution of reporter molecule abundance is given by:

P z, t( ) � ∑∞
n,m

δz,χn,m t( )
Qn,m t( )
‖Q‖1 , (64)

where χn,m(t) is a binning function: χn,m(t) � g�yn,m(t)/g� (other
binning methods are also possible, of course). Note that for sake of
simplicity we ignore the transient phase after cell division in which the
dynamic of yn,m adopts to the new, reduced plasmid composition. This
is also a reasonable simplification considering that the steady state of
yn,m is roughly reached after 4 h, as can be seen in Figure 7B, in contrast
to a cell doubling time of 20 h. In Figure 8A we show the distribution
P(z, t � 50) for g � 5 for ξ � 2.4 (left) and ξ � 0 (right); we used the
expansion with N � 6 for the calculations in Equation 64.

Next, we consider a segregated reporter, e.g., SEAP. In this case
the reporter abundance in the bulk is measured instead of single cell
measurements. The temporal evolution of the bulk reporter is
governed by Equations 52–55. In Figure 8B one can see that the
dynamics of the reporter is clearly different due to correlation of the
plasmid uptake.

4 Discussion and conclusion

In this paper we have presented an efficient and widely-applicable
version of spectral expansion to quantify the effect of parameter
uncertainty on model outcomes. The present scheme is based on
non-intrusive spectral projection and makes use of expansions in

terms of some orthonormal set of basis functions., e.g.,,polynomial
functions or wavelets. The orthonormal properties of those basis
functions are utilized to develop a novel scheme to determine the
expansion coefficients. It has the attractive property that it is
computationally very fast. The scheme is similar to the Golub-Welsh
algorithm known fromGaussian quadrature (Golub andWelsch, 1969).
In the latter procedure the roots of the polynomials used play an
essential role (Bruno, 2007). In our new scheme this role is played by the
eigenvalues of a matrix, which can be calculated very fast. Our method
does not require modification of the model equations. This is in general
themain advantage of non-intrusive methods: there is no need to recast
the model into a probabilistic framework. Instead, the random
behaviour of parameters is accounted for through a set of
deterministic simulations of the process for a restricted number of
parameter values. These values are chosen such that they reflect the
uncertainties in the parameters. To test the performance of our method
we applied it to a number of different models (Example I) a model of
exponential decay (Example II) a biochemical reaction network
(Example III) the glycolytic oscillator (Example IV) the
Schnakenberg model, and (Example V) a trichome model. Examples
IV and V deal with spatial pattern formation, and, finally, Example VI
illustrates SE for correlated parameters. For each test case, the results of
the SE are compared to, if available, analytical solutions and/or and
Monte Carlo simulations. In these comparisons we mostly focus on the
accuracy of SE. Although the computational advantage is an important
reason for using SE techniques, we do not focus on that aspect since it
has already been extensively explored elsewhere; see, for example, (Zein
et al., 2013; Bruno, 2007; Fajraoui et al., 2017).

The accuracy of the reconstruction by SE depends on the choice
of expansion order and the appropriate choice of basis functions.
While the latter choice is determined by the PDFs of the input
parameters, the choice of expansion order has to be chosen by the
user. For example, in Examples I and III we chose N � 5 and
N � 10, respectively. These choices were based on careful
observation of the convergence properties of the method.

In some cases the expansion order has to be chosen prohibitively
large. For such a situation we propose an extended approach that
segments the parameter interval into subintervals, essentially

FIGURE 8
Measurement of the reporter. Comparison of correlated and un-correlated plasmid uptake. (A) Histogram of the single cell readout, measured 6 h
after induction. The parameters are the same as stated in Figure 7 and the histogram is calculated according Equation 64 with g � 5 (B) Reporter
abundance in the bulk measured for 3 days. The parameters are the same as in A, besides κ � 3h−1, δ � 0.01h−1 and v � 10−8. We used for the calculations
the expansion of yn,m with N � 6.
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zooming in on these sub-intervals such that a lower expansion order
can be used in each sub-interval. In Example II we have shown that
this segmentation approach can greatly reduce the computational
costs, thus providing a way to circumvent the curse of
dimensionality. Such adaptations are nearly always required in
high-dimensional cases and segmentation is a relatively simple
and straight-forward method to tackle dimensionality problems
yielding a piecewise continuous approximation to the original
function. It is an alternative for so-called sparse SE methods, that
utilise only a small subset of the basis functions in order to limit the
amount of model evaluations (Blatman and Sudret, 2010b; Xiu,
2007; Nobile et al., 2008).

Convergence of the SE may be poor in regions of the parameter
space around a bifurcation (Ghanem et al., 2017), due to the use of
smooth basis functions to represent non-smooth model behaviour.
This effect is often illustrated by the Gibbs phenomenon in Fourier
expansions, where the spectral basis consisting of smooth sine and
cosine functions is not suitable, giving rise to slow and even lack of
correct convergence. Since smooth functions like the Hermite and
Legendre polynomials will fail to describe steep or discontinuous
solutions, we explored the use of Haar wavelets. Wavelets naturally
allow localised decompositions and this leads to more robust
behaviour (Le Maıtre et al., 2004). We show in Example IV
(Schnakenberg model) the advantages of using Haar wavelets over
polynomials by focusing on the region in parameter space where the
system jumps from spatially heterogeneous to spatially homogeneous
dynamics. Although around this bifurcation point an expansion in
terms of Haar wavelets also turned out to show slow convergence, the
accuracy of the expansion is much better than when Legendre
polynomials are used. In the vicinity of bifurcations Haar wavelets
thus provide a useful tool for biological systems which feature
discontinuities. In Example V (trichome pattern formation) we
have highlighted the flexibility of the method: some quantities, e.g.,
the scalar quantity of trichome density, can either be directly
expanded or indirectly. By making use of that adaptability the
number of model evaluations can be reduced while the level of
accuracy is maintained. Finally, in Example VI we illustrate how to
handle correlated parameters by means of correlated plasmid uptake
by mammalian cells. We show how single-cell or bulk readout can be
calculated using SE.

Overall, the approach presented here consists of a number of
easy-to-implement steps and is applicable to a great variety of
systems that would be computationally costly when analysed in
the context of uncertainty quantification in the usual way. We
therefore believe that this approach could provide a valuable
asset for the toolkit of computational systems biology.
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