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Mathematical models for cellular systems have become more and more
important for understanding the complex interplay between metabolism,
signalling, and gene expression.In this manuscript, starting from the well-
known flux balance analysis, tools and methods are summarised and
illustrated by various examples that describe the way to models with kinetics
for individual reactions steps that are finally self-contained. While flux analysis
requires known (measured) input fluxes, self-contained (or self-sustained)
models only get information on concentrations of environmental
components. Kinetic reaction laws, feedback structures, and protein allocation
then determine the temporal output of all intracellular metabolites and
macromolecules. Emphasis is placed on (i) mass conservation, a crucial
system property frequently overlooked in models incorporating cellular
structures like macromolecular structures like proteins, RNA, and DNA, and (ii)
thermodynamic constraints which further limit the solution space. Matlab Live
Scripts are provided for all simulation studies shown and additional reading
material is given in the appendix.
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1 Introduction

Understanding complex systems, both in technical and non-technical sciences, relies
heavily on mathematical modeling. This holds true for life sciences, particularly in systems
biology, wheremathematical modeling serves as a formalization tool for comprehending the
intricacies of a system. Systems theory provides a framework for constructing models with
various dimensions. One dimension pertains to the level of detail in the model, spanning
from simple qualitative interaction networks to extensive, mass-conservative quantitative
models detailing processes within cells and their fluctuating environments. Another
dimension involves whether the model represents an average cell or individual cells
within an environment. Modeling individual cells demands sophisticated approaches,
such as employing population balance equations developed by Ramkrishna and
colleagues (Ramkrishna, 2000) or adopting an ensemble modeling approach. Both
methods necessitate distinct numerical schemes for resolution. Additional dimensions
encompass whether the system is static or dynamic, and if the model requires structural
elements, like an objective function, to explore the potentially infinite solution space.

The text at hand endeavors to initiate the analysis of a biochemical reaction network
using flux balance analysis (FBA), a well-established method in cellular systems modeling.
Therefore, only a basic understanding of reaction engineering is needed, while in-depth
knowledge of microbial physiology commonly applied in biotechnology is unnecessary,
since the examples are based on a simplified (toy) network. It concludes by constructing
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self-contained models that consider cellular macromolecular units
linked to metabolism. Emphasis is placed on mass conservation, a
crucial system property frequently overlooked in models
incorporating cellular structures, leading to an incorrect degree of
freedom for selecting system unknowns. While standard FBA
typically considers a single biomass reaction, the proposed
framework accommodates the structured nature of cells,
highlighting resource allocation importance. Simple, self-
contained models derived from this framework serve as a
foundation for more intricate models.

A systematic procedure is presented, starting with a basic
biochemical network devoid of macromolecular units. It delves
into thermodynamic properties and introduces methods for a
proper description avoiding inconsistencies with physical basics.
Conforming to the dimensions mentioned earlier, the manuscript
confines itself to detailed quantitative models for an average cell,
analyzing static properties.

Therefore, it is not only suitable for beginners with basic
background in mathematics (algebraic knowledge and differential
calculus is required) and modeling but also for advanced students
who could deepen their knowledge, especially when the
macromolecular unit structure of the cell is introduced (here two
different approaches are used).

After studying the text, the reader gains an understanding of
the fundamental mathematical framework underlying models of
cellular systems, as introduced in Section 2.1. Although a
simplified (toy) model is used for illustration, comprehensive
stoichiometric models of real cellular systems are available in
specialized databases and can serve as a foundation for further
exploration. Section 2.2 addresses basic thermodynamic
challenges, enabling the reader to formulate systems of
equations that avoid thermodynamic inconsistencies. Section
2.3 expands the discussion to include cellular models that
incorporate macromolecular structures. A key outcome here is
the development of objective functions that account not only for
intracellular fluxes but also for the enzyme requirements necessary
to sustain those fluxes. Section 2.4 introduces an extended
equation system that integrates a larger set of macromolecular
components and explores their potential roles in feedback
mechanisms—such as how proteome allocation can influence
intracellular flux distributions. Finally, the text introduces the
reader to kinetic modeling approaches (Section 2.5). Whereas
fluxes were previously treated as unknown variables, this
section presents kinetic equations for individual enzymatic
reactions. This allows for the analysis of the dynamic
relationship between metabolic fluxes and intracellular
metabolite concentrations, illustrated through the ongoing
example of a small metabolic network.

Last but not least, hopefully lecturers and also well-advanced
scientist will find interesting examples for their courses. A
quantitative description always aims for a better understanding of
the system at hand. Although the examples used are small, the
presented methodology is general and can be applied to larger
stoichiometric networks to determine intracellular flux
distributions given measured uptake and production rates.
Moreover, problems of resource allocation can be considered and
will allow researchers to compare simulation results with own data.
Larger differences should lead to the formulation and testing of new

hypotheses that again will lead to new sets of experimental
experiments. Additional reading material (books and standard
publications) are provided in the Supplementary Appendix.

The examples provided adhere strictly to quantitative principles,
employing physiologically meaningful parameters and standard
units such as g grams, mol moles, gDW grams of dry weight
(gDW), and h hours for time constants. All simulations are
executed using Matlab; live-scripts are provided for replicating
the examples. Although software packages are available that
support the reader by implementing models and performing
simulations studies, only standard Matlab code is provided here.
The advantage from the learning perspective is that the scripts can
be directly used in the lecture or exercises. In typical courses, the
focus is on the modeling approaches and how they are used to solve
problems in systems biology and metabolic engineering. More
details on available software tools can be found in the
Supplementary Appendix.

2 Case studies

2.1 Mass balance in biochemical
reaction systems

A common feature of all deterministic models that were
developed for applications in systems biology, medical systems
biology, or metabolic engineering is mass conservation. This is
valid on the level of single bio-chemical reactions but also for
larger networks to whole-cell models. For the studies presented
here, mass conservation is obtained for single biochemical reactions
which also result in mass conservation on the level of biomass
synthesis; closely related to this, it allows a clear calculation of the
specific growth rate μ if cell division is considered. The specific
growth rate is defined as the change of biomass mX over time
divided by the biomass μ � dmX/dt

mX
(often in literature, a definition

based on the concentration of biomass cX, that is, the ratio of
biomass to the volume in the bioreactor system cX � mX/V, is found
that will, however, lead to inconsistencies when considering
processes with a changing volume). With biomass, the weight of
all cells in the experimental set-up is meant; the models developed in
the text are based on a defined structure with metabolites and
macromolecular units. To be mass conservative, the mass
fraction of all metabolites and units (given in g/g) must add up
to 1g.

A standard notation with stoichiometric coefficients γi and
reaction rate r for a single reaction reads:

γA
∣∣∣∣ ∣∣∣∣A + γB

∣∣∣∣ ∣∣∣∣B#r γC
∣∣∣∣ ∣∣∣∣C + γD

∣∣∣∣ ∣∣∣∣D (1)

The numbers given in front of the metabolites are positive
numbers (therefore they are written with value sign |•|) and
describe the number of molecules involved in the reaction on a
molar basis. They report on the left side the number of molecules
that serves as substrates, and on the right side the number of
molecules that serves as products. In the current form, these
terms cannot be used for further calculations and must be
translated into equations. As a general agreement, the
stoichiometric coefficients on the left side are taken as negative
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values (γA and γB), while the coefficients on the right side are
positive (γC and γD). The corresponding equation reads as follows:

γA γB γC γD( )︸�������︷︷�������︸
ni

T

A
B
C
D

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � 0 (2)

with the vector ni is the stoichiometric vector of the reaction i.
However, since the equation is only based on the numbers of the
interacting molecules, we cannot infer, if the mass balance is closed.
Here, the molecular weight wj of compounds j come into play. A
closed balance appears if we multiply the stoichiometric vector with
the vector of the molecular weights w of the metabolites:

wT ni � 0 (3)

and as a results, a value of zero appears on the right side (scalar value
since a row vector is multiplied with a column vector).

Since in a cell, a large number of reactions run simultaneously,
the stoichiometric coefficients are stored in a matrix N, called
stoichiometric matrix (each reaction is represented in a column):

N � n1 n2 /( ) (4)

For l compounds and q reactions, the dimension of N is l × q1.
Example 1

In this example, the notation for a chemical reaction is applied
for a single reaction. A reaction equation reads (γA � −2,
γB � 1, γC � 2):

2A#
r
1B + 2C (5)

and with the molecular weights wA � 30g/mol, wB � 20g/mol, and
wC � 20g/mol, we see that Equation 3 is exactly fulfilled.

Variable r is used to describe the velocity of the reaction.
Important parameters that are introduced later on to describe
this term are enzyme specific parameters like the turnover
number kcat, substrate and product binding constants KS, KP,
and the equilibrium constant KEq. Furthermore, the reaction rate
also depends on the concentration of the reaction partners. In this
way, r could depend on a long list of concentrations and kinetic
paramters r(c1, c2,/k1, k2,/K1, K2/ ).

Mass conservation on the level of single reactions implies that
also for each compound in the system, an equation can be written
down that sums up all processes that either increase or decrease the
mass (or number of molecules) of the compound. Unfortunately, we
cannot write down directly an equation mj(t) that describes the
course of the mass of the compound j over time t; rather we can sum
up all mass flow over time that changes the mass either in a positive
or a negative way. The change of a compound over time is expressed
with dm/dt and the notation used in the engineering community _m
is used in the following. This results in a ordinary differential
equation (o.d.e.) for the mass _mj of the compound or _nj if we
consider the molar number of compound j. Typically, only
biochemical conversion due to reactions is considered that

includes uptake from the environment, excretion into the
environment, or conversion into another compounds in the
environment or inside the cell. Although diffusion is important
in larger cells, it is not considered here.

The change of the mol number n – that is proportional to its
mass m – of a compound is given by:

_nj � ∑
i

γji ri mX; (6)

That is, the reaction velocity ri is weighted with stoichiometric
coefficients γji and is multiplied with the total biomass mX. Note,
that the sum is taken of all reactions with index i for component with
index j (therefore, the stoichiometric coefficients always have two
indexes). This is necessary, since, typically, a reaction velocity ri is
given as a specific rate, that is, based on the total biomass with unit
[mol/gDWh]. In principle, we are done, and we could continue with
the analysis of systems with a given number of reactions and
compounds. However, in the current form on the left hand side,
the change of numbers per time unit is given while on the right side
reaction velocities appears that might depend on the concentration c
of the compounds ri � ri(c1, c2,/ ). Therefore, a further step is
needed here: To convert the left hand side, intracellular
concentrations are defined by cj � nj/mX with unit [mol/gDW],
that is, based on the total biomass. Starting from n � c ·mX and
using the product rule for the derivative for _n � _cmX + _mXc, the final
equation reads:

_cj � ∑
i

γjiri −
c _mX

mX
� ∑

i

γjiri − μcj (7)

with the specific growth rate μ that appears as dilution term which
can be understood as follows: Assume that all rates that synthesize or
degrade the compound are zero, the concentration of the compound
will not stay constant but will go to zero due to cell growth (in every
cell devision, the biomass is doubled). Equation 7 can be written for
all compounds in the cell taking into account all reactions stored in
the stoichiometric matrix N. In this way, all stoichiometric
coefficients for a single metabolite appear in the respective row
of matrix N.

ċ � Nr c( ) − μ c (8)

Based on this fundamental equation, model analysis can be
started. A standard tool here is the determination of all fluxes in a
given metabolic network. Flux analysis focuses on balanced states,
that is, it is assumed that all processes result in a quasi steady-state of
the involved compounds. Furthermore, taking into account that in
the upper equation the last summand has numeric values of different
orders of magnitude, the standard equation for flux
analysis simplifies:

0 � Nr − μ c 0
ri ≫ μc

0 � Nr (9)

Please note, that the dependencies of ri on the concentration
vector c is omitted here. In this way, the reaction rates ri are the
unknowns of the equation system. Since the number of reactions
rates (the column of the matrixN) is usually higher than the number
of metabolites (the rows of the matrix N), the set of possible
solutions of Equation 9 is infinite, and, usually is expressed in
form of the null space K of N (null space vectors are orthogonal

1 Please note, that symbol n is also used for the molar number of

a component.
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to each row, and therefore fulfill Equation 9 (see Supplementary
Appendix). Since all linear combinations of null space vectors also
represent solutions, some solutions are characterized by the
following property: it is not possible to omit one of the reactions
with a nonzero flux while for the remaining reactions, a different
solution of Equation 9 can be found, or in other words, the solution
cannot be decomposed. These special solutions are called elementary
flux modes.

Example 2
For the bacterium Escherichia coli, the uptake rate for glucose in

a minimal medium is estimated to be 6mmol/gDWh for a growth
rate of μ � 0, 5 1/h. High values for intracellular concentrations for
metabolites in central pathways are reported to be
10mM � 0, 03mmol/gDW2, and μ · c ≈ 0, 015mmol/gDWh. The
dilution term is a factor 400 smaller than the uptake rate and it is
justified to neglect it in this case.

Equation 9 will be the starting point for the analysis of our first
network. One can assume that not all of the rates ri are unknown;
typically good measurable rates are the carbon source, oxygen, CO2,
and nitrogen uptake. This allows us to split the rate vector into
unknown rates (index u) and known rates (index k):

0 � Nr � Nur u +Nkr k (10)
and the number of unknowns is reduced. In general the number of
rows corresponds to the number l of compounds and the dimension
of matrix N is l × q with q reactions.

Formally, we are looking for a vector r or r u that solves the
Equation 10; this solution is called a flux distribution or a flux
map. The number of solutions strongly depends on structural
properties of matrix N: in the cases considered here (for cellular
networks, l≪ q is valid), there are a infinite number of solutions3.
Therefore, to find a physiological meaningful solution, one solution
is selected that fulfils additional properties. One possibility is to
choose a solution that maximizes or minimizes an objective
function. Objective functions are chosen in such a way that
physiological criteria are met, for example, bacterial systems tend
to generate ATP as much as possible, grow as fast as possible or
behave in a economic positive way in conditions with substrate
surplus or scarcity (Schuetz et al., 2007)4. Mathematically, in this
way, an optimization program is defined:

maxf orminf( ): c T r � g1r1 + g2r2 +/gnrn
s.t.

Nur u � −Nkr k

ri,min ≤ ru,i ≤ ri,max

(11)

with entries gi that select a single rate or combinations of rates to be
extremal, and two “subject to” equations: constraints from the mass
balance and boundaries for the fluxes.

2.2 Flux models without drain into biomass

On the first level, a simple network is considered, and the basic
procedure to determine the fluxmaps is introduced. On a later stage,
biomass synthesis will be considered. For the following examples,
the stoichiometric matrixN reads (the external components are not
considered, therefore, there are only four rows and seven columns):

N �
1 −2 0 0 0 0 −2
0 1 −2 1 0 0 0
0 2 0 −1 −2 0 0
0 0 1 0 1 −1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

and is illustrated in Figure 1.
Rates are numbered from r0 (input flux) to ri, i � 1, 6. In this

network, the number of reactions exceeds the number of
components, and one can see that the rank (see Supplementary
Appendix) ofN is r � 4 and that the dimension of the null space (or
kernel) of the matrix is k � 3. For the example, already a number of
options are given, to select one flux distribution as optimal. In all
cases, the input flux is fixed (r0 � 1mol/gDWh).

The calculation of flux distributions is shown for a number of
different settings in Example 3. First, two different objective
functions are applied and the different flux maps are compared
Example 3a,b. For a selected objective function in Example 3c,it
turns out, that some fluxes reach its maximal value. A closer
inspection of the flux map reveals that thermodynamic laws are
violated. After introducing the basic equations for a thermodynamic
analysis for a single reaction and for biochemical reaction network,
Example 3c is considered again and is now solved taking into
account the presented equations.

Example 3
3a. Rate r5 is selected to be maximized. 3b. Sum of all fluxes is

minimized. 3c. Rate r3 is maximized. Optimal solutions for seven
different settings are shown in Figure 2. The flux maps differ
significantly; in case 3a, all of the incoming flux into compound
A could be converted intoDex. In case 3b, we note, that minimizing
the sum of all fluxes, results in only two fluxes that were active (r5,6)
while all other fluxes are zero. From all possible elementary flux

FIGURE 1
Network structure with input rate r0 and six unknown fluxes;
reactions r1,2,3,4 are internal one; reactions r2,3,4 build a cycle.
Reactions r5,6 describe the exchange with the environment.

2 Conversion between both number can be done with the cellular density

ρ � 330g/l, see (Kremling, 2021).

3 For basic properties of equation systems, we refer to the

Supplementary Appendix.

4 In the cited publication, 11 objective functions are analysed for E. coli

under different environmental conditions. However, in completely

different settings or when considering growth of different species in

mixed cultures, it might be challenging to find a suitable

objective function.
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modes for this system (shown in the Supplementary Appendix), the
calculated flux distribution has overall the minimal sum.

For 3c we note that–independent from the input flux–the
objective always shows the same value. This value corresponds to
the upper limit that was set by the boundaries. Boundaries limit the
solution space and are based on (experts) knowledge on the system;
they could be positive or negative, depending on the problem
formulation. Since the direction of the fluxes are not known
before in general, positive and negative values are used. How can
we interpret this result? A closer and detailed look in this case reveals
that not only flux r3 shows a special behaviour but also fluxes r2 and
r4. Both change their values according to match Equation 10. This
means that the fluxes are running in a cycle, represented by the three
rates shown in Figure 1.

2.2.1 Thermodynamics
To solve the problem mentioned in the last example,

thermodynamic considerations come into play. For reaction
systems, the change of the free Gibbs energy ΔG is of most
importance here. The free Gibbs energy can be formulated in
two ways; in the first case, it depends on the chemical potential
μj of the compounds, in the second case, the concentrations of the
compounds cj are directly used and replace the chemical potential
(for simplicity, letter c is omitted and a capital letter for the
concentration of the compound is used instead). For a single
reaction we get with a value ΔG0′

i under standard conditions
(pH = 7, T = 298 K):

ΔGi � ΔG0′
i + RT ln

∏Pγp

∏Sγs
(13)

with index p is used for the products of the reaction (written on the
right side of the reaction equation), index s is used for the substrates
(written on the left side of the reaction equation), and R is the gas
constant. Numerical values for ΔG are as follows:

• ΔG< 0 in case the reaction is running in given direction from
substrates to products, that is, reaction rate ri > 0.

• ΔG � 0 for reactions that are in equilibrium, that is, the net
reaction rate (difference between forward and backward
reaction) is zero. For this case, a relationship between ΔG0′

i

and the equilibrium constant Keq of the reaction can
be obtained:

0 � ΔG0′
i + RT ln

∏P
γp
Eq∏ S
γs
Eq

0 ΔG0′
i � RT ln

1
Keq

. (14)

This important equation relates the equilibrium constant of a
reaction directly to the standard value of the Gibbs free energy.

• ΔG> 0 in case the reaction is running in the reversed direction
from products to substrates, that is, reaction rate ri < 0.

Example 4
For a reaction with one substrate and two products (cf.

Example 1):

2A#
r
1B + 2C (15)

The forward and the backward reaction are given by rf � k+A2,
rb � k−BC2, if simple kinetic rate laws (mass action) are applied.
Here the reaction rate is proportional to the involved metabolites.
Setting forward rate and backward rate equal, one get:

k+A2 � k−BC2 0 Keq � k+

k−
� BEqCEq

2

AEq
2 (16)

In this case, Equation 13 reads:

ΔG � 0 � ΔG0′ + RT ln
BEqCEq

2

AEq
2 (17)

and one obtains finally by combining the last two equations:

0 � ΔG0′ + RT lnKEq 0 ΔG0′ � RT ln
1
Keq

(18)

If KEq > 1, that is, k+ > k−, the standard value is negative (the log
is smaller than zero for values smaller than 1), indicating that under

FIGURE 2
Left: Bar plot to compare a single flux objective (r5) with sum of fluxes objective function (case 3a/b). As input flux, one unit is used. Right: Value of
the objective function if r3 is the objective function (case 3c) for different values of the input flux (five different input fluxes are used).
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standard conditions, the reaction would take place from left to right.
Reaction kinetics could be more sophisticated in case that enzymes
act as catalysts (see below).

Taking advantage of the logarithmic function, the exponents can
be written before the ln symbol; furthermore, using matrix
operations, Equation 13 can be re-written in a scaled
nomenclature for all internal reactions of the network using the
stoichiometric matrixN′ and vector x representing the logarithmic
values of the concentrations xj � ln cj:

ΔG * � ΔG
RT

� ΔG0′

RT
+N′T x (19)

with ΔG * is the vector with entries of the scaled free Gibbs energies
of the reactions (that is divided by the term RT). Only internal
reactions are taken into account, since information on external
concentrations of metabolites are not considered here.

From what we have seen before, a simple relationship between
fluxs ri and ΔGi values is obtained:

ΔGp
i ri < 0, (20)

That is, the product of the free Gibbs energy and the respective
flux is always negative. For more than one reaction, the following
notation is used:

ΔG * • r < 0 . (21)

2.2.2 Thermodynamics in networks
At this point, we have to note, that the values of ΔG 0′ and

therefore also the equilibrium constants are not independent in a
network. If we consider again the cycle with reactions r2, r3, r4 we
see two ways from C toD; the first one directly via r4 and the second
via r3 and r2 (Figure 1). In other words, one can think on water that
falls down a fall on two ways, however, at the bottom the energy
status for both ways is equal and it is not possible to bring back the
water on top without bringing in energy.

In the last section, we have seen that fluxes are coupled with
metabolic concentrations via the Gibbs free energy. Considering
large networks, this would require additional state variables
(either the Gibbs free energy ΔGi for reaction i, the chemical
potential μj for component j, or the concentration cj itself) to
obtain a valid flux distribution. In the following different ideas
are introduced to guarantee that the fluxes are not running in a
cycle. The meaning of cycle is strictly limited here to
thermodynamic considerations; other types of cycles such as
futile cycles or control loops which are thermodynamically
feasible are not meant.

As a starting point, an equilibrium is considered, that is, the net
rate of all fluxes is zero as well as the three ΔG values. From above,
the following set of equations is obtained (the equations are valid
only in equilibrium, here we omit index Eq):

ΔG2* � 00ΔG*0′
2 + ln

cD
c2B
0

cD
c2B

� e−ΔG
*0′
2

ΔG3* � 00ΔG*0′
3 + ln

cB
cC
0

cB
cC

� e−ΔG
*0′
3

ΔG4* � 00ΔG*0′
4 + ln

cD
c2C
0

cD
c2C

� e−ΔG
*0′
4

(22)

and one can see by close inspection:

−ΔG*0′
2 − 2ΔG*0′

3 � −ΔG*0′
4 0 − ΔG*0′

2 − 2ΔG*0′
3 + ΔG*0′

4 � 0 (23)

The equation can be re-written with the equilibrium constants of
the reactions (Equation 18):

KEq2K
2
Eq3 � KEq4 (24)

Can we obtain these equations also in a more systematic way?
The cycle given by the three reactions can be obtained by
the following equation; if only internal reactions are
considered, that is, there is no exchange of mass with the
environment, then, the null space K of matrix N′ represents
the reactions of the cycles in the network. In our case, the
matrix of internal reaction reads:

N′ �
−2 0 0 0
1 −2 1 0
2 0 −1 −2
0 1 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 0 N′K � 0 (25)

and one obtains for the null space:

K �
0
−1
−2
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (26)

Finally, we see that

KTΔG *0′ � 0 (27)
is exactly Equation 23.

The last equation is not only true for the equilibrium. The Gibbs
free energy can be written as a function of the stoichiometric matrix
N′ and the vector of the chemical potential μ :

ΔG T � μ TN′ (28)

Starting from the observation from above that the null space
vector K of N′ contains all cycles in the network, the following
relationship is valid:

N′ r � 0 (29)

A multiplication of the last equation from the left side with the
vector μ gives:

μ TN′ r � 0 0 ΔG T r′ � 0 0 ΔG TK � 0 (30)

That is, the values for ΔG must fulfill additional constraints; a
multiplication with all vectors in the null spaceK ofN′must be zero.

Example 5
Considering the loop in the network above, one gets:

KT ΔG � −ΔG2 − 2ΔG3 + ΔG4 � 0 (31)

Now, assume that in the solution flux r4 is zero, that is ΔG4 � 0;
as a result, we get the constraint from the last equation:

ΔG2 � −2ΔG3 (32)
In this case, a solution with a flux from C to B via reaction r3 and

r2 with positive values is forbidden; if there is no flux between C and
D due to a reaction equilibrium, this is also true for every different
way from C to D.
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To incorporate these conditions in the linear framework used so
far, we take advantage of a method described by Schellenberger et al.
(2011). The methods uses integer variables zi for each reaction/
Gibbs energy with values only zi � 0 or zi � 1. One difficulty given
by the equations above is, that a vector with zero entries for the ΔGi

values is always a solution to Equation 30 which is, however,
undesired. To overcome this, the following equation system
excludes value equal zero for the ΔG vector:

−Mi 1 − zi( )≤ rj ≤Mizi
−Mizi + ϵi 1 − zj( )≤ ΔGi ≤ − ϵizi +Mi 1 − zi( ) (33)

with ϵi is a small number whileMi is a sufficiently large number. For
the two cases (i) zi � 0 we obtain:

−Mi ≤ rj ≤ 0
ϵi ≤ ΔGi ≤Mi

(34)

That is, for negative flux rates, the corresponding Gibbs energy is
positive. In case (ii) zi � 1 we obtain:

0≤ rj ≤ Mi

−Mi ≤ ΔGi ≤ − ϵizi
(35)

That is, for positive flux rates, the corresponding Gibbs energy is
negative. This set of equation can now be written in matrix form in a
very compact way. The full vector of variables that must be solved,
now is as follows: [r , z ,ΔG ] and the equation system with equality
and inequality condition reads (sub-matrices Î, I and 0, as well asM,
and ϵ have appropriate dimensions):

−Î M 0
Î −M 0
0 − M + ϵ( ) −I
0 M + ϵ( ) I

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
r
z
ΔG

⎛⎜⎝ ⎞⎟⎠≤

M
0
−ϵ
M

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

N 0 0
0 0 KT( ) r

z
ΔG

⎛⎜⎝ ⎞⎟⎠ � 0
0

( ) (36)

Note that matrix Î is used to make clear that only internal
reactions of the network are considered for the thermodynamic
analysis, that is, all external rates have entry zero in Î. MatrixK is the
null space of the internal reactions as used above. Note, that cases
with zero fluxes in the cycles might lead to inconsistencies because
the corresponding ΔG value cannot be zero. However, in the
Supplementary Appendix SA method is described that can be
used for a verification, if a given flux map with zero entries in
the internal flux vector is feasible.

A drawback of the procedure is, that additional variables
including integer variables are needed that generate challenges
while solving the equation system. An elegant way, described in
(Beard et al., 2004), to avoid that fluxes are running in cycles is
to formulate a non-linear equation based only on the sign
of the fluxes (vector sf ) and the sign of the cycles (vector sc )
for N′:

|s T
c s f|< s T

c s c (37)

Simply speaking, if a flux solution runs in a cycle, the left and the
right hand side are equal; if this is not the case, then the left hand side
is always smaller than the right hand side. Please note, however, that
the strong constraint given in Equation 30 are not valid here; if there
is potential between two components, a flux might be zero. In our

case, for the sign vector we get s Tc s c � 3. In case that the flux
distribution follows not the cycle, for example, s f � [0; 1; 1; 1], we
get |s Tc s f| � 1. In the normal case that the null space is high
dimensional, the given equation should be applied to all cycles in
the network. However, to determine the complete set of cycles is
difficult, since linear combinations of null space vectors are also in
the null space.

A further alternative, including the concentration of the
metabolites and replacing the Gibbs energy by equations give
above, allows us to find a further set of equations that could be
used: Above, the condition ΔGiri (Equation 21) was given that
relates the sign of the Gibbs energy to the sign of the rate. Now this is
applied to the cycle in the network.We restrict the analysis to a given
flux vector, however, we only use the sign of the vector; sign(r′). The
set of equation read:

ΔG *0′ +N′T ln x( ) • sign r′( )< 0 (38)

Example 6
The set of equation is applied for the cycle in the network, and let

us assume that r2 and r3 are positive and r4 is negative, that is, fluxes
are running in the cycle. Equation system (Equation 22) can be
copied with slight modifications (we directly use the equilibrium
constants and replace the equal signs with < and > , respectively):

ΔG2* < 0 0 ln
cD

c2BKEq2
< 1 0 cD < c2BKEq2

ΔG3* < 0 0 ln
cB

cCKEq3
< 1 0 cB < cCKEq3

ΔG4* > 0 0 ln
cD

c2CKEq4
> 1 0 cD > c2CKEq4

(39)

From the first two lines, it follows:

cD < c2BKEq2 < cCKEq3( )2KEq2 (40)

with the condition for the equilibrium constants KEq2K2
Eq3 � KEq4,

the last line from above reads:

cD > c2CKEq4 � c2CK
2
Eq3KEq2 (41)

That is a contradiction to the first two lines; the flux cannot run
in the cycle. The presented equations are sufficient for a
loopless network.

Example 3c (re-opened)
For the example, an extended optimization problem is

formulated taking the concentrations of the compounds into
consideration. The general form now reads:

maxf: c T r � c1r1 + c2r2 +/cnrn

s.t.

Nur u � −Nbr b

ΔG *0′ +N′T x[ ] • sign r′( )< 0

ri,min ≤ ri ≤ ri,max

xj,min ≤ xj ≤xj,max

(42)

with r′ takes into account only internal reaction rates and no
exchange reactions. As above, algorithms used in the study
require upper and lower bounds that are given in the last two
lines. Example 3c is solved with equation system (Equation 42), and
we get a different flux map fulfilling all constraints now (Figure 3).
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However, there is a broad range for the values for the
concentrations fulfilling the given constraints. In analogy of
selection one extraordinary flux for the optimization procedure,
we proceed the same way and select from all possible values for a set
of concentrations one which fulfills additional specifications. As
proposed in literature, for a given flux map, all (absolute) ΔG values
for the internal reactions are determined (since the direction of a
reaction is open, we are interested only in the quantity of ΔG), and
one tries to maximize the minimal value of these (Max-min driving
force (MDF) design principle (Noor et al., 2014)). Formally, a
different optimization problem is formulated based on given flux
map r′ for the internal reactions only:

maxf: min |ΔGi|
s.t.

ΔG *0′ +N′T x[ ] • sign r′( ) < 0
xj,min ≤ xj ≤ xj,max

(43)

Example 3c (continued)
Figure 3 left shows the updated and thermodynamically valid

flux distribution. In the middle, shown in red, are the values for the

concentration of the compounds without and with the MDF design
principle. Right: The minimal value for the negative ΔG is higher in
the MDF case. An interesting observation is that, although ΔG4 is
higher than the other values, the corresponding flux r4 is nearly zero.
We note that, so far, fluxes and concentrations are only weekly
coupled. Later on, this problem can be resolved by taking into
account that fluxes are proportional to enzyme concentrations, and
complete enzyme kinetics can be exploited.

To complete the example, we perform a multi objective
approach to maximize flux r5, and minimize the sum of fluxes.
The results of such a calculation can be plotted as a Pareto front. The
values on the front are characterized by the following property: when
we move along the front, only one of the two criteria is improved
while the second one is impaired. For point that are not on the front,
we can improve both criteria. The arrows in Figure 4 left indicates
the direction for the improvement in both directions; crossing the
front is not possible. Also, the ΔG values for the four internal
reactions show a linear behavior.

Lessons learned from Example 3: To determine valid flux
distributions for cellular reaction networks, mass conservation as

FIGURE 3
Left: Flux map with maximization of reaction r3 under thermodynamic constraints (since the flux distribution in the Max-min case is given, the flux
maps are the same). Middle: Bar plot for the concentrations of the compounds in the re-opened example 3c. Right: Bar plot for a comparison ofΔG values
without and with the Max-min driving force approach. Blue bars for solutions of Equation 42, orange bars for solutions of Equation 43.

FIGURE 4
Left: Pareto front for maximizing flux r5 and minimizing the sum of fluxes. With red symbols, the individual optima are shown (left minimum sum of
fluxes, and right maximum r5). The arrow points to the direction towards the Pareto front. All possible values are below the line that connects the two red
symbols. Right: ΔG values for the four internal reactions over the minimum sum of fluxes.
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well as thermodynamic principles must be considered. Depending
on the choice of the objective function, flux maps may differ. The
selection of the objective function depend on the experimental set-
up. For growth of bacteria in surplus carbohydrate the maximization
of the growth rate is an appropriate choice. However, in case that
substrates are limited or for applications in metabolic engineering,
different objective functions are more suitable.

2.3 Flux models with drain into biomass

In this section, the network is extended to take into account that
metabolites in the network often serve as precursors for biomass
synthesis. Two different variants will be considered as shown in
Figure 5; first, the standard notation used in FBA is introduced, then,
a modeling approach with several macromolecular units such as
protein, RNA and DNA is considered.

A standard approach in FBA adds a single reaction, also called
a pseudo-reaction, representing 1 g of biomass. In this single
reaction, the complete metabolism for biomass assembly is
summarized. For the example network from above, we use on a
gram basis:

0.35 g( )A + 0.15 g( )B + 0.3 g( )C + 0.2 g( )D→ 1 g( )biomass (44)

The equation is converted with the molecular weight of the
compounds and the stoichiometric matrix N has to extended with
an additional column. On a molar basis, the equation reads in the
FBA notation:

2.3310−3A + 1.510−3B + 310−3C + 10−3D→μ (45)

In FBA, the right side in the last equation remains empty, that is,
biomass is not explicitly taken into account as compound in the
stoichiometric matrix and therefore, no additional row is necessary.
This can also be seen in Figure 5 (right side); the reaction arrow
points out of the system.

Aside note:
It is worth to have a closer look on the last equation since we

changed the units from r given typically in [mmol/gDWh] to the
growth rate μ, given in [1/h]. From our general approach for mass
balance equations, we derived Equation 8; applying this to a
compound (concentration is cX) that is only synthesized in one
reaction rsyn but not degraded (for examples macromolecules

(with unit [mmol/gDW]) or a representative for the overall
biomass), one obtains:

0 � rsyn − μcX 0 rsyn � μcX (46)

Normally, as in the examples given in the beginning, the
stoichiometric coefficients are dimensionless (essentially they are
mol/mol). For the special case of the biomass reaction, we write
for example:

|γA|A +/ →
rsyn�μcX

biomass( ) (47)
but we do not consider compound biomass as an additional state
variable. The o.d.e. for compound A

_cA � γArsyn/ (48)

is used and is now transformed by excluding the biomass
concentration cX from the expression of rsyn and writing it
directly to the stoichiometric coefficient:

|γA| · cXA +/→μ biomass( ) → _cA � γA · cX[ ]μ/ (49)

The last equation is re-written:

|γA′ |A +/→μ biomass( ) → _cA � γA′ μ/ (50)

We note a change of units in the stoichiometric coefficients; γA is
mol/mol that is now changed for γA′ in
mol/mol ·mol/gDW � mol/gDW. If, like in our case, the
reaction equation describes the synthesis of the overall biomass,
the rate of synthesis can simply be replaced by the growth rate μ, and
the stoichiometric coefficients with unit [mol/gDW] represent with
biomass scaled values.

In Example 7 the drain of metabolites to generate biomass is
considered and as in the previous case, two different objective
functions are compared. In addition, constraints by the available
amount of enzyme for the network is studied, resulting in four
different scenarios.

Example 7
The network considered so far is extended by a single biomass

reaction (Equation 44). Simulations results are shown in Figure 6
with two cases: (i) maximization of growth rate, and (ii)
minimization of the sum of all fluxes.

For the next level, a further extension of the stoichiometric/
thermodynamic approach is introduced. It becomes obvious

FIGURE 5
Left: Standard model representation in FBA with a single biomass flux as additional exchange reaction. Right: Model with several macromolecular
units representing the major mass of a cell. Incoming and outgoing metabolic fluxes are the same as before and are the same in both approaches
shown here.
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during the last decade, that the standard approach has a strong
disadvantage; the biomass constituents are not considered, and
therefore, any feedback from the biomass parts back to the metabolic
network is missing. This is true especially for proteins like enzymes
that are involved in any metabolic processes. Measurement of the
proteome now offers several possibilities to extend the flux analysis
approach by taking into account not only different protein classes or
sectors, but also information on individual enzymes. In a step-by-step
approach we provide, and also combine, several methods from
literature. The intention is to show that protein allocation has a
strong impact on flux distributions, which has implications for the
understanding of cellular physiology and but also is important for
applications in Metabolic Engineering where one is interested to
redirect fluxes to desired products.

Considering individual enzymes, from kinetics, it is
convenient to split the mathematical term into two parts in a
first step. Such rate laws depend on the concentration of all
involved substrates S, products P, and the overall amount of
enzyme E0 in the reaction assay. If the enzyme is under control by
inhibition or activation, also the concentration of the effectors
come into play. The kinetics can be written in the following form
with a set of parameter p :

r � f′ S, P, E0, p( ) � kcatE0f S, P, p( ) (51)

From here we see, that r< kcatE0 because for the term f, the
following relation holds: 0≤f≤ 1 for a irreversibel reaction.
Moreover, it is observed that the total amount of protein during
different conditions does not change too much, indicating that the
sum over all enzymes ∑E0i could (i) be constraint, or could (ii) be
subject of optimization, since a minimal sum of metabolic enzyme
could allow the cell to spend more proteins in ribosomes to
accelerate growth. Both ideas ((i) and (ii)) are described in
literature as GECKO (Sanchez et al., 2017) (we used a slightly
modified version here) or ECM [enzyme cost minimization
(Noor et al., 2016)].

Taking into account additional variable for the single
enzyme Ei (for simplicity we omit the zero for the total

amount of this enzyme), Equation system (Equation 11) is
complemented. With the same objective function as before,
one gets for case (i):

maxf orminf( ): c T r � c1r1 + c2r2 +/cnrn

s.t.

Nur u � −Nkr k

Iu,u| ru | −KcE i < 0

∑Ei <E
0≤Ei ≤Ei,max

ri,min ≤ ri ≤ ri,max

(52)

withKc is a diagonal matrix with values kcat, corresponding to the
unknown rates ru,i; E is a parameter that limits the total amount
of enzyme that is available for the network. Since the direction of
the fluxes is open we must use the absolute values of
the rates here.

In case (ii) a different objective function is used; namely, the sum
of all enzymes in the network is minimized. Here, the equation system
reads with weighting factors, for example the molecular weight:

minf: ∑wiEi � w1E1 + w2E2 +/wnEn

s.t.

Nur u � −Nkr k

Iu,u| ru | −KcE i < 0

∑Ei <E
0≤Ei ≤Ei,max

ri,min ≤ ri ≤ ri,max

(53)

In case that only positive fluxes are considered (this can be
achieved by splitting reversible fluxes into two positive ones), the
two inequalities can be re-written in matrix notation with matrices/
vectors with apparent size:

I −Kc

0 1
( )< 0

E
( ) (54)

FIGURE 6
Left: Comparison of simulation results for four different cases; standard FBA (two objectives: maximizing growth rate and minimizing sum of fluxes)
and enzyme constraint (two objectives: maximizing growth rate and minimizing sum of enzymes). The values for the incoming fluxes and for the growth
rate are equal for all cases rin � 10 mmol/gDWh,μ � 1.1 1/h. Right: Sum of all fluxes for the four different cases.
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Example 8
For the given network, a rough estimation of the kcat can be

done. From published proteome data, a mean value of E � 2000
transporter molecules per cell is obtained. For a calculation with a
standard uptake rate in the range of r � 6 mmol/gDWh, the
number of molecules per cell must be transformed into the unit
mol/gDW. Here, we need Avogadro’s number Av and an average
cell mass mc (110−12gDW):

cE � E

Avmc
� 3, 310−3 μmol/gDW (55)

and one obtains for the kcat:

kcat � r

cE
� 1, 8106 1/h (56)

Example 7 (continued)
Results of the different simulation studies introduced are shown in

Figure 6. For a fair comparison, the growth rate was fixed in case of
minimizing the sum of fluxes or minimizing the sum of enzymes to the
same value that was obtained while maximizing the growth rate. The
weights wj from above are taken as one. As can be seen, depending on
the objective function, the flux distribution changes for nearly all rates
(r5 and r6 were set before and do also not change). The right plot in the
Figure shows the sum of all fluxes. As expected the second objective
function results in lower values, but the difference is only about ≈16%
with respect to the first objective.

Lessons learned from Example 7: The choice of the objective
function and additional constraints show a strong impact on the flux
distribution. However, while some fluxes does not change (for
example r1, r5, and r6) other fluxes show drastic changes.

2.4 Flux models with several
macromolecular units

The approaches so far still have a couple of limitations. The results are
scalable since, typically, the main incoming fluxes must be given, and
cannot get as a result from the optimization procedure; second, the
biomass equation is an approximation, and does not account for different
needs of the cell for growth and maintenance. In the next step, we omit
the single biomass reaction and replace it withmacromolecular units that
are not subject to degradation (see Figure 5 right).

From the basic mass balance Equation 8, a steady state can only
be reached, if the dilution term is considered. Also, to keep our mass
conservative approach alive, the growth rate must be the result of
incoming mass flow minus outgoing mass flow. Fortunately, from
the basic equation, a simple, but powerful relationship could be
derived for the specific growth rate (Doan et al., 2022):

μ � wNr (57)

The multiplication of N from the left side with the molecular
masses always results in entries 0 when the respective reaction is
completely mass conservative. All entries that are not zero
contribute either positively or negatively to the specific growth
rate μ. The equation can directly plugged in our standard
equation, and one obtains an extended steady state condition:

I − w T c( )Nr � MNr � 0 (58)

In comparison with standard FBA, an additional matrixM comes
into play that takes into account the concentration of all compounds
and the macromolecular units. Fortunately, the system is still linear (if
thermodynamics is not considered) in the fluxes and can be solved
with standard tools. In addition to the flux distribution that were
obtained so far, additional solutions appear that describe fluxes into
the biomass. However, a close inspection of the equation reveals that
the composition of the cell must be known (represented in vector c ).
Rough values for the macromolecular composition can be found in
literature, but concentrations values for small molecules are difficult to
obtain. However, for first calculations, we can set these values to zero.

In Example 9, a simple model structure is used to analyze the
influence of the biomass macromolecular structure. It is assumed that
these elements are not actively degraded, and therefore only diluted by
biomass growth. This allows model reduction, and, as shown in the
extended case, also allows to study the influence of feedback
structures, that is, the macromolecules influence their own synthesis.

Example 9
A simple scheme with one uptake reaction, one reaction that

excreeds the metabolite directly back into the medium (this is based
on experimental observations and is termed “overflow”5), and two
cellular unitsB1 andB2 is considered.MetaboliteA, a catabolic product,
represents a compound from central metabolism or an amino acid that
is needed to build macromolecular units like protein, lipids, or DNA.

The stoichiometric matrixN for the example shown in Figure 7,
left, reads as follows, taking into account that a higher number of
monomers are needed for 1 mol of a macromolecular unit (that is, γ2
and γ3 have large values):

N �
1 −1 −γ2 −γ3
0 0 1 0
0 0 0 1

⎛⎜⎝ ⎞⎟⎠; (59)

with the first column represents the input flux as before. The
molecular weights are in this case wA, wB1 and wB2. However,
the quantities are not independent; for example, we get for the
vector with the molecular weights:

w �
wA

γ2wA

γ3wA

⎛⎜⎝ ⎞⎟⎠ (60)

While the masses of the compounds only fulfill the conservation
condition (to sum up to 1g biomass). A closer look at the o.d.e’s for
the biomass components reveals a further interesting property that
can be used for the numerical solution. For macromolecular units B1

and B2, the respective equations read:

_B1 � r2 − μB1
_B2 � r3 − μB2

(61)

5 The concept of overflow addresses the excretion of metabolites from

central metabolism for example during high growth rates. It is observed for

E. coli that the uptake of carbohydrates and oxygen consumption are not

perfectly balanced, that is, for high rates of glucose uptake, the cell cannot

use the carbon for growth due to the low availability of enzymes in the

respiration chain. The surplus carbohydrates are converted for example

into acetate that is excreted.
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One gets for the steady state:

r2 � μB1 →
r2
B1

� μ

r3 � μB2 →
r3
B2

� μ
(62)

The nice thing with the last equations is, that scaling of the rate
of synthesis with the molecular mass fractions always result in the
specific growth rate, that is, the rates of synthesis are not
independent (here: r3 � r2

B2
B1
). Vice versa, knowing the specific

growth rate, that in the example can easily be determined:

μ � wA r0 − r1( ) (63)

The rates of synthesis for the macromolecular units can be
obtained, and does not require the solving of an additional equation
system. For this model, the null spaceK can be used to determine all
solutions of the system, and for the example, we obtain for the
special case that the mass fraction of compound A is
negligible fA � 0:

K �
1 γ3/ 1 − fB1( )
1 0
0 fB1γ3( )/ γ2 1 − fB1( )( )
0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (64)

The first null space vector shows the way of the substrate
through the network into the excreted overflow product (column
1) while the second vector represents the growth mode of the
network (column 2), that is, the way from the substrate into the
macromolecular units. A close inspection of the third element in the
second vectors reveals that the element can be rewritten as
k32 � B1/B2, that confirms the statement from above.

As indicated in Figure 7a reducedmodel can be obtained with only
one single flux into the structured biomass (2 fractions). In the reduced
model, the biomass is structured in two parts with only one rate.

Aside note:
If the stoichiometricN is re-written for the two biomass reactions

in such a way that the mass composition is directly included, then the
null space directly shows that all rates of biomass (ormacromolecular)
synthesis are equal to one for the growthmode and for the assumption
fA � 0. For the example above, N then reads:

N �
1 − 1 − fB1/wA − 1 − fB1( )/wA)

0 0fB1/wB10
000 1 − fB1( )/wB2)

⎛⎜⎜⎝ ⎞⎟⎟⎠ (65)

and the product M ·N is:

MN �
1 −1 −fB1/wA − 1 − fB1( )/wA

−fB1/γ2 fB1/γ2 fB1/ γ2wA( ) 0
− 1 − fB1( )/γ3 1 − fB1( )/γ3 0 1 − fB1( )/ γ3wA( )⎛⎜⎜⎝ ⎞⎟⎟⎠

(66)
and the null space K is:

K �
1 1/wA

1 0
0 1
0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (67)

Example 9 (continued)
Here, the reduced model is considered and a feedback structure is

introduced as shown in Figure 8; both fractions of the biomass are needed
to sustain the incoming flux r1 (fractionB1) and drain to biomass flux r2
(fraction B2). Here, we note, that the allocation of both fractions play an
important role for the system. Depending on the incoming flux, the
biomass must be distributed in such a way that both rates can sustain
their fluxes. For a first simulation, the biomass composition is varied and
the concentration of metaboliteA is set to zero. Since the total biomass is
scaled to 1g, only one control variable (here fraction B1) is needed to
explore the complete solution space shown in Figure 8 right.

The equation system starts from the standard equation system
(Equation 58). Now, the rate vector (or parts of it) is replaced by a
simple kinetic expression r ~ Bj, that is in our case, r0 � k1B1, and
r2 � k2B2 (in this way, the system is still linear):

0 � I − wT c( )Nr � MN
k1 0 0
0 1 0
0 0 k2

⎛⎜⎝ ⎞⎟⎠ B1

r1
B2

⎛⎜⎝ ⎞⎟⎠; (68)

However, we must add the conservation equation, saying that
the sum of B1 and B2 is constant and represents the overall biomass
concentration B:

B � 1 0 1( ) B1

r1
B2

⎛⎜⎝ ⎞⎟⎠ (69)

and we optimize for the specific growth rate μ � wA(r0 − r1).
Figure 8 shows the network structure and the simulation

results. Since only only degree of freedom exists, the complete
(linear) solution space could be determined (incoming flux r0, r1,
and r2 as well as the specific growth rate in dependence on
fraction B1). However, the results are not intuitive. The

FIGURE 7
Left: Network with three unknown fluxes (r1 , r2 , r3) and twomacromolecular units. Right: Reducedmodel from the left side. Incoming and outgoing
metabolic fluxes are the same in both approaches shown here.
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optimal value for the growth rate is shown with a red square.
Smaller values than the optimal one for B1 (values on the left side)
result in a higher growth rate that could not be realized by the
incoming flux (note that r1 is negative). Higher values of B1

(values on the right side) lead to a lower growth rate because B1 is
too high and fraction B2, responsible for its own generation, is too
small. With decreasing rate r2, rate r1 must increase further to
reach a steady state.

FIGURE 8
Controlled network; in a feedback loop, the macromolecular units directly influence the fluxes in network. Unit B1 has a feedback effect on the
incoming transport fluxwhile unit B2 has a feedback effect on the rate of its own synthesis (red arrows). Right: Complete solution space as a function of B1

(all rates and specific growth rate) with optimal growth rate (red square) indicated directly in the plot.

FIGURE 9
Controlled network. Upper row: mimic of substrate limitation (course of the two sectors, course of the growth rate) over the substrate
concentration. Lower row: Mimic of heterologous protein production (course of the two sectors, course of the growth rate) over metabolic burden.
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In the next Figure 9, we show two simulation studies with this
simple model. First, we mimic a limitation of substrate in the
medium (two left plots). This is realized by changing parameter
k1 and the x-axis in this case represents the limiting substrate
concentration (arbitrary units). The plots on the right side show
a simulation study when we assume that not all B is available for B1

or B2. This case mimics for example, the synthesis of a
heterologous protein.

The examples already demonstrate a self contained model
system. In comparison to the previous models, substrate intake is
limited by the available amount on sector B1. Actually, increasing the
input flux is possible by shifting the resources to B1, however, of costs
of synthesis of biomass. The optimal growth rate is a compromise
between substrate uptake and biomass synthesis that, of course,
depends on the kinetic and stoichiometric parameters used. The
model also reproduces the behavior observed for protein sectors in
Escherichia coli in the two applications. Studies on proteome data for
different substrates and growth conditions reveal that the fraction for
carbohydrate transport and central pathways is decreasing with the
growth rate while the ribosomal fraction is increasing Schmidt et al.
(2016). For this case, one also could expect a different behavior of the
system with respect to resource allocation. The optimal solution
indicates that the loss of resources due to the additional protein
production is equally distributed to both fractions, however, a
different solution could be that one sector stays constant while
the load is given to only the second sector. One interesting
observation is, that in contrast to literature, the behavior of the
growth rate in the first application is not linear but shows a
hyperbolic outcome and approaches a threshold. This is
understandable since - although substrate uptake is linear and not
saturated–the resources can be distributed either to the incoming
uptake unit or to the synthesis unit.

The last set of examples introduces a new aspect in modeling
cellular systems, namely, the dependencies of the reaction rate from
the concentration of substrates, products and parameters. The
analysis start with the network from Example 3 and then extends

it with kinetics. The final case takes into account that the resources to
generate the biomass macromolecular structure is limited by the
proteins. In this way, a self contained cellular model is obtained.

Example 10a
In the next step, our example with 4 metabolites is considered

again and extended with three macromolecular units. In Figure 10
the structure of model variant is shown that is used for three
different cases.

In the first variant, the macromolecular units are fixed and the
stoichiometric matrix contains the drain from the metabolites into
the respective units. It is assumed that the sum of the mass fraction
of the metabolites (A, B, C andD) is 0, 1g/g that is 10% of the entire
mass. This variant is yet not self containing; therefore the input flux
must be fixed. Here, two objectives are considered: maximizing
growth rate andminimizing the sum of fluxes (by a given input flux).
Results are shown later on and are compared with the other cases
(see Figure 12).

2.5 Kinetics–the step to dynamic models

Now we go back to Equation 51 and fill the kinetics with “life”,
that is, we consider the dependencies of rates rj not only from
enzymes, but also from the concentration of reaction partners. In
literature, numerous kinetic expression can be found taking into
account the number of catalytic centers as well as the number of
substrates and/or products. The best known kinetics is the
Michaelis-Menten (MM) kinetics that reads:

MMkinetics r � kcatE
S

S + KM
(70)

with the substrate concentration S and the half saturation parameter
KM (also called Michaels-Menten constant). This kinetic describes
the irreversible conversion of one molecule of substrate S into one
molecule P. To be more flexible, for the following studies, a
reversible reaction is used here, that allow a general conversion

FIGURE 10
Overall structure of the model. The stoichiometric network is combined with the macromolecular unit modeling approach. For the model with
resource allocation, feedback control is realized by using part of B1 as enzymes for the metabolic part and B2 in charge to sustain B1 +∑ E and B2 itself;
unit B3 is inert. All reactions in the network are catalyzed by enzymes (red arrows) and enzyme kinetics are used as rate laws.
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of ni molecules of Si into a number nj molecules of products Pj

(Wortel et al., 2014):

r � kcatE

∏ Si/Ks( )ni 1 − ∏P
nj
j∏ S

ni
i KEq

( )
∏ 1 + si( )ni +∏ 1 + pj( )nj − 1

(71)

with the abbreviations s � S/Ks and p � PKp in the denominator;
Ks and Kp are the respective binding constants for substrate and
product. The equation can be structured into three parts: one
capacity term ηc indicating the maximal value of the velocity, a
saturation term ηs between zero and one, taking into account the
number and type of binding centers for substrate, product and
possible effectors (not considered here), and finally, a
thermodynamic term ηt that describes the capability of reaction
reversibility (Noor et al., 2013):

ηc � kcatE

ηs �
∏ Si/Ks( )ni∏ 1 + si( )ni +∏ 1 + pj( )nj − 1

ηt � 1 − ∏P
nj
j∏ Snii KEq

� 1 − eΔG*

(72)

As seen above for a simple kinetic, a relationship in case of a
reaction equilibrium could be obtained by setting r � ηt � 0. Here
we obtain:

1 − ∏P
nj
j∏ Snii KEq

� 0 (73)

and the equilibrium constant is obtained like before:

KEq �
∏P

nj
j∏ Snii

(74)

Please note, that in this framework, the value of ΔG* determines
the sign of the reaction (for example, if ΔG*< 0, the reaction rate r is
always positive).

Aside note:
In reversible enzyme kinetics, the equilibrium constant

Keq plays an important role and determines not only the

direction of the reaction, but also the Gibbs energy. The
reaction kinetics for a simple reversible reactions reads
for 1A → 1B:

r � kcatE
S/KS 1 − P

SKEq
( )

1 + s/Ks + PKp( (75)

We note that the kinetic parameters of substrate binding
(KS) and product binding (Kp) as well as the reactions
parameter for the forward and the backward reaction k+cat and
k−cat, all contribute to the overall equilibrium constant KEq; this
relationship is called the Haldane relationship and can
be written:

KEq � k+catKP

k−catKS
(76)

Keeping S and P constant and varying KEq in the order
of one magnitude, the Gibbs energy changes 5, 7 kJ/mol
(left plot in Figure 11, R � 8, 315 J/molK and T � 300 K).
This can be seen by a simple calculation; from the expression
for ΔG, the difference for two values of KEq with a factor of
10 is taken:

ΔG1 − ΔG2 � RT ln
P

SKEq1
− ln

P

SKEq2
( )

� RT ln
KEq2

KEq1
� 2, 5 kJ/mol ln 10 � 5, 75 kJ/mol

(77)
However, taking Equation 75 to determine the amount of

enzyme needed for varying product, a highly sensitive
behaviour is observed (right plot in Figure 11). Near the
equilibrium constant, the amount of enzyme needed to
maintain a flux of r � 1 mmol/gDW the amount of enzymes
raises very fast.

Furthermore, the above considerations on thermodynamic
properties in cycles are taken into account, that is, the
equilibrium constants are not independent, but must fulfill the
condition given in Equation 24.

FIGURE 11
Left: Change of ΔG as a function of parameter KEq. Right: Amount of enzyme needed to take a flux of r � 1 mmol/gDWh with kcat � 106 for varying
product P/S (S is constant), KEq � 1 and constant S/Ks � 1. Note that a value of 1 on the x-axis is the reaction equilibrium (r � 0) and the amount of enzyme
goes to infinity.
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Example 10b (now with kinetics)
Now the same network as in Example 10a is considered,

but kinetics for the metabolic network are taken into account.
The system is now self-contained with a minimal number
of constraints: mass fraction of metabolites is again fixed
and the concentration of the unitss are given. For the models
considered so far, the concentration of metabolites only had a
modest role; they were only important for thermodynamic
considerations. Figure 12 shows the results. Please note that
for the equation for one macromolecular unit, the following
equation holds in steady state:

rsyn,j � μBj (78)

Since in this case, the concentration of the unit is fixed and μ is
only calculated via the metabolic network, the rate of synthesis rsyn
can be directly obtained from the equation, and no further
dependencies, for example from the metabolites, are necessary.

Example 10c (resource limitation)
In the last case, the first unit B1 is responsible for all enzymes

that are active in the metabolic network, that is∑Ei contributes
to B1 (there is a fixed amount that is increased by the sum of
enzymes). Unit B2 is in charge for the synthesis of B1 +∑E and
for its own synthesis. Unit B3 is is obtained by closing the mass
balance, accordingly, its rate of synthesis can be determined
from its concentration. Still, the sum of the metabolites
corresponds to 10% of the entire cell mass (a minimum
concentration is also required, that is, the concentration of a
metabolite cannot be zero). Figure 12 compares results for three
cases. For the equation for a self controlled unit (example 10c) a
different equation holds in steady state:

rsynj Bj( ) � μBj (79)

A simple first order dependency in the form ksyn,jBj would
immediately result in μ � ksyn,j and Bj arbitrary, which is
independent from the complete network and from the
environmental conditions. Since this is not useful, a simple kinetics,
coupling the metabolic network to the synthesis unit, is used here:

rsynj Bj,M( ) � ksyn,jf M( )Bj with for example f M( ) � M

KM

(80)

The optimization problem is now as follows (for all cases in
Example 10):

maxf: � μ � wTNr example 10a, b, c

minf: � ∑ ri example 10a

s.t.

MNr � 0 example 10a, no kinetics

MNr E , C( ) � 0 10b, cwith kinetics

∑Ei ≤E sumof enzyme is constraint, 10b, c

∑Ci � C sum of metabolites is constraint, 10b, c

0≤Ei ≤Ei,max

ci,min ≤ ci ≤ ci,max

C + B1 + Emass + B2 + B3 � 1 totalmass is constraint

(81)
The substrate uptake rates in all cases are comparable (left

plot) while the flux maps differ: rate r6 is used in all but one case
while rates r2−4 are used in the positive direction only in the
first case. For example 10b and c, enzyme is allocated for the
uptake rate and for the synthesis of metaboliteDwhich fill up all
other metabolites in the reversed direction (rates r2−4
are negative).

The last model variant finally is used to mimic the behavior
for a decreasing substrate concentration. In the previous
example, the enzyme for substrate uptake is working in
saturation, that is, the concentration of the substrate S is far
larger than the affinity constant and the flux can be approximated
by a linear relationship r � kcatES. Now, the substrate
concentration is changed and the results are plotted over the
concentration of S.

Although the input flux is linear, the resulting growth rate
tends to saturate for high values. This is based on (i) the
saturation kinetics of the individual enzymes in the network,
and (ii) on the limited capacity of the enzyme fraction that can
be allocated for substrate uptake; please note, that for the
synthesis of enzymes (and unit B1), unit B2 must be
synthesized too. Therefore, as can be seen, a typical behavior
for the course of the units can be detected; unit B2 which is self-
controlled increases with the substrate (and with growth rate μ)
while unit B3 (remainder) decreases. The amount of enzyme
needed is included in B1 but is not visible in the simulation. For

FIGURE 12
Left: Flux distribution for all rates for all cases. Middle: Comparison of enzyme concentrations for cases 10b and 10c. Right: metabolite
concentrations for cases 10b and 10c.
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high values of the substrate, only the enzyme for substrate
uptake (E0) and E6 contributes significantly; for smaller
values, the pattern changes, and enzyme E1 is needed to
maintain the flux from A to B and C which was not
necessary before. Interestingly, the yield (that is biomass
generated from substrate) increases for small values of S; this
is due the lower flux via r6 that besides D generates also a by-
product (see Figure 10).

We finally compare and illustrate the results of the simulation
studies with biomass using elementary flux modes (see
Supplementary Appendix for a definition and an example). For
both networks, elementary flux modes with substrate uptake (from
Aex) and building biomass are considered. Figure 13 shows the
relationship between the obtained growth rate and the sum of fluxes
(only metabolic fluxes). The black line indicates the maximal growth
rate that can be obtained from substrate uptake of S of
10 mmol/gDWh.

As can be seen, the macromolecular unit model has more
elementary flux modes than the single biomass model, showing a
higher flexibility in providing precursors for biomass. However, the
elementary flux mode with a higher growth rate than μ � 1, 5 (the

red symbol on the right side of the black line) includes an uptake of a
second substrate (that is, the corresponding product is not build but
serves as a substrate). As expected, while minimizing the sum of all
fluxes, an elementary flux mode is directly obtained, the values
obtained from example 10b and 10c (only growth rate
maximization) are only near an elementary flux mode but do hit
them perfectly.

A further analysis can be done by focusing on one node in
the network and characterizing the incoming fluxes, that are
named supply fluxes, and the outgoing fluxes, named demand
fluxes. In steady-state, supply and demand are exactly balanced,
that is, the sum of supply fluxes must match the demand fluxes.
Moreover, since kinetic expressions are used for the last
examples, the influence of metabolic concentrations can be
studied. In the last example shown in Figure 14, the
distribution of enzyme over the substrate input abruptly
changes. In the following figure, two values of substrate
input, corresponding to growth rates μ � 1, 01 1/h (high) and
μ � 0, 65 1/h (low) are compared.

In the network, the demand is split in several parts. MetaboliteA
is the center of the network because it is the first metabolite in the

FIGURE 13
Sum of fluxes as a function of the growth rate for elementary flux modes (red circles indicate the elementary flux modes for the three unit model,
blue squares for the single biomass equation model). Shown are the results for example 10.

FIGURE 14
Left: Growth rate μ (blue) and yield (red). Middle: Course of themacromolecular units over substrate concentration (the sumof all unit fraction add to
1g biomass). Right: Course of enzymes for uptake rate and rates r1 and r6.
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network. Hence, it must feed all other metabolites as well the direct drain
to biomass. In the left plot in Figure 15, the demand bars show that main
part of the incoming fluxes are used for the network demands (yellow r6
and red r1 part) while the flux directly into the biomass (magenta) is
smaller. Since the concentration is small in comparison to the units, the
dilution term (green) is very small. To understand, why in the lowmode a
shift of the allocation of enzymes fromE6 toE1 is observed (Figure 14), a
look on the concentrations of A andD reveals also a change here. Since
reaction r1 is reversible, in the high mode, the situation is not favorable
enough because A is lower (and D is higher); in contrast, in the low
mode, A is higher (and D is lower)that prevent that D alone feed the
othermetabolites in the network and, consequently, r1 comes into play to
feed the network “from the other side” (see Figure 16, left plot). In this
way, for example, the demand on metabolite C is satisfied via two
complete different ways; in the high mode with r6 and the reverse r4
reaction and in the low mode directly via r1. The dilemma is also
illustrated with the enzyme allocation plot in Figure 16, right. For a low
concentration outside, more enzyme must be spend for substrate uptake
(compare bars for E0). However, the complete amount of enzyme is
restricted, and for reaction r6, enzyme is not available in high amounts.
Consequently, enzyme spend to reaction r6 is reduced and enzyme for

reaction r1 is significantly increased in the low mode. The example also
demonstrates the high sensitivity of the system; while the change in the
concentration of A is marginal (~ 7%) it goes along with a dramatic
change in the proteome pattern.

3 Summary

The provided examples demonstrate an increasing complexity
starting from a detached network with a couple of reactions and
ending with a prototype of a cellular system with metabolism and
macromolecular synthesis as well as kinetics for the metabolic
network. While the simple network structure without biomass
reactions must be scaled by the incoming flux, the last examples
provide self-contained models. Thermodynamic considerations play
an important role for the outcome of the simulations, but could be
considered in the kinetic reaction expressions directly, bridging pure
fluxes with metabolite concentrations.

Starting from flux balance analysis, using different objective
functions to finally a three macromolecular unit model, increasing
levels of complexity are developed and demonstrated by numerical

FIGURE 15
Left: first 2 bars are supply (left) and demand (right) for the high growth rate for metabolite A, remaining 2 bars are supply (left) and demand (right) for
the low growth rate for metabolite A (for details see main text). Right: concentrations of metabolites A and D.

FIGURE 16
Left: Flux maps for high and low substrate input. For metabolite A all terms that appear in the steady state equation for the concentration of A are
given. Values for all fluxes (blue numbers), for drain into biomass, and dilution are shown (red numbers). Yellow numbers indicate the concentration of
metabolite A. Small black numbers represent the stoichiometry. Right: Enzyme allocation for high and low substrate.
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examples. A final summary of basic equations and examples are
given in Figure 17.
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