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Gaussian Graphical Models (GGMs) are a type of network modeling that uses
partial correlation rather than correlation for representing complex relationships
among multiple variables. The advantage of using partial correlation is to show
the relation between two variables after “adjusting” for the effects of other
variables and leads to more parsimonious and interpretable models. There are
well established procedures to build GGMs from a sample of independent and
identical distributed observations. However, many studies include clustered and
longitudinal data that result in correlated observations and ignoring this
correlation among observations can lead to inflated Type I error. In this paper,
we propose a cluster-based bootstrap algorithm to infer GGMs from correlated
data. We use extensive simulations of correlated data from family-based studies
to show that the proposed bootstrap method does not inflate the Type I error
while retaining statistical power compared to alternative solutions when there are
sufficient number of clusters. We apply our method to learn the Gaussian Graphic
Model that represents complex relations between 47 Polygenic Risk Scores
generated using genome-wide genotype data from the Long Life Family
Study. By comparing it to the conventional methods that ignore within-cluster
correlation, we show that our method controls the Type I error well without
power loss.
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Introduction

One goal of biomedical research is to understand the network of complex relationships
between biological variables and other factors to improve disease diagnosis and prognosis,
and to identify drug targets (Vamathevan et al., 2019). The challenge of these analyses is the
integration of the effect of multiple variables on more than one outcome of interest,
simultaneously, and network modeling is a popular approach to address this task.
Correlation networks are often used to model pairwise correlation, and, for example,
weighted gene co-expression network analysis (WGCNA) is a popular solution to
summarize the effects of multiple molecular features. Gaussian graphical models
(GGMs) are a specific type of network modeling that use partial correlation rather than
correlation to describe relations between may variables (Becker et al., 2023; Langfelder and
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Horvath, 2008). The advantage of GGMs is that they show the
relation between two variables after “adjusting” for the effects of
other variables and are therefore more parsimonious and
interpretable. However, the calculation of the partial correlation
typically assumes that all the variables are normally distributed
(Markowetz and Spang, 2007).

The conventional method for learning a GGM is to perform
hypothesis testing of the partial correlations that are derived from
the normalized inverse of the variance-covariance matrix of the
variables of interest (Whittaker, 2009). This approach roots in the
assumptions that the variables follow a multivariate normal
distribution, and the sample data consist of independent and
identically distributed observations. The assumption of
independent observations is violated whenever there is cluster
sampling, for example, in family-based studies and several
solutions have been proposed to learn GGMs from correlated
data. Talluri and Shete adapted the Lasso-penalized maximum
likelihood estimator of the precision matrix by incorporating the
kinship matrix to account for the correlations introduced by family
data (Talluri and Shete, 2014). However, this method requires prior
knowledge of the variables’ heritability, which is not always
available. Riberiro and Soler further leveraged the properties of
family data for learning GGMs that are decomposed into the genetic
and environmental networks (Ribeiro andMaria Pavan Soler, 2020).
This approach is particularly useful if the goal is to distinguish
between genetic and non-genetic contributions to the associations
between variables in the model. However, the estimation and
inference steps of the partial correlations are time-consuming due
to large matrices decompositions and operations. Moreover, both
approaches rely on the correct specification of the correlation
structure underlying the data and are applicable only within
family data framework.

In this work, we propose a cluster-based bootstrap algorithm to
learn a GGM from correlated data. This method adapts the family-
based bootstrap introduced by Borecki and Province (2008) to test
the significance of the partial correlations between the variables and
does not need knowledge of the correlations between the
observations but only the cluster composition of the data. In
addition, this approach is not limited to family-based data.
Compared to regression-based methods that are challenged by
the complexity of the search for a GGM, the computational
complexity of this method remains polynomial. We show
through a comprehensive simulation study that our algorithm
controls the Type I error well, while retaining good statistical
power. We also apply our method in a real-world example to
show the impact of ignoring correlated data when building a GGM.

Materials and methods

Methods for learning Gaussian Graphic
Models from independent observations

A Gaussian Graphic Model (GGM) is a statistical model that
represents properties of marginal and conditional independences of
a multivariate Gaussian distribution using an undirected Markov
graph (Lauritzen, 1996; Whittaker, 2009). The key rule of an
undirected Markov graph is that two variables are conditionally

independent given all the other variables in the graph if they are not
connected by an edge. Let Y � (Y1, Y2, Y3, ..., Yp)T be a
p-dimensional random vector with a multivariate normal
distribution with mean vector μ and variance-covariance matrix Σ:

Y �
Y1

..

.

Yp

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠ ~ MVN μ,Σ( )
Let G denote the associated undirected Markov graph from the

set (V, E) where V � 1, 2, . . . , p{ } is the vertex set corresponding to
the univariate components Y , and the edge set E �
{Ei,j: i, j ∈ V, i ≠ j} describes the conditional dependency of
random variables in Y (Kolaczyk, 2009). The strength of the
conditional dependency of Yi and Yj after adjusting for all the
other variables in Y is measured by the partial correlation ρij that is
defined as:

ρij �
−kij�����
kiikjj

√ i ≠ j( )
where kij is the (i, j)th entry of the precision matrix K � Σ−1

(Whittaker, 2009). An edge exists between two vertices if the
partial correlation between the two Gaussian random variables is
not 0, i.e.,

Ei,j � 1: ρij ≠ 0 i ≠ j( )
Figure 1 presents an illustrative GGM depicting the partial

correlation network of the four-dimension vector
Y � (Y1, Y2, Y3, Y4)T. The Markov graph shows that Y2 is

FIGURE 1
Example of a Gaussian graphical model with 4 vertices and
4 edges. This is a graph associated with vector Y � (Y1 , Y2 ,Y3 , Y4)T .
Each vertex represents a variable, and the edges represents the
conditional dependencies between each pair of variables given
the rest of variables.

Frontiers in Systems Biology frontiersin.org02

Song et al. 10.3389/fsysb.2025.1589079

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1589079


independent of Y3 and Y4 conditionally on Y1, and this relationship
is represented by the missing edges E2,3 � 0, ρ23 � 0 and
E2,4 � 0: ρ24 � 0. The variables Y1 and Y3 are dependent on each
other when conditioned onY2 andY4, which can be described by the
existing edge E1,3 � 1: ρ13 ≠ 0.

We test the null hypothesis of conditional independence of Yi

and Yj given all the other variables, say H0: ρij � 0 against the
alternative hypothesis H1: ρij ≠ 0, using the Fisher’s
Z-transformation test:

Ri,j � 1
2
log

1 + ρ̂ij
1 − ρ̂ij

⎛⎝ ⎞⎠
where ρ̂ij is the estimate of ρij from a sample with sample size N
(Ronald Aylmer, 1921). It is well known that the distribution of the
statistic under the null hypothesis H0: ρij � 0 can be
approximated by

Ri,j ~ N 0,
1

N − p − 3
( )

when the sample size N is large and the observations are
independent and identically distributed (Fisher, 1924).

Clustered data issues

The assumption of independent and identically distributed
observations is violated in studies with correlated data such
as cluster-based sampling or family-based recruitment (Laird,
2004). Subjects within a cluster are correlated due to shared
environment components or sharing of genetic factors in family-
based studies (Wojczynski et al., 2022). Failure to account for these
correlations can lead to false positive results (Cannon et al., 2001).

In the analysis of cluster data, often investigators assume an
exchangeable covariance structure, where the correlation of pairs of
subjects in the same cluster is constant. Family data is a special type
of clustered data in which each family is a cluster unit. The
correlation structure of family data can be more complex with
correlations between pairs of subjects that depend on their family
relationship and shared environment. In genetic studies, the
variance of a trait Y is commonly decomposed into two
components: the environmental and the genetic components
(Almasy and Blangero, 1998; Amos, 1994). Denote by ymk the
observation of a variable Y in the kth individual from the mth

family. The effect of the two components of variance is usually
parameterized as

ymk � μ + emk + gmk,

where emk ~ N(0, σ2e) denotes the environmental component,
gmk ~ N(0, σ2g) denotes the genetic component, and they are
mutually independent. The environmental components emk are
assumed to be independent for any m, k while the genetical
components gmk are independent between different families and
dependent within families. Therefore, for any two subjects from
different families, the observations ymk and ylh are independent but
the observations of two subjects from the same family m, say ymk

and ymh are correlated

cov ymk, ymh( ) � 2−dσ2g

The parameter d describes the degree of relatedness between the
two individuals. The coefficient 2−d, also known as the family
relatedness coefficient, ranges from 0 to 1. A value of 0 indicates
that the individuals are independent, while a value of 1 signifies that
they are genetically identical, as in the case of monozygotic twins.
The generating model for one trait with sample data YN×1 can be
written in matrix form as

Y � μ + E + G

where the vector of the environmental components is parameterized
as E ~ MVN(0, σ2eIN), with IN denoting theN × N identity matrix,
and the vector of the genetic components is parameterized as
G ~ MVN(0, σ2gΦ), with Φ denoting a N × N block diagonal
matrix called the relatedness matrix. The h, k element of Φ
represent the relatedness between individuals h, k and are 0 when
individuals h, k are from different families, and they are 2−d when
individuals h, k are a d-tℎ degree relative pair (Lange, 2022).

We next extend the parameterization for the multivariable case
in which we assume to have p variables. We denote by Y theNp × 1
vector of the stacked sample data:

Y �
Y1

..

.

Yp

⎛⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎠
And we model Y as

Y � μ + E + G

where μ is the Np × 1 vector of means of the p variables, and the
Np × 1 vectors of environmental and genetic components as
E ~ MVN(0, IN ⊗ Σe), and G ~ MVN(0,Φ ⊗ Σg), where the
symbol ⊗ denotes the Kronecker product. Our goal is to learn
the GGM by leveraging the precision matrix K � Σ−1, where Σ
represents the variance matrix in an independent data setting. In the
Supplementary Material, we demonstrate that when extending to a
family data setting, Σ � Σe + Σg. However, directly evaluating Σ, Σe

and Σg in the presence of correlated data is computationally
complex. For computational feasibility, we wish to use the
statistic Ri,j but the challenge of correlated data is that the
distribution of the statistic Ri,j is unknown. We therefore use the
cluster-based bootstrap method to address this issue.

Bootstrap algorithm on clustered data

The bootstrap method, introduced by Efron (1979), is a widely
used resampling technique for statistical inference and hypothesis
testing. It involves resampling the data with replacement and then
using these samples to estimate the distribution of a statistic of
interest. Sherma and Cessie suggested that the bootstrap method
could also be used to address issues with correlated data by
resampling clusters instead of individuals (Sherman and le
Cessie, 1997), and Borecki and Province introduced a family-
based bootstrap approach in which the sample units are families
and familial relations are ignored in the estimation phase (Borecki
and Province, 2008).
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Here we propose a generalization of the family-based bootstrap
algorithm introduced by Boreki and Province to learn GGMs that
account for correlated observations. The steps of the proposed
cluster-based bootstrap algorithm are as follows:

Step 1: For t � 1, 2, . . . , T where T represents the number of
bootstrap resampling

i. Draw c% of clusters with replacement from the cluster data,
e.g., draw cM

100 families with replacement, where M is the
number of families in the data set;

ii. Calculate the sampling variance-covariance matrix S(t) using
the data resampled in step i. and calculate the partial
correlation matrix P(t) as:

P t( ) � −D t( )−1
2S t( ) −1D t( )−1

2 (4)
whereD(t) is a diagonal matrix from the diagonal elements of S(t) −1;

iii. For each pair Yi and Yj, calculate the Fisher’s transformation
statistics Ri,j

(t):

Ri,j
t( ) � 1

2
log

1 + ρij
t( )

1 − ρij
t( )

⎛⎝ ⎞⎠
where ρij

(t) is the (i, j)th entry of P(t). Calculate the standard
deviation of Ri,j

(t) as 1/
������������
(N(t) − p − 3)

√
where N(t) is the overall

sample size at the tth iteration. Calculate the variable Ri,j*(t) as

Ri,j*
t( ) �

������������
N t( ) − p − 3( )√

Ri,j
t( )

Step 2:Calculate the bootstrap estimate of the standard deviation of
Ri,j* as:

̂se Ri,j*( ) � ���������������������������
1

T − 1
∑T
t�1

Ri,j* t( ) − 1
T
∑T
t�1
Ri,j* t( )⎛⎝ ⎞⎠2

√√
where

Ri,j* �
����������
N − p − 3( )√

Ri,j

Here Ri,j is the Fisher’s transformation statistic calculated from
the sampling variance-covariance matrix S from the original dataset.
We can construct a standard normal test statistic as

Zi,j � Ri,j*̂se Ri,j*( )
Step 3: Test the null hypothesis at level α if |Zi,j | > Zα/2.

Simulation settings

In the simulation study, we used the method described in the
appendix to simulate a multivariable data set with related individuals.
We simulated a mixed family structure where half of the families
consisted of two parents and one offspring, while the other half

consisted of two parents and five offspring. We simulated
observations assuming three different numbers of families: 40, 120,
and 360 families, resulting in sample sizes of N � 200, 600, and 1800,
respectively. We varied the heritability values h2 (defined as the ratio
between genetic and total variance) from 0 to 0.95 with increments of
0.125, 0.25, 0.5, and 0.75. We also generated 1,000 datasets for each
combination of sample size and heritability. We simulated data from
three different GGMs with Markov graphs depicted in Figure 2. The
firstmodel included three variables that weremarginally independent of
each other, so that the Markov graph did not include any edge
(Figure 2a). The second model was represented by a chain graph
describing two variables Y1 and Y3 conditionally independent given Y2

(Figure 2b). The thirdmodel was a triangle tail graph that described Y1,
Y2 andY3 connected to each other andY4 is independent ofY1 andY2

conditional onY3 (Figure 2c). The p × p variance covariance matrix Σ,
precision matrix K, and corresponding partial correlation matrix P for
each graph are displayed in Figure 2. Without loss of generality, we set
the mean µ of each variable to be 0. In addition to these three basic
graphs, we simulated a complex network reflecting the partial
correlation matrix of the first 30 Polygenic Risk Scores (PRS) from
our real data application. In this scenario, partial correlations less than
0.01 were set to zero. To accommodate the increased number of nodes,
we included an additional simulation setting with
1,080 families (N � 5400).

For each scenario, we learned the GGM structure by using:

• The Fisher’s Z-transformation test for partial correlations
ignoring the family-based design.

• The naïve bootstrap algorithm, where we resampled
50 datasets, and each time sampling 100% individuals with
replacement.

• Our proposed cluster-based bootstrap algorithm, in which we
resampled 50 and 200 datasets, and for each resample, we drew
50%, 75% and 100% of families with replacement.

We used a level of statistical significance α = 0.05 for the
Hypothesis test of each ρi,j and estimated the false positive rate
(FPR) by the proportion of incorrect edges found to be significant.
The statistical power was evaluated using this algorithm: when
inflation in FPR was presented in the conditionally independent
variable pairs in one graph, we corrected the level of significance α by
the mean inflation rate, which is the average of the FPR divided by α,
and conducted a new hypothesis test at α*:

α* � 0.05

FPR/α
We repeated this process until α* � 0.05 and then used this

adjusted significance level to estimate the power as the proportion of
edges found between the variable pairs that were connected in the
data model.

Study cohort

The Long Life Family Study (LLFS) is a family-based study of
healthy aging and longevity that recruited over 5,000 family
members in approximately 550 families selected for familiar
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longevity. Participants were enrolled at three American field centers in
Boston, Pittsburgh, and New York, along with a European field center
based in Denmark (Sebastiani et al., 2009; Wojczynski et al., 2022).
Socio-demographic, medical history data, current medications,
physical and cognitive function data, and blood samples were
collected via in-person visits and phone questionnaires for all
subjects at the time of enrollment and during follow-ups (Elo
et al., 2013; Newman et al., 2011). Genome-wide genotype data
were generated at the Center for Inherited Disease Research
(CIDR) using the Illumina Omni 2.5 platform, and genotype calls
were cleaned as described in (Bae et al., 2013). The genotype data were
imputed with Michigan Imputation Server to the HRC panel (version
r1.1 2016) (Das et al., 2016). Genome-wide genotype data are available
from dbGaP (dbGaP Study Accession: phs000397.v1.p1). We
augmented the genetic data in the LLFS using approximately
3,500 samples that we used as controls in other studies of
longevity (Bae et al., 2013). The genotype data are accessible
at http://www.illumina.com/documents/icontroldb/document_
purpose.pdf. We used these genetic data to calculate the Polygenic
Risk Scores (PRS) for 54 health outcomes summarized in
Supplementary Table S3. These PRS were calculated as the
weighted sum of individual’s genetic variants associated with the
corresponding outcome and all the details are described in reference
(Gunn et al., 2022).

Implementation and code availability

The code used in this study is available upon request and can
also be accessed on GitHub at: https://github.com/QM-DS-Tufts-
Medical-Center/GGM-network-Bootstrap.git.

Results

The simulation studies demonstrate that the
bootstrap-based approach controls the type
I error without losing power

Figures 3, 4 summarizes the results of the FPR for different
scenarios and methods. The FPR of the Fisher’s test and the naïve
bootstrap algorithm that ignores the family structure increased
across all three scenarios as the heritability levels increased, and
the inflation rates increased by 2 to 4-fold when the heritability
exceeds 0.5. When the number of families was small (M � 40), the
cluster-based bootstrap algorithms exhibited an inflated FPR of
approximately 1.5-fold across varying heritability levels.
However, as the number of families increased to 120 and 360,
the cluster-based bootstrap algorithms consistently maintained
the FPR at 0.05 across all heritability levels in the simple graph
settings with 3–4 nodes (Figure 3; Supplementary Figure S1;
Supplementary Table S1). In the more complex PRS graph
scenario (Figure 4), which includes 30 nodes, FPR inflation is
observed in the proposed cluster-based bootstrap method
when the number of clusters is 40 or 120 and heritability
exceeds 0.25. As the number of clusters increases, the FPR
inflation diminishes for the proposed method. In contrast,
both the naïve bootstrap and Fisher’s test consistently show
inflated FPRs across all settings as long as the heritability
exceeds 0.12 (Supplementary Table S2).

Figure 5 summarizes the statistical power of detecting true
edges using the Fisher’s test, the naïve bootstrap method and the
cluster-based bootstrap algorithm as a function of the
heritability in the simple graph settings. As heritability

FIGURE 2
Graphical representation of the three simulation Markov models used in simulation studies. (a) The independence graph (b) the chain graph (c) the
triangle tail graph. Each graph is accompanied by Σ, the variance-covariance matrix; K, the precision matrix; and P, the partial correlation matrix
highlighting the edges.

Frontiers in Systems Biology frontiersin.org05

Song et al. 10.3389/fsysb.2025.1589079

http://www.illumina.com/documents/icontroldb/document_purpose.pdf
http://www.illumina.com/documents/icontroldb/document_purpose.pdf
https://github.com/QM-DS-Tufts-Medical-Center/GGM-network-Bootstrap.git
https://github.com/QM-DS-Tufts-Medical-Center/GGM-network-Bootstrap.git
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2025.1589079


increased, the statistical power decreased particularly with small
sample sizes and partial correlations between variables close to
0. However, when the number of families exceeded 360, the
power remained consistently above 0.8, irrespective of the
heritability values ranging from 0 to 0.95. For smaller family
sizes (M � 40), a power above 0.8 was achieved if the magnitude
of the partial correlations exceeded 0.3, regardless of
heritability. The bootstrap algorithm that sampled 100% of
families showed comparable power to the Fisher’s test and
the naïve bootstrap method, whereas sampling 75% of
families resulted in lower power due to the reduced sample
size (Supplementary Figure S2). In the simulated PRS graph
setting, we further examined how power varies with the
magnitude of the partial correlations (Figure 6). Power
decreases with increasing heritability but increases with
stronger partial correlations. Edges with partial correlations
greater than 0.3 maintain power above 0.8 even when the
number of clusters is small.

Comparing the proposed cluster-based bootstrap algorithm that
samples 100% of the clusters with the Fisher’s test and naïve
bootstrap method, we observed comparable power across all
scenarios and well-controlled the Type I error rate when the
number of clusters is sufficiently large. Our results indicated that
bootstrapping 50/200 datasets with 100% families resampled yielded
the best performance in terms of both power and FPR. However,
reducing the proportion of families resampled leads to a decrease
in power.

The GGM of polygenic risk scores highlight
groups of traits with correlated genetic risks

We applied this new algorithm to characterize the mutual
correlations between 47 polygenic risk scores in the LLFS (Gunn
et al., 2022; Wojczynski et al., 2022). Polygenic Risk Scores (PRS)
for 54 health outcomes using genetic data of 8,190 samples were
calculated as described in the methods (Gunn et al., 2022). These
PRS reflect the relative genetic risk of developing the outcome in
carriers of combinations of risk variants compared to non-carriers.
These 54 outcomes include age-related diseases such as
Alzheimer’s disease, coronary artery disease, and a variety of
other traits related to mental health (e.g., bipolar disorder), and
general physiological characteristics as listed in Supplementary
Table S3. We further removed two PRS with very skewed
distribution (Supplementary Figure S3) and an additional five
PRS that had several potential outliers that lie 4 standard
deviations away from the means (Supplementary Figure S4).
We learned the partial correlation networks of the remaining
47 PRS using three methods: Fisher’s transformation test with
independent subsets of the data yielding a sample size ofN � 4193,
Fisher’s test on all data ignoring the correlation within families
(N � 8190), and the proposed cluster-based bootstrap algorithm
(N � 8190). In the first method, we generated independent subsets
by randomly sampling one subject per family. In the second
method, we used the Fisher’s test to all data ignoring the
family-based correlation. With the bootstrap algorithm, we

FIGURE 3
False positive rates across varying heritability for all edges with Ei,j � 0 in the first three graphs. The dashed line represents the constant significance
level α � 0.05 for each hypothesis test. The FPR of Fisher’s method (Fisher) is indicated by red triangles, and the FPR of naïve Bootstrap (naïveBootstrap) is
indicated by yellow circle, both showing an increasing inflation as heritability increases. In contrast, the FPR of the proposed Bootstrap method
(clusterBootstrap), represented by green square, remains constant regardless of heritability.
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sampled 1,000 datasets with 100% of families sampled each
sampling. We applied Bonferroni correction to control the
family-wise error rate (FWER) to be 0.05.

Figure 7 displays the networks constructed using the three
methods. The Fisher’s Z-transformation test identified 85 edges
(7.86% of the total 1,081 possible edges) using data of
4,193 independent subjects, while using the Fisher’s
Z-transformation test ignoring the correlations within families
identified 143 (13.2%) edges using data from 8,190 subjects. The
cluster-based bootstrap method applied to the data set of
8,190 subjects identified a total of 108 (9.99%) edges (Table 1;
Supplementary Figure S5). As expected, this number was between
the previous two methods since the analysis of the independent
observations used a sample size reduced by almost 50% and was less
powerful, while the method that analyzed all the data ignoring
correlations within families likely introduced false positive edges.
Table 1 and Figure 6 showed that the three algorithms identified
78 edges in common. The cluster-based bootstrap algorithm
identified an additional 30 edges that were also identified with
the Fisher’s test applied to all samples (Supplementary Table S4).
However, the latter method identified an additional 30 edges that
were not identified by either the Fisher’s Z-transformation test on
independent sample nor the bootstrap algorithm (Supplementary
Table S5). In the PRS network learnt with the bootstrap method,
43 PRS connected to each other and formed a single large cluster.
The PRS for intelligence had the highest degree and it connected to
14 other PRSs. These connections included traits such as birth

weight, height, educational attainment, cognitive performance,
and parental extreme longevity.

Evaluation of computation time

We evaluated the computation time of the cluster-based
bootstrap algorithm by calculating the CPU time of the
resampling steps and the inference steps. We ran the evaluation
using a single computer node with 1 core and R version 4.1.1. We
sampled 40, 400, and 4,000 families from the LLFS data, and
sampled 10, 20, 40 PRS. For each scenario, we obtained the
computational time for 50, 200 and 1,000 iterations with 100% of
the families resampled each iteration. The algorithm finished in 65 s
in the scenario with 40 PRS, 4,000 families and 1,000 iterations as
shown in Figure 8. Notably, the resampling step took 52 s that makes
up to 81% of the total CPU time.

Discussion

In this study, we introduced a novel cluster-based bootstrap
algorithm for learning partial correlation networks from correlated
data. We showed in simulated data that this algorithm effectively
controls the FPR while maintaining comparable power performance
to conventional methods. Although we described the method in the
context of family data, the cluster-based bootstrap algorithm can be

FIGURE 4
False positive rates across varying heritability for all edges with Ei,j � 0 in the simulated PRS graph. The dashed line represents the constant
significance level α � 0.05 for each hypothesis test. The FPR of Fisher’smethod (Fisher) is indicated by red, and the FPR of naïve Bootstrap (naïveBootstrap)
is indicated by yellow, both showing an increasing inflation as heritability increases. In contrast, the FPR of the proposed Bootstrap method
(clusterBootstrap), represented by green, remains constant regardless of heritability when number of clusters are large.
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directly applied to any correlated data setting without explicitly
modeling the correlation structure, as it is required in (Ribeiro and
Maria Pavan Soler, 2020).

To evaluate our approach, we conducted a comprehensive
simulation study that highlighted strengths but also potential
limits of this approach. The analysis showed that the algorithm
controls the Type I error well without loss of power when both the
number of families/clusters and the number of subjects large, such as
more than 40, and many subjects. This is consistent with the well-
known limitation that the bootstrap estimate of the standard error is
not accurate when the number of clusters is small and the test
statistics tends to be too liberal (Huang, 2018). This bias leads to a
higher FPR regardless of the heritability. Another limitation arises
when the sample sizes are smaller than the number of variables, as
the test statistic is no longer well-defined. When the heritability of
traits is less than 25%, the cluster-based bootstrap algorithm behaves
similarly to the Fisher’s test and the naïve bootstrap method that
ignores the correlation. However, in omics data analyses, most traits
exhibit high heritability, typically exceeding 30%. In such cases, it
would be optimal to use the cluster-based bootstrap algorithm if
investigators have sufficient computational capacity.

The application of the approach to the PRS analysis shows that
correcting for the within-family correlation reduced the number of
edges from 143 to 108 and was more powerful than analyzing a
subset of independent observations. Through the network analysis,
we identified PRS that functioned as central nodes with multiple
connections to other PRS. These central nodes include intelligence,

ankylosing spondylitis, juvenile idiopathic arthritis, height, heel
bone mineral density, and cognitive performance. Our cluster-
based method preserved important connections, such as the edge
between cognitive performance and FEV1 (Richards et al., 2005),
that were missed by Fisher’s test applied to the independent subset.
Some of the edges that were detected ignoring the correlation in the
observations appeared to be false positive, for example, the edge
between the PRS for intelligence and for FEV1. While our method
effectively reduces false edges caused by correlated data, the resulting
network remains highly connected and challenging to interpret. In
future work, we will extend this method to learn sparse networks
that yield more interpretable graphs.

The computational efficiency of our algorithm is a function of
various factors, including the number of bootstrap iterations, the
number of vertices, the number of families/clusters and total
number of samples. The number of families impacts the
resampling procedure’s runtime, while the number of nodes
influences the calculation of partial correlation matrices.
Furthermore, the cumulative effect of resampling and partial
correlation calculations per iteration significantly contributes to
the time needed for constructing Z-scores. A potential
improvement to computational efficiency would involve a faster
algorithm for calculating the inverse of the variance covariance
matrix especially when the number of vertices are very large.

The learning strategy implemented through our proposed
algorithms relies on testing multiple null hypotheses ρij � 0
against the alternative hypotheses ρij ≠ 0. It is important to

FIGURE 5
Power across varying heritability for all edges with Ei,j � 1 in the first three graphs. Power is evaluated at the adjusted significance level α* � 0.05, as
described in the power evaluation section. The dashed line represents the constant power at 0.8. Power decreases for all three methods as heritability
increases. The power of the proposed Bootstrap method (clusterBootstrap), represented by green square, is comparable to both the Fisher’s method
(Fisher) and the naïve Bootstrap method (naiveBootstrap).
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adjust the significance levels for these tests to control the family
wise error rate. However, due to the non-independent nature of
the performed tests, it is challenging to achieve precise
adjustments (Ribeiro and Maria Pavan Soler, 2020). In the
learning of the PRS networks, we applied the stringent

Bonferroni correction to control the FWER without
accounting for the effective numbers of tests, which could lead
to overcorrecting as shown by Drton and Perlman (2007). In
future work, we would like to introduce a better way to control the
FWER. As an alternative to controlling the FWER, the FDR

FIGURE 6
Power across varying heritability for all edges with Ei,j � 1 in the simulated PRS graph using proposed Bootstrap method. Power is evaluated as the
proportion of edges identified among 1,000 simulated datasets. The dashed line represents the constant power at 0.8. Power decreases as
heritability increases.

FIGURE 7
PRS networks inferred with Bonferroni correction. (a) Fisher’s test on sampled iid data, (b) Fisher’s test on all data, and (c) Bootstrap resampling
1,000 datasets and 100% families. Grey edges are edges identified in all three approaches; green edges are intersections by (a) and (b); blue edges are
intersections by (b) and (c); red edges are identified only by the corresponding approach. The numbers in each circle is a PRS as listed in Supplementary
Table S1.
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procedure by Liu (2013) is also a good solution that can be
integrated into our algorithm.

This work has some limitations. For example, we conducted
simulation studies using genetically independent traits. It is not
straightforward to extend our simulations to genetically correlated
traits since the variance-covariance matrix var(Y) �
(Φ − I) ⊗ HΣ + I ⊗ Σ is not guaranteed to be positive semi-
definite when H is not diagonal. However, the application to the
PRS in LLFS showed that our bootstrap method works well even

with some genetic correlations among traits. In fact, the heritability
of PRS is very high as shown in Supplementary Table S6 and the PRS
are genetically correlated since many of the outcomes shared
common SNPs. In addition, we limited our simulation study to
2-generation families, but it will be interesting to expand this study
to multi-generation families with a variety of relatedness patterns.
Our simulation assumed no inbreeding and an additive genetic
model, and some evaluation would be necessary to evaluate the
validity of this approach to different genetic models and other types

TABLE 1 Comparison of common edges inferred by the three methods.

Edges by Fisher’s (iid sample) Edges by Fisher’s (all sample) Edges by bootstrap Counts

0 0 0 936

0 1 0 30

1 0 0 2

1 1 0 5

0 0 1 0

0 1 1 30

1 0 1 0

1 1 1 78

This table compares the number of common edges identified between pairs of PRS networks using the three different methods. An edge value of 0 indicates no connection between two PRS,

while an edge value of 1 indicates a connection. The table shows that 78 pairs of PRS are identified as connected by all threemethods, whereas 936 pairs are identified as not connected by all three

methods.

FIGURE 8
The CPU time (in seconds) for the Bootstrap algorithm. The CPU time increases with the number of families, PRS, and iterations. The figure shows
results for 50, 200, and 1,000 iterations. According to the simulation study, more than 50 iterations are generally sufficient. For large numbers of families,
selecting 50 to 200 iterations can keep the total CPU time within 15 s.
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of correlated data. Finally, we did not include comparisons with
Lasso-based methods that address specifically the issue of sparsity
(Meinshausen and Bühlmann, 2010). This is an important topics
that we will address in future work. We did not address the impact of
skewed or heavy-tailed distributions, and we acknowledge that this
remains an important issue that needs further investigation before
our method can be applied to non-normally distributed data.

Conclusion

By displaying conditional dependencies into patterns of edges in a
network, GGMs offer a great statistical tool to represent intricate
relationships within data in an intuitive manner and could be
potentially very useful in the emerging field on multi-omics
integration. However, the generation of GGMs from correlated
data is a challenging task. We provided a simple method to derive
a GGM from correlated data that is computationally efficient and
appears to control the FPR without losing statistical power. This
approach could increase the use of GGMs in observational study data
that often, by design, generate correlated observations.
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