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1 Introduction

Biotechnology is a key enabler of a future bio-based and circular economy, supporting
the sustainable production of chemicals, materials, fuels, and energy, while also enhancing
human health through the production of pharmaceuticals and food ingredients (Yang et al.,
2017; Lokko et al., 2018; Kim et al., 2023). Compared to petrochemical or thermochemical
processes, bioproduction systems are generally more environmentally friendly, as they
operate under milder conditions, generate less waste, and often use renewable or waste-
derived feedstocks. Beyond Earth, biotechnology is also crucial for future space
biomanufacturing (Berliner et al., 2022; Vengerova et al., 2024), providing essential
goods and services for human space exploration while minimizing resource
transportation from Earth.

Nevertheless, optimizing and controlling bioprocesses remain challenging due to
the inherent complexity of cells, the catalysts in cell-based biomanufacturing. Cells
exhibit multiscale, multirate, nonlinear, and uncertain dynamics (Ullah and
Wolkenhauer, 2011; Glass et al., 2021; Luo et al., 2021; Hartmann et al., 2022),
which are nontrivial to capture in mathematical models. Uncertainties arise from
factors such as stochasticity in gene expression and reaction networks, as well as
environmental disturbances, all of which can lead to suboptimal and inconsistent
bioprocess performance if not effectively addressed. These complexities and
uncertainties ultimately limit the competitiveness of biotechnologies and hinder
their broader commercial and industrial adoption.

Two major systems disciplines support biotechnology. On one hand, Systems Biology
(SB) provides mathematical and computational methods to understand biological
phenomena across different omics levels and scales (e.g., genomics, transcriptomics,
proteomics, fluxomics, and metabolomics) (Noble, 2010; Otero and Nielsen, 2010;
Kildegaard et al., 2013; Bellomo et al., 2015; Tavassoly et al., 2018). This field is
supported by scientists with backgrounds in different areas, including biology,
bioinformatics, mathematics, and physics. On the other hand, Process Systems
Engineering (PSE) focuses on mathematical modeling and computer-aided methods for
the design, optimization, and control of production processes, typically at a macroscopic
scale, considering process-level material and energy balances (Pistikopoulos et al., 2021;
Vassiliadis et al., 2024; Daoutidis et al., 2024). PSE finds its roots mainly in the chemical and
process engineering communities.

Although PSE provides powerful methods for modeling, optimization, and control of
complex dynamic systems, its application to biotechnology is often restricted to the
macroscopic bioreactor level. For instance, mathematical models frequently oversimplify
metabolic pathways by lumping them into macroscopic and phenomenological structures
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(Muloiwa et al., 2020; Straathof, 2023). As such, this neglects the
intracellular domain and its potential degrees of freedom for
advanced applications, such as the dynamic fine-tuning of
metabolic fluxes to manage intrinsic metabolic trade-offs (e.g.,
growth vs production modes). Conversely, while SB enhances our
understanding of cellular processes and enables rational genetic and
metabolic engineering interventions for designing cell factories (Von
Kamp et al., 2017; Schneider et al., 2020; Foster et al., 2021; Bekiaris
and Klamt, 2021), a critical gap remains between cell factory design
and process-level and plant-wide optimization and control.

In addition, we are currently in the era of the Fourth Industrial
Revolution (Industry 4.0), where the goal is to fully digitalize and
automate industrial processes by leveraging advanced modeling,
real-time learning, and adaptive model-based optimization and
control (Pandey et al., 2024; Isoko et al., 2024). In this context, this
opinion paper highlights the need for the next generation of
bioengineers to adopt a systems-of-systems perspective to bridge
existing gaps between SB and PSE, enabling biotechnology to align
with Industry 4.0 and fully realize its potential. Achieving this
requires integrating SB and PSE into a unified framework,
potentially leading to the formalization of a new discipline and
scientific community: Biotechnology Systems Engineering (BSE).
This paradigm shift entails fostering interdisciplinary education,
curriculum development, and dedicated publication and
conference platforms to support its growth and consolidation.
However, formalizing such a holistic framework presents
challenges, including differences in scope and research cultures,
ranging from an explanatory-driven and mechanistic-oriented
focus of SB to an application-driven and performance-oriented
focus of PSE.

2 Discussion

This section first outlines the core capabilities of SB and PSE for
biotechnological production. Then, an overview of the BSE
framework is presented (cf. Figure 1), along with key potential
actions to formalize it as a new discipline and community.

2.1 Systems Biology

The rise of high-throughput experimental platforms has moved
biotechnology into the domain of big data (Shukla et al., 2022).
Multi-omics data plays a crucial role in constructing and validating
mathematical models in SB (Cotten and Reed, 2013; Kim et al., 2016;
Kong et al., 2024). Genomics defines the cell’s metabolic potential,
determining which enzymes can, in principle, be synthesized.
Transcriptomics provides insights into regulatory mechanisms
that influence enzyme expression. Proteomics quantifies enzyme
abundance, directly linking metabolic fluxes to catalytic capacity.
Fluxomics quantifies metabolic fluxes across metabolic pathways,
giving information on the cell’s metabolic flux distribution. Finally,
metabolomics determines intracellular metabolite concentrations,
offering insight into the dynamics of metabolic intermediates.

Mathematical models of metabolism in SB often begin with
genome-scale or reduced stoichiometric networks that link genes,
proteins, and reactions (Cotten and Reed, 2013; Erdrich et al., 2015;
Kim et al., 2016; Kong et al., 2024). The stoichiometric network
serves as a foundation for building mass balances of metabolites,
where metabolic fluxes function as reaction rates. A fundamental
challenge is the parameterization of these metabolic fluxes, leading

FIGURE 1
Overview of Biotechnology Systems Engineering (BSE) as a unifying framework integrating Systems Biology (SB) and Process Systems Engineering
(PSE). The scheme focuses on multi-scale modeling and multi-level control in bioprocesses with plant-wide awareness and under uncertainty. The
ultimate goal of BSE is to optimize plant-wide efficiency through adaptive learning, continuous model updating, and self-adaptive optimization and
control. Digital twins, supported by mathematical modeling, integrate mechanistic approaches with machine learning to enhance model
generalization and predictive capabilities. BSE models link bioreactor dynamics to the overall economic and sustainability aspects of the
biomanufacturing facility. Multi-scale control synergistically integrates external controllers with in-cell controllers encoded by biochemical networks,
aiming to maximize the efficiency of metabolism in the context of the plant-wide performance. Soft sensors and biosensors further support state
estimation when only partial measurements are available. UPS: upstream processing, DPS: downstream processing.
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to two distinct modeling approaches: 1) constraint-based modeling
and 2) kinetic modeling.

Constraint-based modeling treats metabolic fluxes as decision
variables in a biologically inspired optimization problem, addressing
system underdetermination (i.e., more unknowns fluxes than mass-
balance equations) (Mahadevan et al., 2002; Gottstein et al., 2016;
Volkova et al., 2020; Moulin et al., 2021). This optimization
considers a biologically relevant objective function, such as
maximizing growth, and is subject to biological and physiological
constraints, with mass-balance constraints at its core. Often solved
under pseudo-steady-state assumption of intracellular metabolism,
constraint-based modeling provides a snapshot of the metabolic flux
distribution for a given temporalmetabolic state. This approach can
be adapted to capture dynamic cellular behavior, e.g., of biomass and
extracellular species, by discretizing a dynamic optimization
problem over time or approximating local fluxes at discrete
time points.

In contrast to constraint-based approaches, kinetic modeling
explicitly describes fluxes as time-dependent functions governed by
enzyme kinetics and metabolite concentrations (Van Rosmalen
et al., 2021; Lu et al., 2021; Saa and Nielsen, 2017). This offers in
principle more insight into the cell, capturing accumulation of both
metabolic intermediates and extracellular species. However, such
models are often highly nonlinear, which can be numerically
difficult to handle (e.g., in model-based optimization and control
tasks), and can make measuring states, as well as model
parametrization, more challenging.

Computational methods based on constraint-based and kinetic
modeling have enabled the identification of promising metabolic
engineering interventions, such as gene deletions to enhance
production pathway efficiency, addressing growth-production
trade-offs, and designing stable microbial consortia (Von Kamp
et al., 2017; Schneider et al., 2020; Foster et al., 2021; Bekiaris and
Klamt, 2021). Additionally, mechanistic models in SB provide
valuable insights into metabolic pathway utilization. For instance,
they can predict metabolic flux distributions under specific
conditions (Gerken-Starepravo et al., 2022; Pennington et al.,
2024; Boecker et al., 2021; Boecker et al., 2022) and aid in
identifying potential dynamic metabolic control strategies, where
key fluxes are subjected to modulation (Jabarivelisdeh and
Waldherr, 2018; Boecker et al., 2021; Espinel-Ríos et al., 2022a;
Espinel-Ríos and Avalos, 2024b). Machine learning can be
incorporated or assist in both constraint-based and kinetic
modeling for more efficient model parameterization and
enhanced predictability, as well as to facilitate and guide strain
design (Li et al., 2022; Kundu et al., 2024; Choudhury et al., 2024).

2.2 Process Systems Engineering

PSE in biotechnology generally emphasizes macroscopic and
environmental variables such as feed rates, oxygen availability, light,
temperature, and pH, which can serve as degrees of freedom or
targets in process optimization and control (Mears et al., 2017;
Petsagkourakis et al., 2020; Treloar et al., 2020; Harcum et al., 2022;
Chai et al., 2022; Espinel-Ríos et al., 2023a; Espinel-Ríos et al., 2024a;
Espinel-Ríos et al., 2024b; Hoffman et al., 2025; Lee et al., 2025).
These manipulatable variables often aim to maintain favorable

growth and production conditions, or induce specific metabolic
states. Various control strategies, including proportional-integral-
derivative (PID) control, model predictive control (MPC), and
reinforcement learning (RL), have been employed in those contexts.

In brief, PID control adjusts system inputs using proportional,
integral, and derivative gains based on the tracking error (Åström
and Murray, 2021). MPC, in contrast, employs a dynamic model of
the system to solve a sequence of constrained open-loop
optimizations based on the current system state (Rawlings et al.,
2020). RL, a machine-learning-based control approach, enables an
agent to iteratively learn an optimal control policy by interacting
with the process and maximizing performance through reward-
based feedback (Sutton and Barto, 2018).

It is worth mentioning that PSE increasingly incorporates
uncertainty-aware and adaptive modeling, optimization, and
control strategies toward enhancing robustness (Petsagkourakis
et al., 2020; Morabito et al., 2021; Morabito et al., 2022; Espinel-
Ríos et al., 2023b; Pennington et al., 2024; Espinel-Ríos et al., 2025).
Additionally, soft or virtual sensors play a crucial role in PSE by
enabling real-time state estimation using only a subset of available
measurements (Randek and Mandenius, 2018; Elsheikh et al., 2021;
Espinel-Ríos et al., 2022b; Espinel-Ríos et al., 2023c; Espinel-Ríos
et al., 2024; Espinel-Ríos and Avalos, 2024a). More recently,
machine-learning approaches have been incorporated into
macroscopic and phenomenological models, as typically used in
PSE, to create hybrid models (Tsopanoglou and Jiménez Del Val,
2021; Agharafeie et al., 2023; Mahanty, 2023). These gray-box
models help to alleviate the negative effects of possible model
oversimplifications, wrong model assumptions, and in general the
lack of insight into intracellular mechanisms.

PSE also addresses the techno-economic feasibility and life-cycle
assessment of biomanufacturing facilities, typically based on
macroscopic mass and energy balances across unit operations (Fu
et al., 2023; Wowra et al., 2023; Malinov et al., 2024). This broader
perspective acknowledges that a bioprocess factory extends beyond
the bioreactor and requires the integration of upstream and
downstream processes, which ultimately determine its viability
and sustainability. Upstream operations include media
preparation and inoculum development, while downstream
processes involve product separation, concentration, and
purification.

2.3 Enter Biotechnology Systems
Engineering

To recapitulate, PSE and SB have traditionally operated as
separate paradigms in biotechnology, largely due to their origins
in distinct scientific communities. PSE prioritizes the optimal
operation of the production facility, with the bioreactor at the
core, and extends to plant-wide techno-economic feasibility and
life-cycle assessment. In contrast, SB typically focuses on local
cellular objectives, such as maximizing the flux through the
product-of-interest pathway facilitated by metabolic network
engineering.

BSE aims to establish an integrated framework that merges SB
and PSE to fully exploit biotechnology’s potential. This shift requires
moving beyond purely intracellular, process-level, or plant-wide
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models toward multi-scale modeling schemes that effectively
integrate these domains. To this end, BSE should drive the
development of mathematical models incorporating, e.g., gene
expression, resource allocation, regulatory mechanisms, and
metabolic reactions while linking cellular behavior and
phenotypes to varying external control inputs, process operating
conditions, bioreactor designs, initial conditions, process
disturbances, and system uncertainties. This holistic integration is
essential for developing predictive and generalizable bioprocess
digital twins, unlocking new degrees of freedom across scales for
advanced bioprocess design, optimization, and control. In this
regard, model reduction techniques (Ali Eshtewy and Scholz,
2020; Van Rosmalen et al., 2021) can assist in the development
of digital twins, rendering smaller models while preserving the
information and knowledge from the larger-order system.

Leveraging multi-scale modeling and digital twins, BSE should
also drive the development of multi-level control strategies,
integrating external process control (e.g., MPC or RL) with in-cell
control mechanisms. Unlike traditional external control approaches
in PSE, in-cell control relies on intracellular regulatory systems, such
as (bio)chemical reaction networks, to encode control-like behavior
(e.g., PID-like control) without user intervention after deployment.
These controllers operate with instantaneous feedback and response,
leveraging the intrinsic speed of chemical reactions, and have been
shown to be robust against noisy biological networks (Chevalier et al.,
2019; Filo et al., 2023; Alexis et al., 2024).

In this multi-level control framework, external control serves a
supervisory role, dynamically adjusting setpoints for in-cell
controllers or correcting deviations in their performance. This is
particularly relevant when real-time monitoring and targeted
actuation within intracellular networks may not be feasible.
Therefore, such tasks can be delegated to in-cell controllers.
Genetically encoded biosensors (e.g., fluorescence-based) can
facilitate the implementation of such multi-level control strategies
by providing real-time monitoring of cellular wellbeing, pathway
utilization, or protein expression (Polizzi and Kontoravdi, 2015;
Thorn, 2017; Zhang et al., 2022).

Since metabolic rates determine the catalytic efficiency of
bioprocesses, real-time modulation of the metabolic flux
distribution, within the context of plant-wide efficiency, should
be a key focus for multi-level controllers. For example, external
controllers can dynamically adjust the setpoints of in-cell controllers
that are designed to achieve robust gene expression of target
metabolic enzyme levels over desired periods. This approach
would synergistically integrate control frameworks such as
metabolic cybergenetics (Carrasco-López et al., 2020; Espinel-Ríos
et al., 2024; Espinel-Ríos and Avalos, 2024a) with in-cell controllers.

To fully realize the potential of multi-level controllers in BSE,
experimental validation is essential. Thus, the ease of implementation
should be assessed throughout the research and development process,
and these controllers must be tested for robustness against system
uncertainties and disturbances. However, this should not discourage
research into novel, more theoretically driven control methodologies,
even if their experimental implementation is nontrivial. In such cases,
identifying and understanding the gaps to experimental
implementation can increase the likelihood of future realization. I
believe the stage for experimental realization of multi-level controllers
in BSE is favorable given the previous success in the areas of synthetic

biology and cybergenetics. For instance, following separate strategies
in control design, the experimental implementation of in-cell
controllers has demonstrated their feasibility in modulating gene
expression (Aoki et al., 2019; Frei et al., 2022), while external
controllers have also been validated in both open-loop (Espinel-
Ríos et al., 2024a) and closed-loop systems (Milias-Argeitis et al.,
2016; Gutiérrez Mena et al., 2022) for similar purposes.

In the spirit of democratizing access to knowledge, BSE should
prioritize open-source computational tools and bioreactor systems.
This would empower institutions worldwide, particularly in
developing regions, to advance research and innovation in BSE.
These efforts promise to accelerate the development of bio-based
technological platforms, fostering the widespread adoption of
biotechnologies and ultimately contributing to global economic
growth and sustainability. There are ongoing initiatives that
embrace ideas related to knowledge democratization and modeling
standardization in SB, from which BSE could benefit and build upon.
For example, the Systems Biology Markup Language (SBML) is a
standard format for exchanging biological models (Keating et al.,
2020). Similarly, the CURE principles (Credibility, Understandability,
Reproducibility, and Extensibility) advocate for better practices in
biological modeling (Sauro et al., 2025).

To establish BSE as a field, undergraduate and graduate curricula
should explicitly and purposely integrate SB and PSE in a holistic
manner. Open-source computational tools should play a central role in
education, enabling students to design, implement, and test a wide
range of modeling, optimization, and control strategies in a cost-
effective and safe environment. These tools would provide an
affordable alternative to traditional wet-lab experimentation, which
can be impractical or prohibitively expensive in some contexts. Yet,
hands-on experimental work remains invaluable for bridging the gap
between theory and practice. For example, open-source and accessible
bioreactor systems, such as Chi.Bio platforms (Steel et al., 2020), could
offer a powerful learning environment by allowing direct integration
with user-coded software. Furthermore, BSE could benefit from existing
open-source process simulators and techno-economic analysis
software, such as BioSTEAM (Cortes-Peña et al., 2020), to facilitate
innovation in sustainable process design when dealing with
biotechnological production systems.

In addition, the educational approach in BSE should foster a
generalist mindset. As an engineering discipline, BSE’s main driver
should be the pursuit of technological innovation and problem-
solving. Thus, a key focus should be on developing integrated
frameworks that maximize the efficiency and productivity of
bioproduction systems. While specialists are crucial for advancing
their respective fields, BSE should aim to bridge disciplines by
identifying gaps and integrating methodologies in ways that
specialists may not immediately consider. In this context, I
envision BSE playing a pivotal role in generating future leaders
who will drive biotechnology to the next level of competitiveness,
business innovation, and technological readiness.

BSE would benefit from specialized publication avenues and
dedicated conferences, providing forums for collaboration and
knowledge exchange. Additionally, BSE-focused student
competitions, mirroring synthetic-biology-driven initiatives like
iGEM (International Genetically Engineered Machine) (Zhan
et al., 2023), could boost innovation and out-of-the-box thinking
in bioproduction, while proactively incorporating BSE principles.
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These competitions could follow a two-stage structure, beginning
with simulation-based approaches and progressing to hardware-
based implementations, supported by accessible open-source
bioreactors and funding for selected teams. Universities and
the private sector could further support these initiatives by
offering infrastructure, mentorship, and technical resources.
Such competitions should have differentiated tracks, e.g., a
scientific track focused on advancing methods and working
frameworks, and an entrepreneurial track aimed at business
development and fostering startup creation. This structure
would provide an inclusive environment for people with
different interests.

Finally, to some extent, other researchers and academics have
also proposed systems-of-systems frameworks with motivations
aligned to BSE (cf. e.g., (Koutinas et al., 2012; Kiss et al., 2015;
Ko et al., 2020; Carrasco-López et al., 2020; Ohkubo et al., 2024)),
indicating that this paradigm shift is already underway. Developing
BSE methodologies is a key focus of my ongoing research. I strongly
believe that equipping the next generation of bioengineers with a
systems-of-systems framework as in BSE has the potential to
revolutionize biotechnology.
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