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Introduction

Microbiome studies have seen exponential growth since the advancement of next-
generation sequencing (NGS) technologies (Qin, 2019)—albeit now old technologies!
Sequencing approaches applied to mixed microbial populations involve either
amplification of small genes such as the 16S rRNA gene (Johnson et al., 2019), or
recovery of whole microbial genomes through shotgun metagenomics (Quince et al.,
2017). The majority of observational and interventional studies are hypothesis-driven,
with samples obtained either as case controls, spatially, or within temporal settings (Knight
et al., 2018; Qian et al., 2020). Regardless of the methodology or study criteria, the analysis of
the data through bioinformatics typically yields abundance/coverage tables that recover N
(samples) x P (features) data within the chosen experimental or environmental context.
Additional data (metadata) include parameters associated with the samples of interest. For
environmental samples, these may include physicochemical parameters, and for human- or
other host microbiome studies, additional data may include anthropometric measures and
clinical data. Indeed, these data are essential to correlate treatments, conditions, or
experimental variables with microbial community profiles.

The trend is increasingly geared toward collecting more and more metadata, such as the
incorporation of metabolomics for metabolites (Bauermeister et al., 2021),
metatranscriptomics for gene transcripts (Ojala et al., 2023), and metaproteomics for
proteins (Armengaud, 2023). There are also commercial research services available such as
Resistomap (https://www.resistomap.com/), which facilitates environmental monitoring of
antibiotic resistance genes by offering a customizable target gene table using SmartChip
qPCR. In host studies to unravel host-microbiome interactions, flow cytometry-based
immunophenotyping is typically incorporated (Siebert et al., 2019). In clinical research,
services such as Olink (https://olink.com) offer target platforms for protein biomarker
analysis. This is based on a technology called Proximity Extension Assay, which uses labeled
antibody pairs with DNA oligonucleotides that bind to the corresponding proteins in a
sample. These oligonucleotides are then extended by DNA polymerase and are quantified
through microfluidic qPCR. They offer different protein-associated panels/biomarkers with
biological functions linked to cytokines, cardiovascular disease, immuno-oncology,
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neurology, oncology, inflammation, and several other biological
processes. Recently, there has been a focus on the study of
microbial ecosystems in their entirety, with the buzzword being
the “exposome”, i.e., all the observable variations to which microbial
communities are exposed (Gao et al., 2022; Gul et al., 2024). This
plethora of additional data can then fill in the gaps of how the
microbiome responds to the environment it is observed in. This will
provide mechanistic insight into the function of microbial
communities in a number of important contexts.

In this grand challenge review, we discuss numerous statistical
approaches currently in use to find associations across multiple
datasets sharing the same sampling space. Deducing discriminant
features based on variations in the sampling space (case-control,
spatial, temporal, etc.) and segregating them from features that
remain fairly stable is a challenging issue. We also discuss
challenges in their utility and where the gaps need to be filled.

Data that are not microbiome (sequence) data but provide
further information about the microbiome samples are
considered metadata. At the most basic level, metadata can be
either categorical data (labeling of samples) or continuous data
(for example, numerical data such as age, body mass index (BMI),
anthropometric measures, and physicochemical parameters like
pH and temperature). Additional metadata includes features
recovered from other modalities, such as the metabolome
(mainly continuous variables). While the goal is to capture as
many perceived sources of variability within the confines of the
environment in which the microbiome is observed, downstream
statistical analyses become challenging and raise several questions:

• Of all the covariates that are captured, which ones should be
included in the analyses?

• What about the confounders that are not captured?
• Do all covariates hold equal importance? Is there a way to
rank them?

• If additional modalities generate a new set of features, where
should the emphasis be in the downstream statistics once
multiple feature tables are obtained? Finding discriminating
features in the sampling space or finding correlating features
across the datasets? Is there a trade-off?

• How do we translate an association between the covariate and
an individual or subset of microbes into clinical or
ecological relevance?

• Is linearity the best assumption to infer patterns of interest
between the microbes and the covariates?

• How do we tackle heteroscedasticity and under-sampling
particularly when there are more features than the number
of samples P >> N?

• Which approach holds importance? Is a study-centric
approach suitable where the emphasis is on features that
remain stable or act discriminatory, or a taxa-centric
approach, where given all observed variability, we can
assess the ecological role of a particular microbe?

• Given the thousands of microbes that are detected, should we
include all or some in the analyses? What is more important?
Highly abundant microbes? Highly prevalent microbes?
Highly interacting microbes?

• Is there any utility of rare biosphere in the analysis? How do we
decide what is rare and is not a limitation of sequencing depth?

• How do we incorporate the inherent correlations that exist
between samples, particularly in clinical studies, where a single
subject has provided multiple samples?

• How can we assess the stability and complexity of microbial
ecosystems in the wake of environmental perturbations?

• How can network reconstruction approaches be improved
further? Given a network topology, how do we decide what the
most influential species are?

• In spatial or temporal gradients, how do we compare datasets
where the sampling time/space do not match?

• What is an appropriate normalization measure for different
types of data?

Grand challenge: how can we find a
relationship between a specific variable in a
sea of variability and noise?

To assess the relationship between a single continuous outcome
data and all measured independent variables we typically apply
regression modeling. Regression models describe the relationship
between one or more independent variables and a dependent
variable. One of the most commonly used models is the linear
regression model. Regression coefficients generally referred to as
β-coefficients, are associated with each continuous parameter and
several categorical parameters. The categorical parameters are often
dummified into a numerical representation, typically one less than
the total number of factors observed in a parameter, through a
procedure called one-hot-encoding. The variable that is excluded
becomes a reference variable often denoted as REF. The formula for
linear regression is yi � β0 + β1x1,i + β2x2,i + β3x3,i+βkxk,i + εi. The
equation can also be written in matrix form as y � Xβ + ε. The signs
of the β-coefficients give directionality with respect to the outcome y
with the following interpretations: for continuous variables, a
positive/negative coefficient is interpreted as “an increase/
decrease in the covariate causes an increase/decrease in the
outcome”; and for categorical variables, a positive/negative
coefficient is interpreted as “as compared to the reference REF,
the outcome Y is increasing/decreasing”. There are several
extensions to the linear regression model, the most popular of
which are discussed below.

The Generalized Linear Model (GLM) is a popular model (Xiao
et al., 2018; Koh et al., 2019) in microbiome studies. In the GLM
model, an outcome y is assumed to be generated from a certain
distribution; relevant distributions include normal, binomial,
Poisson, and negative binomial distributions, among others. The
regression model is then defined as g(μ) � Xβ where μ is the
conditional mean of the distribution, and g(.) is the link
function. The logistic regression is particularly important (i.e., the
probability of an outcome with a specified variable), where the
outcome is assumed to have a binomial distribution (the outcome
variable takes values of 0 and 1) and the link function is the logit
function ln(p/(1 − p)). However, we are interested in the log-
binomial regression model which also assumes a binomial
distribution for a binary outcome but uses a log link function
lnp. Fitting a log-binomial regression model with binomial errors
and a log link to binary outcome data thus makes it possible to
estimate risk ratios by taking the exponential of the beta coefficients
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as eβk , e.g., in (Firew et al., 2020). It should be noted that the risk ratio
is the ratio of the probability of an outcome in an exposed group to
the probability of an outcome in an unexposed group, and the log-
binomial regression model was useful in the COVID-19 times to
determine risks with occupational factors (Firew et al., 2020).

In many studies, the samples follow a case-control relationship,
and therefore supplementing with a log-binomial regression model
using all sources of variability fills in the gaps in our understanding.
For outcome variables with more than two categories, multinomial
logistic regression and ordinal logistic regression are recommended
(Liang et al., 2020). For categorical outcomes, we obtain risk ratios
from the models. On the other hand, for continuous outcomes, the
typical strategy is to limit the number of variables (covariates) in the
model, either through the subset regression approach applied to
linear regression using R’s leaps package (Lumley et al., 2013) or the
Least Absolute Shrinkage and Selection Operator (LASSO) approach
using R’s glmnet package (Tay et al., 2023). In glmnet, “The Relaxed
LASSO” is implemented which solves the following optimization

problem, min
β0 ,β

1
N∑N

i�1
wil(yi, β0 + βTxi) + λ[(1 − α)‖β‖22/2 + α‖β‖1] over

a range of values of the tuning parameter λ, with l(.) being the
negative log-likelihood contribution to the observation i. The
method incorporates an elastic net penalty controlled by α, a
compromise between lasso regression (α � 1) and ridge
regression (α � 0). The LASSO constraint forces some of the beta
coefficients to go to zero, acting as a variable selection approach. If
the study has supplementary ‘omics data as metadata, for example,
targeted or untargeted metabolomics, then after appropriate
normalization, e.g., probabilistic quotient normalization (Dieterle
et al., 2006), these data can also be used in the LASSO regression.
Furthermore, the approach is not just limited to continuous
outcomes, as one can also use binary outcomes.

While the above models are mainly suitable for metadata,
applying them to microbiome data is not straightforward. The
read count data in 16S rRNA or metagenomic sequencing are
typically summarized as a count table, and since the total sample
read counts from an experiment, often referred to as the library size,
are dependent on the sequencing technology, the absolute values are
an artifact and present a challenge in how they are used in the
regression models. Furthermore, depending on the depth of
sequencing and the shape of the microbial community
distribution (typically following a lognormal distribution), the
table is highly sparse (50%–90% zero counts in the abundance
table), often leading to overdispersion. These are the two main
challenges that need to be addressed, i.e.,

• How do we effectively normalize the microbiome data when
the samples do not have the same library size?

• In view of normalization procedures, how do we handle sparsity?

In the published literature, the above two questions are tackled
in somewhat different ways, although there is no unifying
framework. We list two recent regression approaches that address
part of the problem with room for improvement.

1) In this case the microbial data are often taken to be
compositional (i.e., the count table is converted to relative

compositions constrained to 1). An example is the
Compositional Decompositional Analysis (CODA)-LASSO
approach (Calle et al., 2023) in which single binary/
continuous outcome data from the meta table is regressed
against the log abundances of microbes (Figure 1). While the
approach offers variable selection by virtue of LASSO
constraints, the challenging issue here is the log transform.
The zero-count microbiome data cannot be log-transformed.
A common practice is to add a pseudo-count, more commonly
1, 0.5 or even smaller values. There is no consensus on the
appropriate choice of pseudo-count (Costea et al., 2014), and
this remains an open problem to be solved despite recent
attempts to address it (Hu et al., 2022).

2) In this case, abundance of individual microbes is regressed
against covariates by fitting a distribution such as a Negative
Binomial distribution that tackles overdispersion and sparsity.
For example, using the Generalized Linear Latent Variable
Model (GLLVM) approach (Niku et al., 2019) an extension of
GLM, microbial abundances are regressed against all
covariates including the latent variables (confounders that
are not observed). The GLLVM approach (Figure 2) uses a
link function g() similar to a GLM, fits a count distribution,
and regresses against the covariates, where βj are the
coefficients of the microbes associated with individual
covariates. After estimating a 95% confidence interval for
these coefficients, there are three possibilities for a given
beta coefficient: the 95% confidence interval is all positive
(an increase in the covariate causes an increase in the
abundance of the given microbe); the 95% confidence
interval is all negative (an increase in the covariate causes a
decrease in the abundance of the given microbe); and where
the 95% confidence crosses the zero threshold (the covariate is
insignificant). For scenarios where the covariate is categorical
in nature, it is dummified (converted to 0s and 1s) with one
factor acting as a reference. The interpretation is similar to the
explanation given above for continuous covariates, except that
now the interpretation is with respect to the reference factor:
the 95% confidence interval is all positive (as compared to the
reference factor, there is an increase in the abundance of the
given microbe); the 95% confidence interval is all negative (as
compared to the reference factor, there is a decrease in the
abundance of the given microbe); and the 95% confidence
interval crosses the 0 boundary (the covariate is not
significant). While βj are the coefficients associated with
covariates xi, θj are the corresponding coefficients
associated with latent variable ui. β0j are the intercepts and
αi are optional sample effects that can be chosen as either fixed
effects or random effects. In addition, the residual covariance
matrix Σ � ΓΓT of the θj coefficients stores correlations
between microbes where Γ � [θ1 . . . θm] for m latent
variables. This residual covariance matrix can then indicate
co-occurrence relationships between microbes that are not
explained by the observed covariates. However, fitting GLLVM
against exhaustive sources of variability when there are
thousands of taxa, significantly more than the number of
samples, is computationally challenging and impractical for
larger datasets. Including all of them may not result in the
convergence of the likelihood function. The open-ended
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questions are then: Within the framework of GLLVM, and
other regression models in general, should we incorporate a
subset of microbes? What should be the criteria for the
inclusion of a microbe?

To limit the number of microbes in the regression model,
the filtering criteria is often to ignore low abundance or low
prevalence microbes. While this may have worked in several
studies where the dominant role was played by the abundant or
prevalent taxa, however, there is growing literature that
emphasizes the importance of the rare biosphere (Lynch and
Neufeld, 2015), which may have ecological, taxonomic, and
functional potential. Furthermore, a recent study proposes
that keystone interacting microbial species (Layeghifard et al.,
2019) have far more clinical relevance than the abundant or
prevalent ones. They have associated hubs from the network
topology of interacting species with clinical covariates,
demonstrating this approach to be better. However, more research is
needed to identify keystone interacting species from microbiome
datasets, particularly to formulate network-wide statistics that are
not only robust against biases but also offer biological relevance. The
Integrated Value of Influence (Salavaty et al., 2020) is a good starting
point for this as a reasonable measure to identify keystone
microbial species.

Grand challenge: how can we unravel the
mediating role of microbes?

While most microbiome studies focus on observing changes in
microbes in a case-control setting emphasizing their differential
abundances, there are trait or performance data (outcomes) that are
not explicitly incorporated. Therefore, a few challenges that
arise include:

• Can we identify microbes that play a mediating role
between the treatments and an outcome of interest?

• What is the nature of mediation? Is it local or global? Is there
no mediation at all?

• Can the mediating microbes be potential targets
for the development of therapeutic or clinical
interventions?

Although still in its infancy, a recently proposed framework
(Yue and Hu, 2022), simultaneously links Treatment T,
microbial mediators M � (M1, ., MJ), outcome O, and
confounding covariates Z. The classical model for multiple
mediators (Van Der weele & Vansteelandt, 2013) is a double
regression problem, where for a continuous outcome and J
mediators, we have

FIGURE 1
The CODA-LASSO approach extends the linear regression approach by taking log abundances of microbiome data and considering two additional
constraints. Constraint 1 is the LASSO constraint that forces some of the beta coefficients to go to zero allowing for variable selection, while constraint
2 ensures that there are two subsets of beta coefficients of microbes, those that are positively associated with the outcome, and those that are negatively
associated with the outcome.
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E Mj Z| , T( ) � α0,j + αTZ,jZ + α1,jT

E O
∣∣∣∣Z, T,M1, . . . ,MJ( ) � θ0 + θTZZ + θ1T +∑J

j�1θ2,jMj

where the total mediation effect through (M1, . . . ,MJ) microbial
mediators take the form ∑J

j�1α1,jθ2,j with α1,j characterizing the

effect of T onMj given Z, and θ2,j characterizes the effect ofMj on
O given Z and T and all other Mj s. Testing α1,jθ2,j � 0 for an
individual mediator achieves the purpose as the non-zero value
indicates the contribution of Mj to the overall mediation effect.
E(O|Z, T,M1, ...,MJ) called forward outcome model is difficult to
solve as there are more mediators than the number of samples, and

FIGURE 2
GLLVM procedure that fits a distribution for each microbe and regresses against all covariates to obtain beta coefficients that reveal positive or
negative relationships.

FIGURE 3
Mediation analysis where the path from Treatment to Outcome is established after solving the inverse regression problem and testing the
corresponding beta coefficients that exist on that path.
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therefore an inverse regression model is proposed (Figure 3) where
orthogonalized versions of the residual of treatment T against Z
defined as Tr, and orthogonalized versions of the residual of O
against (Z, T) defined as Or are used, and the two equations are
merged into a single equation,

E Mj Z| , T, O( ) � β0,j + βTZ,jZ + β1,jTr + β2,jOr

such that β1,j corresponds to α1,j, and β2,j corresponds to θ2,j with
the test becoming β1,jβ2,j � 0 for an individual mediator.

Further variations include causal mediation methods specifically
designed to handle high-dimensional and compositional
microbiome data (Wang et al., 2020). This rigorous Sparse
Microbial Causal Mediation Model (Sparse MCMM) applies a
linear log-contrast regression model and Dirichlet regression
model to estimate the causal direct effect of treatment and
microbiome mediation effects at both the community and
individual taxon levels. PhyloMed (Hong et al., 2023) on the
other hand discovers mediation signals by analyzing sub
-compositions defined on the phylogenetic tree. While these
mediation approaches offer a deeper understanding of the causal
mediation effect of the microbiome and have a growing number of
applications in microbiome studies, they are often context-
dependent, and cater to those situations where a sizeable
proportion of the microbial community changes. Where the
changes are small or localized, the above mediation approaches
do not appear to work well, and thus there is room for improvement.

Grand challenge: how can we determine
whether variables cause a shift in microbial
community diversity?

Microbial diversity measures provide insight into the structure
and dynamics of microbial communities. Differences within
treatments (alpha diversity) and between treatments (beta
diversity) can highlight responses in microbial populations to
environmental or other conditions. Diversity measures
themselves do not provide statistics, only trends. How can we
statistically determine whether a variable is linked to patterns in
diversity? First, we need to apply an algorithm to establish whether
the variable (covariate) is causing a change in beta diversity between
groups. In this regard, Permutational Multivariate Analysis of
Variance (PERMANOVA) is a very useful tool as it employs any
of the beta diversity dissimilarity metrics suitable for microbiome
data (traditional ones include Bray-Curtis distance and UniFrac
metrics) and can be applied to a wide range of complex models.
PERMANOVA is a permutation test that uses an F test to assess
whether the variances of two populations are equal by comparing
groups of objects with the null hypothesis being that centroids and
dispersions are equivalent. For each of the covariates, the test returns
an R2 value which, if significant, is the percentage of variability in the
microbiome explained by that covariate. As PERMANOVA is
sensitive to the order of variables, it is often combined with a
filtering process such as Redundancy Analysis (RDA) with
forward selection (Vass et al., 2020). An alternate method is the
Fuzzy Set Ordination (FSO) method (Roberts, 2009). Similar to
PERMANOVA it uses dissimilarity metrics and metadata, but it is

based on the principle of fuzzy set theory and reports correlation R
as a quality-of-fit metric. Moving forward, two challenges need to
be addressed:

1. All of these methods rely on distances that use all the measured
microbiome count without incorporating individual
covariances, i.e., the importance of individual microbial
species is lost. Emerging approaches (Satten et al., 2017;
Andries and Nikzad-Langerodi, 2022) do offer a bit of
reprieve, but a concerted effort is required to develop
this direction.

2. Another issue is that the majority of methods require
multivariate uniformity of variability (homoscedasticity) and
balanced sample sizes. In particular, PERMANOVA suffers
from loss of power and type 1 error inflation (Alekseyenko,
2016). Therefore, there is a need to develop new robust
methods that can ensure correct data analysis. The W*

d test
(Hamidi et al., 2019) may be a good advancement in this
direction, but there is a lack of a unified framework to tackle
heteroscedasticity.

Perhaps an alternative to PERMANOVA could be to knock out
unnecessary covariates through the approach by (Clarke and
Ainsworth, 1993) which presents algorithms that allow for the
comparison of beta diversity distances between two sets of data
that have either samples or features in common. This approach
facilitates the exploration of environmental variables (or clinical
parameters) that best correlate with sample similarities in the
biological community (microbiome). In the procedure (termed
BIOENV), the similarity matrix of the community is fixed, while
subsets of the environmental variables are used in the calculation of
the environmental similarity matrix. A correlation coefficient is then
calculated between the two matrices and the best subset of
environmental variables can then be identified and further
subjected to a permutation test to determine significance. R’s
vegan package (Dixon, 2003) implements the bioenv() function,
where the similarity matrix of environmental data is assumed to be
based on normalized Euclidean distances (Figure 4). This makes
sense with environmental data where one normalizes the data to
remove the effect of differing scales between parameters. For the
microbiome, the Bray-Curtis Similarity Index is commonly used due
to its non-parametric nature.

Grand challenge: how can we visualize the
relationship between covariates and
microbial diversity patterns?

Constrained ordination approaches can be used to visualize the
variation in microbial communities that can be explained by
external environmental variables or constraints. There are
different types of constrained ordination approaches such as
Canonical Correspondence Analysis (CCA) and Redundancy
Analysis (RDA) (Legendre and Legendre, 2012) (Figure 5). In the
case of CCA, a Chi-squared transformed microbial abundance table
is subjected to weighted linear regression on the constraining
variable. The fitted values are then subjected to correspondence
analysis using Singular Value Decomposition (SVD). RDA on the
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FIGURE 4
BIOENV approach, where the similarity distance is calculated for a fixed matrix (microbiome) and the features in the variable table are permuted to
calculate a variable similarity distance in such a way that those subsets are retained where the correlation between the distances of the two matrices
is optimized.

FIGURE 5
Constrained ordinations, where the left side visualization is obtained for CCA/RDAwith the length of the arrows pointing to the direction of increase
of the continuous covariates, while the right side is the smooth contour of a continuous covariate on the reduced ordination space. It should be noted
that for CCA/RDA categorical variables can also be used where we get separate vectors for each factor of a categorical variable.
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other hand uses ordinary unweighted linear regression and
unweighted SVD. Additionally, there is a distance-based
Redundancy Analysis (dbRDA) that allows non-Euclidean
dissimilarity indices such as the Bray-Curtis distance. There are
two versions of dbRDA implemented in R’s vegan package: the
capscale() function based on (Anderson and Legendre, 1999); and
the dbrda() function based on (McArdle and Anderson, 2001). The
two methods differ in how dissimilarities are handled but they
essentially do the same thing. To facilitate stepwise model building
for constrained ordination methods, one can use the ordistep()
function (Blanchet et al., 2008) from R’s Vegan package, which can
perform forward, backward, and stepwise model selection using a
permutation test. Alternatively, the ordisurf() function from R’s
Vegan package can fit smooth surfaces using penalized splines
(Wood, 2003) in the Generalized Additive Model (GAM). The
method uses a single continuous metadata and regresses it
against the smooth values of the scores obtained from any of the
ordination techniques such as Non-Metric Distance Scaling
(NMDS) or Principal Coordinate Analysis (PCoA). Nevertheless,
there are challenges that need to be addressed in constrained
ordination approaches. One of the shortcomings is the
assumption of linearity in approximating the response of
microbial species to environmental gradients (which typically
follow a log-linear relationship). Although (Makarenkov and
Legendre, 2002) provided a non-linear approach based on
polynomial regression, more research is required in this area.
Another problem is that CCA does not work well when there is
a large variability in the library sizes of microbial samples (typical of
metagenomics datasets), often leading to inflated Type 1 errors (Ter
Braak and Te Beest, 2022). Further research is needed on the choice
of test statistics associated with CCA to address this issue (Ter
Braak, 2022).

Grand challenge: how canwe assess stability
and complexity in microbiome studies?

Many studies today are concerned with assessing the stability of
an observed microbial ecosystem against environmental
perturbations (Mills et al., 2023) and whether the structure of the
microbiome offers some sort of resilience. Typically, it is assumed
that higher taxonomic diversity leads to higher functional
redundancy which may provide an advantage when individual
taxa are displaced or knocked out (the author’s paper above
suggests otherwise). The challenge here is to come up with easy-
to-use metrics to assess how stable an ecosystem is. Stability can be
defined in terms of functional stability. For example, in (Eng and
Borenstein, 2018a), artificial perturbations in taxonomic
composition are created, and function f � 1

ea t
b is fitted between

the taxonomic difference t (using Weighted UniFrac) and the
functional difference f (cosine dissimilarity between the original
and perturbed functional profiles) of these perturbations to give
Attenuation a and Buffering b coefficients. On a Buffering-
Attenuation plot, these authors have compared different
environments, showing gut communities to be more robust while
vaginal communities to be unstable. However, to apply this
procedure, the predicted functional profiles of individual
observed taxa need to be known in advance which may be

impractical for 16S rRNA studies unless there is an improvement
in the database development of metabolic prediction software such
as PICRUSt2 (Douglas et al., 2020).

Other approaches stem from May’s stability theory (May 1972),
which states that the stability of n interacting microbial species is
determined by the interacting community matrixM (also called the
“adjacency matrix” obtained by network inference). The complexity
is defined as α2nC, where α2 and C are the variance and density of
the non-zero off-diagonal components of M. With the scaled
diagonal components as −1, the ecosystem is stable as long as it
satisfies the stability criterion: α

���
nC

√
< 1. There are issues associated

with the application of this theory to microbial interaction networks:

a) It is not possible to accurately reconstruct an interaction
network from abundance data, as this would require high-
quality time series data, and well-designed control
experiments.

b) The current network reconstruction approaches (e.g., SPIEC-
EASI (Kurtz et al., 2015), SparCC (Friedman and Alm, 2012),
Phi statistics (Lovell et al., 2015), Probabilistic co-occurrence
(Veech, 2013), MENA (Deng et al., 2012), etc.) that infer the
community matrix M as a co-occurrence network are not
really useful because they do not encode causal relationships.

The second problem can be addressed by estimating the effective
connectance D2 after fitting a regression model to samples that
overlap in terms of the species they share and the sample
dissimilarities (Yonatan et al., 2022). This avoids the need to
infer a co-occurrence relationship explicitly, leading to D2

serving as a proxy for stability. D2 is then obtained by the slope
of the regression fitted to the dissimilarity-overlap plot on the 25%
top overlap values for the paired-wise dissimilarity/overlap values
forN samples in a given category from a total ofN(N − 1)/2 paired-
wise values. However, this approach requires at least 35 biological
replicates which may be impractical for most studies.

For temporal datasets, a community-level measure of stability
can be the Local Contribution to Beta Diversity (LCBD) measure
(Legendre and De Cáceres, 2013). Any deviation from the mean
LCBD can serve as a means to assess the stability of the system (Ijaz
et al., 2018). Another advantage is that LCBD is a unidimensional
measure that can be used in the regression approaches discussed
previously and can be studied in the presence of covariates.

Moving on from community-level stability metrics to the
identification of subcommunities that remain stable is another
challenging issue. Not much work has been done in this direction,
and it is still in its infancy. An important development in finding a
minimal subset of microbes that either remain stable or change with
respect to a continuous covariate of interest, is the Ensemble Quotient
Optimization (EQO) approach by (Shan et al., 2023) (Figure 6). The
approach uses a relative abundance table, called the community
matrix M (m microbes over n samples), where the goal is to
obtain a vector x ∈ (0, 1)P where the ith position in the vector is
either 0 or 1, i.e., a subset of microbes where values of 1 belong to an
ensemble that we are interested in recovering. This ensemble is
recovered in the context of a phenotype/predictor variable y by
optimizing an Ensemble Quotient EQ � xTQx

xTPx, through a genetic
algorithm (an optimization algorithm), where P and Q are
algebraic transformations of the community matrix that capture
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the covariance between microbes, and the covariance between
microbes and y. The choice of y dictates which ensemble one can
recover, and it can be used in three cases: a) If the interest lies in an
ensemble of microbes that remains stable for a set of samples, then y is
considered uniform, i.e., consisting of 1s; b) If the interest lies in an
ensemble of species whose cumulative abundance correlates with a
continuous physico-chemical parameter y, then the algorithm is
optimized with a centered community matrix M0, and a centered
continuous parameter y0; and c) if the interest lies in an ensemble of
species whose cumulative abundance is stratified across different
categories, then an augmented Y matrix is considered that
captures the categorical information as 1s or 0s after applying
dummification, and uses M0. In the context of temporal data, case
(a) can be used to see which subset of microbes does not change over

the whole time span (quality of fit is returned as the Coefficient of
Variation CV), while case (b) can be used to see which subset of
microbes has a relationship with the performance parameters (quality
of fit is returned as the correlation coefficient between the continuous
outcome and the cumulative abundance of the ensemble). In case (c)
of a stratified response, the quality of fit is established by the
Coefficient of Determination CD. To optimize the EQ to obtain x,
the genetic algorithm optimization code is located at https://github.
com/Xiaoyu2425/Ensemble-Quotient-Optimization.

In summary, the following questions need to be addressed:

• How can we construct microbial networks that can accurately
capture microbial interactions including causality, and that
too with reduced sample numbers?

FIGURE 6
The Ensemble Quotient optimization algorithm works by finding an ensemble (a subset of microbes) that either remains stable (Uniform), has a
stratified response (Categorical), or correlates with a covariate of interest (Continuous).
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• Can we construct easy-to-use metrics that can describe the
complexity and stability of an ecosystem at both temporal and
spatial scales, and that can seamlessly integrate with metadata?

• How can we numerically assess the resilience of an observed
microbial community?

• What is the role of a stable subcommunity in the functioning
of a microbial ecosystem?

• While the existing literature focuses on taxonomic stability,
how can we recover stable functions from microbial
ecosystems and relate them to the covariates (metadata)?

Grand challenge: should more emphasis be
given to taxa-centric approaches as
opposed to study-centric ones?

The taxa-centric approach differs from the study-centric
approach in that the emphasis is on elucidating how a particular
microbe behaves in a variety of environments. In ecology, one of the
important methods is to assess which niches microbes occupy, and
whether there is a degree of overlap between them. For such an
assessment, it is important to consider all possible sets of
environments (dictated by biotic or abiotic variation), with the
total number of environments serving as a parameter in the
model. To identify the roles of microbes in the context of these
environments, R’s MicroNiche package (Finn et al., 2020) is useful.
It facilitates the identification of generalist (which should exist in the
majority of the environments) and specialist (which should exist in
some environments) microbial species in addition to the
environment-dependent positive/negative association of microbial
species with the continuous covariates observed in the data. Why is
this important? There is growing literature suggesting that generalist
and specialist species impact the microbial community dynamics
differently (Sriswasdi et al., 2017), with generalists in particular
playing a key role in maintaining taxonomic diversity. In fact, an
author’s recent work (Mills, 2023) suggests that different microbial
communities are disproportionately impacted by environmental
disturbances, and stable environments lead to the proliferation of
generalist species. Therefore, there is a need to consider the
ecological roles of microbial species, and to distinguish between
different categories of microbial species when studying a microbial
ecosystem (Xu et al., 2022). How to identify distinct roles remains a
challenge. Here, we discuss the recent taxa-centric approaches.

Before making distinctions in the MicroNiche framework, as a
pre-processing step, microbes are first selected using the limit of
quantification (LOQ) approach. Briefly, LOQ filters out microbes
that fall below a “decision boundary”, calculated from the
distribution of microbes with 95% confidence that these microbes
will fall within a null distribution where the mean microbial
abundance is zero. To calculate the standard deviation of the null
distribution, the lognormal rank distribution of the microbes with
the dataset is fitted with S(R) � S0e−a

2R2
where the log abundance of

the microbe S at rank R is dependent on the coefficient a and rank R

calculated as a �
������
ln S0
Sm

/R2
√

where Sm is the lowest taxon abundance

of S. To calculate the LOQ, we fit the above log-normal model to the
data, and the LOQ is then determined as the overlap between the
null hypothesis (i.e., a microbe’s mean abundance is zero) and where

the microbe falls within 1 standard deviation of the above model.
After filtering out the microbes, we then calculated the niche breadth

as Levins’ BN � 1
R ∑

i�1
p2
i , where pi is the proportional abundance of a

microbe in the i-th environment, with the total number of
environments being R. If BN approaches 1 for a given microbe,
then it is considered a “generalist”, while if it approaches 1/R, then it
can be considered a “specialist”. To derive the p-value for Levins’ BN

i.e., whether we can call a microbe a generalist or a specialist with a
high degree of certainty, a null modeling approach is used, where a
random normal distribution of 999 possible niche breadths are
produced for a microbe, and allows a p-value to be assigned
depending on whether a microbe’s BN is greater or lower than
the mean of the null model. As per the author’s recommendation,
after applying null modeling, the fifth Quantile and 95th Quantile
are obtained to tag the microbes as specialists if its BN < fifth
Quantile, and generalists if its BN > 95th Quantile. Those that fell in
the inter-range were tagged as undecided.

In the second step, the overlap of these specialist or generalist
microbes is calculated using Levins’ Overlap formula

LOi,j �
∑
i,j�1

(pir)(pjr)

∑i�1(p2
ir)

, where pi is the proportional abundance of the

microbe i in the r-th environment, and pj is the abundance of the

microbe j in the r-th environment. In addition to Levins’ BN, one
can calculate Hurlbert’s BN, where an additional covariate ri
observed for the environment i is incorporated in the formula
(Figure 7). The model yields a value between 0 and 1 for each
microbe and corresponding covariate, indicating whether there is an
inverse (~0) or a positive relationship (~1), with 0.5 indicating no
relationship to the covariate. To determine positive and negative
relationships (potentially symbiosis and antagonism) between the
microbes, Proportional Overlap POi,j is used. The Proportional

Overlap POi,j is a Jaccard similarity coefficient that approaches

0 for microbe pairs that are inversely related to each other and
approaches 1 for microbe pairs that are positively related to each
other. Similar to the above approach is the development of the Social
Niche Breadth score (von Meijenfeldt et al., 2023) which revealed
across ~22,000 environments that social generalists have a diverse
pan-genome, are mainly opportunistic, and dominate local
communities. Social specialists, on the other hand, exhibit mixed
behavior, i.e., they are stable but low in abundance, and their genome
sizes change with the diversity of their environments.

Another way of imparting distinction is to tag microbial species
as either specific (existing within a narrow range of a particular
covariate) or cosmopolitan (existing in a broader range of a
particular covariate). In this regard, R’s Specificity Package
(Darcy et al., 2022) is an important development (see Figure 8).
It calculates Rao’s Quadratic Entropy (RQE) as RQE �
∑s−1
i�1

∑s
j�i+1

Dijpipj where microbial abundance pipj is the

multiplication of the abundance of a specific microbe in samples
i and j, respectively, each weighted by the difference in the covariate
value Dij. A null modeling procedure is then applied (statistical

effect size) where 999 random permutations are obtained for the
abundance table, and RQE values are then obtained for these
random permutations. The deviation of the original RQE from
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the average of the RQEs of these random permutations then returns
a “Spec” number, ranging from −1 to +1, with 0 as the null
hypothesis that the genus weights are randomly ordered with
respect to sample identity, with perfect specificity when Spec
approaches −1 and perfect cosmopolitanism when Spec
approaches +1, and with the null modeling procedure providing
additional p-values for significance.

Another popular approach to identifying ecological classes is
to fit a neutral model (Burns et al., 2016) to the observed
microbial abundance-occupancy relationships. This allows the
separation of microbial community members into three subsets:
a) those that satisfy the 95% confidence interval of the fitted

neutral model, and are driven by stochastic processes; b) those
that fall above the 95% confidence of the neutral model and are
selected by the environment; and c) those that fall below the
model, and are driven by the dispersal limitation
process (Figure 9).

In summary, the challenges are as follows:

• With the expansion of public databases with deposited
sequences, there is a need to understand microbial niche
breadth in a meta-analysis setting and to revisit the
definition of stability, particularly in light of how niche
theory unravels eco-evolutionary processes.

FIGURE 7
(A)Given pi , the proportional abundance of amicrobe in the i-th environment, ri an environmental property (continuous covariate) is associatedwith
each environment. (B) In the total number of environments being R (stratification based on some commonality among samples), we can assume for pi ,
and ri to be fairly stable within the environment and vary more across the environments. (C)Hurlbert’s BN and Feinsinger’s PS statistic indicates a negative
or positive relationship between amicrobe and an environmental property. A null modeling procedure is considered by generating a randomnormal
distribution with 999 possible estimates, and by labeling a microbe as “negative” if the metric <fifth Quantile, and “positive”, if the metric >95th Quantile.
(D) For Proportional Overlap POi,j, X (for microbe i) and Y (for microbe j) are Feinsinger’s PS.
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• New metrics need to be developed that identify the ecological
roles of microbes for better mechanistic understanding rather
than simply identifying microbial species that are up- or
downregulated.

• A taxa-centric framework needs to be developed that also
incorporates covariates (metadata) into the modeling process
based on the hypothesized distinctions.

Grand challenge: how do you identify a
signature microbiome when each
ecosystem differs in terms of variability?

One of the less explored areas is the recovery of the core/
signature microbiome, which is shared by the majority of
samples (or individuals in clinical settings). Traditionally, a
core microbiome has been defined as a subset of microbes
with high prevalence (typically 50% or 85%) across all
samples (Shetty et al., 2017). This prevalence goes down to
30% where core membership is considered stable given
individual variabilities (Ainsworth et al., 2015). There is no
real consensus on what is an appropriate threshold. Also,
different ecosystems have different levels of inter-subject
variability. For example, while gut microbial communities

may be more similar, vaginal microbial communities show
much more variability (Eng and Borenstein, 2018a).
Therefore, the challenge is to develop a unified framework
where the crisp prevalence threshold is avoided, and the core
membership of microbes is dynamically learned from the data.
There exists one such recent dynamic strategy (Shade and
Stopnisek, 2019) for inferring the core microbiome. The
strategy considers (Figure 9) the sample occupancy of
microbes at different sites (whether in space or time) along
with the replicate information, and then dynamically calculates
the minimum occupancy threshold by learning from the data.
The ranking of microbes is done using a combination of two
metrics: Site-specific occupancy (the proportion of microbes
within a given site; and Replicate Consistency (the consistency
of microbes across replicates within a site). After ranking the
microbes using the two metrics, the subset of core taxa is
constructed by iteratively adding one microbe at a time to the
core set of microbes, i.e., from the high-ranked microbes to the
low-ranked ones. The contribution of the core subset to beta
diversity is then calculated every time a new microbe becomes a
member of the core set using the Bray-Curtis contribution,
C � 1 − BCcore

BCall
. There are two stopping criteria used in (Shade

and Stopnisek, 2019), of which a relaxed criterion for inclusion
of a microbe in the core microbiome subset is recommended:

FIGURE 8
(A) Traditional way of finding an association (whether negative or positive) between microbial abundance and a continuous covariate of interest. (B)
The goal of specificity analysis is to find microbes that become specific within a narrow range of a covariate of interest. (C) Creating a null distribution
utilizing Rao’s Quadratic Entropy formula (which incorporates the difference of the covariate across two samples i and j as Dij, multiplied by the relative
abundance of themicrobe across two samples as pi and pj). These are calculated for all pairwise combinations of samples (s(s−1)2 ). The empirical value
is then compared with the average of the 999 null distribution values to tag a microbe as specific (Spec ~ −1) or cosmopolitan (Spec ~ +1).
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inclusion of an additional microbe does not cause more than a 2%
increase in the explanatory value by Bray-Curtis distance.
Although not extensively tested on a variety of datasets, this
strategy seems promising (in the absence of alternatives) and
needs to be explored further including through the development
of different metrics to the Bray-Curtis contribution C, and other
stopping criteria that may be ecologically inspired. The
identified core microbiome can then be further regressed
against all sources of variation, for example, using the
GLLVM framework or can be fitted with a neutral model.

Grand challenge: how can we integrate
additional datasets?

With the multitude of complex ‘omics datasets that can be
attached to the microbiome samples of interest, the process of
integrating additional datasets is of great interest. The challenge
with ‘omics data is the sheer volume of data (with many features),
high noise, sparsity, and potentially missing data points. To
overcome these issues and integrate the datasets (often with
differing sample numbers), we need to apply tools that reduce

FIGURE 9
The core microbiome is established by first ranking the microbes based on a combination of two criteria, Site-specific Occupancy and Replicate
Consistency, and then using the Bray-Curtis (BC) contribution of the core subset to the whole community; the core subset is iteratively constructed until
the stopping criteria are reached. The core subset is then further discretized to those that: fall above the neutral model (selected by host/environment and
represented by red dots in the bottom right figure); fall below the neutral model (selected by dispersal limitation and represented by blue dots); and
those that fit the 95% CI of the neutral model (represented by green dots).
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the dimensionality of the datasets. One tool commonly used (and
variations thereof) is Partial Least-Squares Discriminant Analysis
(PLS-DA) (Worley and Powers, 2012). Arguably one of the most
crucial developments in microbiome data integration has been the
development of ‘mixOmics’ an R package that holds a repository of
functions for multivariate analysis of biological data such as
dimensionality reduction, and visualization and includes multiple
integration tools (Rohart et al., 2017b). This powerful resource
allows the integration of microbiome and ‘omics datasets. This
package focuses on dimensionality reduction by statistically
integrating several datasets using Projection to Latent Structure
models and their multigroup extensions. The multivariate
approaches project the sample matrix X into H latent
components giving scores of samples on these components
(t1, t2, . . . , tH) which are defined as a linear combination of the
original predictors. The weights of each of the predictors are given
by the loading vectors on these components as (a1, a2, . . . , aH). The
matrix X = (X1, X2, ..., XP) is then represented in the first latent
component as t1 � Xa1 � X1a11 + . . . +XPaP1 . For each loading
vector ah, there is one latent component tH with dimension
H≪P. To enable variable selection, the optimization algorithm
maximizes the covariance between the scores of two data matrices
Xi and Xj as cov(tih, tjh) which are subject to LASSO constraints
imposed on the loading vectors aih and ajh. This forces some of the

components of the loading vector to go to zero, thus enabling
discrimination. The approach is referred to as sparse Projection to
Latent Structure Discriminant Analysis (sPLSDA). Two of its
extensions are widely used: a) the Multivariate INTegrative
(MINT) algorithm (Rohart et al., 2017a) called the
P-Integration algorithm where the matrices Xj share the same
features in a multifactorial design; and b)the Data Integration
Analysis for Biomarker discovery using Latent cOmponents
(DIABLO) algorithm (Singh et al., 2019) called the
N-Integration algorithm where the matrices Xj originate from
multiple modalities each with different features but on the same
samples. The optimization strategy is similar to sPLSDA where
now the covariance of the scores between multiple matrices is
simultaneously optimized either as a simple sum of covariances
(MINT) or as a weighted sum of covariances(DIABLO). The
weights give DIABLO a trade-off between correlation and
discrimination (see Figure 10). There are several challenges
associated with the applicability of such approaches:

• The main challenge with these approaches is the appropriate
type of normalization model. For datasets where the features
are count data, TSS + CLR (Total Sum Scaling followed by
Centralized Log Ratio) may suffice. For other types of datasets
such as those originating from flow cytometry or

FIGURE 10
Illustration of the sPLSDA algorithm and its extension. The optimization algorithms are shown for all cases along with the weighting strategy for
DIABLO shown in a table.
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metabolomics, there is no real consensus on what is an
appropriate normalization measure.

• The P- and N-integration approaches involve optimizing the
additive sum of weighted covariances across multiple datasets.
Identification of the correct weights that offer reasonable
trade-offs between discrimination and correlation is a
largely unexplored topic.

• While extensions such as timeOmics (Bodein et al., 2022) have
been proposed for temporal datasets that primarily return
clustering of time series data across different datasets, the
method shows poor performance when there is high inter-
replicate variability. Normalization strategies, interpolation
strategies (when time points do not match), and pre-
processing strategies still need to be further explored.

Concluding remarks

While there are numerous ways to divulge patterns of interest in
microbiome data, and associate them with covariates of interest
(metadata), we have discussed those methods that have gained
importance in recent years, and this list is by no means
exhaustive. Statistical approaches that offer multivariate data
integration are few and far between, and those that are used in
routine practice have very strong assumptions of linearity. There is
room for improvement in these techniques and guided by our
experience, we have highlighted the challenges associated with
some of these approaches. There is an ever-increasing pressure to
utilize analytical techniques that lead to a mechanistic
understanding of the ecosystem under study, and perhaps
inspired by the work done in ecology, there may be a way.
Integration algorithms in recent years have also gained popularity
as there is a shift toward incorporating multiple omics technologies
in microbiome surveys each offering complementarity. However, we
are still far from being able to infer direct causality, although
correlation and association inference are well explored. Also,
there is a need to develop analytical strategies, that can address
nonlinearity, low sample numbers, and unbalanced study designs.

Analytical techniques now offer more insight than ever before, but
verifying the patterns in the lab or in situ is still required to not only
yield mechanistic insights, but also to aid in tool development.
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