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miRNAs are promising diagnostic biomarkers. These small RNA molecules are
always present in the human body but become dysregulated when a person
develops certain diseases. Although the detection of these biomarkers in cell-
free tests is ongoing work, current systems often focus solely on detecting the
presence or absence of a specific miRNA, rather than the miRNAs concentration.
Thus, these tests may miss relative changes in miRNA concentration when disease-
induced dysregulation occurs. This work, part of the WUR iGEM 2024 project
(miRADAR), aimed to address this gap by incorporating an miRNA concentration-
dependent threshold mechanism in a cell-free diagnostic test. In this system,
continuous miRNA input concentrations need to be converted into a binary
output signal, classifying the miRNA concentration as healthy (no output signal)
or indicative of disease (strongoutput signal). To aid the experimental engineering of
the test, here we use mathematical models to evaluate and assess different
candidate networks. We apply a previously published multi-objective
optimisation strategy to obtain designs that satisfy relevant constraints, such as
low basal expression, high readout levels, and steep switching behaviour between
low and high input miRNA concentrations. Models for three different biological
mechanisms were compared based on their ability to generate the desired binary
output signal. One approach used three-node protein networks (such as feed-
forward loops), while theother twoutilisedRNA-based toehold systems.Overall, the
toehold-mediated strand displacement systems demonstrated the most potential
for experimental implementation. These systems are believed to be less
burdensome in a cell-free environment, can be more readily engineered for new
miRNA sequences, and showed high detection accuracy. Based on our results, we
discuss how the inclusion of sequence-specific parameters could expand the
design space of our mathematical models and how careful engineering of
optimisation criteria is required to evaluate designs. Ultimately, our model-based
study highlights that toehold-mediated strand displacement networks have the
potential to be efficient miRNA detection systems for biosensing tools in the future.
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1 Introduction

MicroRNAs (miRNAs) are a promising diagnostic marker and therapeutic agent.
Research has identified numerous miRNAs with potential clinical applications in the
detection and monitoring of neurodegenerative diseases such as Alzheimer’s and
Parkinson’s disease (Gentile et al., 2022; Doroszkiewicz et al., 2022). The inhibition or
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activation of miRNAs involved in such diseases has been extensively
studied as potential therapies (Walgrave et al., 2021; Nguyen et al.,
2022). These small, single-stranded molecules are present in the
body to regulate transcriptional gene expression (Lu and Clark,
2012). When carrying a disease, a person’s gene expression is
differentially regulated and these changes, when compared to
healthy controls, correlate with differential miRNA
concentrations. This information can be utilised in a diagnostic
tool, as measuring the change in concentration of disease-specific
miRNAs can indicate the presence of that disease (Song et al., 2012;
Wang and Zhang, 2020).

This principle formed the basis of the WUR 2024 iGEM project,
miRADAR, where miRNAs were used in a cell-free diagnostic tool to
help detect the neurodegenerative disease multiple sclerosis (MS)
(iGEM, 2024). In this disease, immune cells attack the myelin
sheaths of the nerves, leading to a range of symptoms including
muscle weakness and loss of vision (Ghasemi et al., 2017). The
current diagnostic procedure, involving MRI scans and lumbar
punctures, is invasive and believed to provide inconclusive results
for 10%–30% of the patients [Christa Benit MD, personal
communication; (iGEM, 2024; Tullman, 2013)]. At present, MS
has no cure, but treatments delaying the degradation of the myelin
sheaths and reducing symptom progression exist (Hauser and Cree,
2020). The earlier treatment is started, the better the quality of life of
the patient can be conserved, demanding a timely diagnosis of MS
(Giovannoni et al., 2016; Ziemssen et al., 2016). Previous studies
have found multiple miRNAs dysregulated by MS, of which hsa-
miR-484 and hsa-miR-145 are examples (Figure 1, step I) (Regev
et al., 2018; Søndergaard et al., 2013). This emphasises that novel
miRNA-based tests could be a valuable addition to the diagnostic
procedure of MS.

In themiRADAR project, theWUR 2024 iGEM team envisioned
creating a cell-free blood test to aid in diagnosing complex cases of
MS (iGEM, 2024). To achieve this, a simple genetic detection circuit

would need to be freeze-dried on paper discs. Upon the application
of an MS-positive blood sample, the presence of several MS-specific
miRNAs would trigger the genetic circuit and produce a colour
marker that the patient and medical professionals can then observe.
If the blood sample leads to a change in colour of the system’s
output, then this suggests the presence of MS-specific miRNAs.

The key of the test lies in the concentration level of the MS-
specific miRNAs; the miRNAs will always be present, but their
concentration can be up- or downregulated in patients (Regev et al.,
2018; Søndergaard et al., 2013; Ho et al., 2022). Current
developments in other miRNA-based cell-free tests either do not
take this into account and focus solely on detecting the presence of a
specific miRNA, or depend on a difference in visual output, which is
not sensitive enough when multiple miRNAs are detected in a single
test (Li et al., 2019; Wang et al., 2023). Therefore, the addition of a
concentration-dependent module is an important next step. Ideally,
this module would give a binary output, where either the miRNA
concentration is classified as healthy or indicative of the disease
(Figure 1, step II). This signal conversion could be achieved by
implementing a threshold mechanism, which distinguishes whether
a miRNA is below or above a threshold concentration associated
with healthy patients. No system output is generated when the input
miRNA concentration is considered healthy (below threshold),
while a large increase in system output is generated when the
input miRNA concentration is considered indicative of MS
(above threshold). The sharper this switch is, the more accurate
the miRNA-based diagnostic test will be. Afterwards, individual
binary signals can be integrated into a modular detection module
that produces a single output signal allowing for the detection of
multiple different miRNAs in a single test (Figure 1, step III). Two
biological mechanisms that have the potential to create the desired
threshold in the dose-response curve: i) a protein-based feed-
forward loop (FFL) and ii) RNA-based toehold-mediated strand
displacement (TMSD) systems.

FIGURE 1
The cell-free paper-based miRNA test for multiple sclerosis consists of three main parts: I) the selection of miRNAs that are markers of MS; II) the
conversion of the miRNA input concentration to a binary output signal, which differentiate healthy patients from those with MS. The dots represent the
input concentrations at which our model evaluates the output dose-response curve. The values f schematically illustrate our scoring criteria for the
models evaluated in this paper: f1 evaluates the switching concentration of our system designs, f2 evaluates the output concentration difference
between low and high input concentrations, f3 aims to measure (and reduce) basal output expression, and f4 evaluates the steepness of the system’s
switching behaviour. This concentration-dependent module is lacking in current cell-free paper-based miRNA test (this paper), and III) the modular
detection module, which combines the binary signal of each miRNA into a single output signal.
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1.1 Protein-based networks:
feed-forward loops

Many genetic circuits found in nature contain core network
motifs consisting of a limited number of components (Milo et al.,
2002). One example of such a network motif are feed-forward loops
(FFLs) where three nodes can interact (in)directly with each other
through activation and inhibition [Figure 2A; (Alon, 2007)]. FFL
nodes can consist of an interplay between transcription factors,
proteins, DNA, and RNA, and are consistently found to regulate
processes like adaptation, noise filtering, biphasic behaviour, and
oscillations (Ma et al., 2009; Pieters et al., 2021; Kim et al., 2008;
Zhang et al., 2016). The basic structure of an FFL consists of a direct
interaction between input node A and output node C, combined
with an indirect reaction through node B. The FFL is called coherent
if the direct effect of node A on node C and the indirect effect
through node B are consistent. An example of a coherent network is
that A activates C directly, but also activates B which also activates C

in turn: in this case, A has a net positive effect on C via both paths. If
the effect through both pathways is antagonistic, the FFL is
considered incoherent. Next to these main reactions from node
A to node C, additional regulation between the nodes is possible,
including autoregulation and feedback which allows for more
complex behaviour to emerge (Alon, 2007; Mangan and Alon, 2003).

Previous research has shown that such networks may be relevant
for our miRNA detection system. While looking for networks that
show adaptation using three-node networks, (Ma et al., 2009), also
found topologies capable of producing binary outputs (C in
Figure 2A) given input concentrations (D in Figure 2A) below
and above some threshold. A three-node coherent FFL has also
been shown in (Rahman et al., 2018) to create a dose-response curve
with threshold-like behaviour. Furthermore, through modelling
T-cell receptor binding, an incoherent FFL was found to be the
basis of larger networks capable of producing binary output
responses (Lever et al., 2016). Consequently, based on these
results, we hypothesise that transcription factor-based FFLs are a

FIGURE 2
Multi-objective optimisation of the FFL system. (A) Hypergraph representing three-node networks with all possible connections. The input is on
node A (D, arrow), while C is regarded as the output of the system. ωij represents the strength and type of node connection. Image adapted from (Otero-
Muras and Banga, 2017). (B)Multi-dimensional results of the optimisation strategy displaying the threshold distances (f1; absolute difference from Kexpected

of 50 nM) and the three highest slope intervals (f4; n from Hill function). The solutions are coloured according to their constraints on f3 (basal
expression) and f5 (number of node connections). Red dashed lines show slope optimisation boundaries. p: non-oscillating solution. †: oscillating
solution. (C) Dose-response curves for an FFL causing oscillations (blue) and one without (orange), and a perfect binary response (purple). Kexpected =
50 nM. (D) Time responses for an oscillating system (blue, O) and non-oscillating system (orange, NO) for 3 doses D: one below (30 nM), one at (50 nM)
and one above (70 nm) the Kexpected of 50 nM.
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good candidate for the genetic network required within the
miRADAR cell-free test.

1.2 RNA-based networks: toehold-mediated
strand displacement

The goal of the miRADAR project was to develop a cell-free
paper-based test, which increases accessibility for patients. To create
an efficient cell-free system, we are required to limit the number of
biological components needed to produce an output. As we envision
that our FFL systems consist of transcription and translation of node
components, our cell-free test will also require compounds to
process DNA and RNA into protein which will accelerate energy
usage and could limit output responses (Stögbauer et al., 2012). To
combat this issue, a more energy-efficient system based solely on
base-pair binding called toehold-mediated strand displacement
(TMSD) could prove useful. At the core of TMSD lies a double-
stranded RNA complex, with a free annealing region called the
toehold (Zhang and Winfree, 2009). An input RNA with a
complementary domain to the toehold and the rest of the RNA
strand will anneal to the toehold and displace the first-bound RNA
strand, as its hybridisation energy is higher. In a kinetic model, this
TMSD reaction can be simplified into one rate because the initial
toehold annealing is the rate-limiting step (Qian and Winfree, 2011;
Akay et al., 2024). The sequence design determines which reaction
will proceed at which rate, enabling engineering of the mechanism to
desired needs (Zhang and Seelig, 2011). With the addition of other
strands, behaving like inhibitors or catalysts called fuels, the TMSD
reaction can be expanded to perform multiple functions (Qian and
Winfree, 2011; Chen et al., 2023). Here, two variants of TMSD will
be tested, namely i) with fuel reactions (TMSD-F) and ii) without
fuel reactions (TMSD-NF).

The TMSD system has previously been integrated into miRNA
diagnostic tests as an amplification module (Liang et al., 2020; Zhang
et al., 2020). The miRNA concentrations can be measured, but this
TMSD systemwas not sensitive enough to detect small dysregulations
in miRNA concentration levels in the proposed MS test (Lee et al.,
2021). Previous studies illustrated the potential of TMSD-based
systems to produce binary system outputs that differentiate
between low- and high concentrations of miRNA (Qian and
Winfree, 2011; Seelig et al., 2006). However, both approaches do
not generate a sharp enough switch and suffer from high basal
expression, which impairs the quality of the binary signal.

To improve on the initial TMSD system, (Qian and Winfree,
2011), added two new reactions. We will refer to this system as
TMSD-F (Figure 3A). The first reaction utilised miRNAs with
antisense sequences to the input miRNA in order to compete
with the TMSD reactions and prevent the system responding
until sufficient input miRNA was present. The second additional
reaction, referred to as the fuel reaction, created a positive feedback
mechanism whereby input miRNAs could repeatedly trigger the
TMSD gate. These additions allowed the system to approach binary
output responses given different input miRNA concentrations.
Furthermore, all the reactions within this expanded TMSD
system make use of the same toehold sequence, referred to as the
universal toehold. The universal toehold increases modularity and
allows for multiple TMSD reactions to be linked to each other, but it

also generates side reactions that have an unknown influence on the
quality of the resulting output dose-response curve.

The miRADAR project also considered a further simplification
of the TMSD-F system (iGEM, 2024). This new system removed the
fuel component and the universal toeholds. Consequently, we
named the system TMSD-NF (Figure 4A).

1.3 Multi-objective optimisation algorithms
for model design

FFL and TMSD are biological mechanisms that could, with
further optimisation, form a sharp threshold in the dose-response
curve. With the described kinetic models, we wish to optimise the
parameters of our systems to increase the accuracy and steepness of
the threshold while additionally lowering the basal expression before
that threshold point (Figure 1, step II, see a schematic of these
behaviours labelled f1-f4). Previous research has varied parameters
of FFL networks to observe how parameter relationships impact FFL
performance (Ma et al., 2009). However, an exhaustive search, as
used in (Ma et al., 2009), can be extremely computationally
demanding. Therefore, the mixed-integer multi-objective
optimisation framework laid out by (Otero-Muras and Banga,
2017) is a good fit to efficiently search the model design space.
By tackling the problem as an optimisation problem instead, FFL
networks were able to show behaviour like adaptation, oscillation,
and fold-change detection (Otero-Muras and Banga, 2017; Otero-
Muras and Banga, 2016). The wide range of applications indicates
that an FFL engineered to produce a binary response should
be possible.

In multi-objective optimisation problems, trade-offs between
different objectives are likely. As an example, one could envision
that, for the thresholdmechanisms, a higher slope (i.e., the sharpness
of the increase between “healthy” and “disease” in Figure 1, step II,
f4) would reduce the threshold accuracy (i.e., is the lowest output-
producing input concentration close to the desired switching/
threshold concentration; f1 in Figure 1, step II). The algorithm
from (Otero-Muras and Banga, 2017) does not search for the sole
most optimal solution in the complete objective space but finds the
best solution in a specific part of one objective space. Essentially, the
multi-objective optimisation is transformed into multiple single-
objective optimisations. This method is also known as the ε-strategy,
which has been applied to various multi-objective optimisation
problems, including ones outside the biological domain (Du
et al., 2014; Elmi et al., 2023). Given the slope and threshold
accuracy example above, the slope objective space can be split
into multiple constrained intervals. Inside each slope interval, the
difference between simulated and desired threshold is minimised
with a local optimisation routine. Finally, all the results can be
combined such that the whole objective space is visualised by
plotting the different objective values against each other. This
way, it is possible to find the trade-off these two objectives might
have, which helps to engineer the systems further. From these
results, we can infer which network characteristics are important
for our desired system behaviour (Mavrotas, 2009). Such concepts
are related to Pareto fronts or Pareto optimality that have been
utilised before in biological engineering problems (Boada et al.,
2016; Taneda, 2015; Szekely et al., 2013).
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By applying the above-described optimisation strategy of
(Otero-Muras and Banga, 2017), in this work we will optimise a
protein-based FFL network and our two RNA-based TMSD
systems (TMSD-F and TMSD-NF) to increase their
functionality as threshold mechanisms. We will go on to show
that all three network designs have the potential to produce near-
binary output signals in response to different input miRNA
concentrations. These results will show that TMSD-based
networks outperform FFLs in their ability to respond to
different miRNA inputs, and we will discuss how TMSD
networks could be further engineered in the future. These
findings advance the study of miRNAs as a diagnostic tool by
exploring the necessary concentration-dependent module that
current tests lack.

2 Methods

2.1 Mathematical models

2.1.1 Three-node networks and feed forward loops
The feed forward loop (FFL) system consists of three nodes,

which can inhibit or activate each other and themselves (Figure 2A).
We assume these connections to represent transcription and
translation where one node’s mRNA is translated to a
transcription factor that can regulate preceeding nodes. A single
node connection, denoted ω, in our three-node networks can be
described by combining the regulation type y and regulation
strength x into ω (ωij � xijyij), where node i acts on node j
(Otero-Muras and Banga, 2017). The regulation type y is an

FIGURE 3
(A)Multi-objective optimisation of the toehold-mediated strand displacement with fuel (TMSD-F) system. I) The threshold reaction: input strand D
anneals to the threshold strand TH to produce a waste strandW. II) The fuel reaction: the fuel strand F releases input D from C2 to produce D and C3. III)
The TMSD reaction: input strand D anneals to C1 to form C2 and intermediate output IO. IV) The reporter reaction: intermediate output IO displaces the
quencher R resulting in fluorescenceO and awaste strandW. With a longer toehold, reaction I can proceed at a faster kinetic rate (kf ) than reactions
II-IV (all ks). The universal toehold is shown in pink. Image adapted from (Qian and Winfree, 2011) (B) Multi-dimensional results for the TMSD-F
optimisation displaying the threshold accuracy (f1; absolute difference from Kexpected) and slope (f4; n from Hill function). The solutions are coloured
according to their additional constraint on f3 (basal expression). Kexpected = 50 nM. Red dashed lines show slope optimisation boundaries. p: best-
performing solution. (C) Dose-response curves of the best-performing TMSD-F (orange), unoptimised TMSD-F [green, (Qian and Winfree, 2011)] and a
perfect binary response for Kexpected = 50 nM (purple).
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integer with three possible values: 1 for activation, −1 for inhibition
and 0 for no effect. The regulation strength x can take any real positive
number, with higher numbers reflecting a higher effect. The three-
node network is represented as a combination of all the possible ω’s.
Importantly, we are not restricting or enforcing the FFL structure on
our resulting three-node networks with the hope that we may uncover
previously studied networks from our analysis (as in Ma et al., 2009).
The dynamics over time for one node— A, B, and C— are modelled
as an ordinary differential equation, which incorporates the necessary
ω’s into the equations. Each ODE consists of a Michaelis-Menten-
style production term, whereby production is inhibited by proteins
within the network, and a linear degradation term. The input miRNA,
D (Figure 2A), regulates production of A and is assumed constant
over time since the half-life of many miRNAs is longer than the
timeframe of our systems [estimated to be approx. 16 h in (Wang and
Liu, 2022)]. The complete set of model equations are in
Supplementary Methods S1.3.

The ODEs were solved with a CVODES solver provided by
Serban and Hindmash which was adjusted by Otero-Muras and
Banga (2017) to accommodate mixed-integer parameters (Otero-
Muras and Banga, 2017; Serban and Hindmarsh, 2005). The
absolute and relative tolerance were defined as 10−12 and the
maximum step size was set to infinity as specified by Otero-
Muras and Banga (2017).

2.1.2 Fuel-regulated toehold mediated strand
displacement system

The ODEs for toehold mediated strand displacement system
with a fuel reaction (TMSD-F) were derived by Qian and Winfree
(2011) and based on the law of mass action. The system has two
kinetic rates: a fast kinetic rate (kf) and a slow kinetic rate (ks), and
we assume that all fast or slow reactions proceed at the same rate.
The threshold reaction (Figure 3A, I has to take place quickly (with
rate kf) as the input miRNA, D, needs to bind with the threshold

FIGURE 4
(A) The TMSD-NF system analysed by theWUR 2024 iGEM team. I) The threshold reaction: inputD anneals to threshold strand TH to form a complex
D − TH. II) The TMSD reaction: D binds to TH − IO to release intermediate output IO and D − TH. III) Aptamer reaction: aptamer P anneals to intermediate
output IO to produce fluorescenceO (denoted by a star). The toehold is shown in orange. (B)Normalised dose-response curves for the FFL (blue), TMSD-
F (orange), TMSD-NF systems (pink) and a perfect binary response (purple). The curves were normalised by dividing the fluorescent output for each
dose by themaximum system output. Kexpected = 50 nM. (C) Parameter space exploration of the TMSD-NF system. The kf

ks1
ratio (log scale) is plotted against

the score (maximum of 10). The colour bar represents the log10(ks2).
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sequence, TH, before the TMSD reaction takes place and D is used
to produce an output, O (Figure 3A, III). The faster kinetic rate
occurs as a result of designing a longer toehold to initiate the
reaction, which increases the hybridisation energy (Zhang and
Seelig, 2011). The addition of a fuel component, F, allows for the
re-use of input miRNA sequences,D, to produce output,O. The fuel,
TMSD, and reporter reaction are initiated by the same toehold
sequence, referred to as the universal toehold (Figure 3A, II–IV). As
the same sequence is used, we assume that these reactions proceed at
the same rate ks (Qian and Winfree, 2011; Akay et al., 2024). These
four main reactions are accompanied by side reactions (denoted
waste sequences,W) caused by the universal toehold and a leakiness
reaction, where the fuel strand directly produces intermediate
output. Using the law of mass action, the reactions presented in
Supplementary Methods S1.4 can be translated into ODEs for the
input miRNAD, threshold sequence TH, the waste sequenceW, the
TMSD sequences C1, C2, and C3, the intermediate output IO, the
reporter R, and the output O.

The ODEs were solved with the MATLAB CVODES stiff solver
under standard parameters, except absolute tolerance = 10−6 and
relative tolerance = 10−6 so solutions with high accuracy could be
achieved (Gardner et al., 2022; Hin et al., 2005). With the kinetic
rates determined from data by Qian and Winfree (2011)
(Supplementary Table S3), our model reached steady state in
2,500 s (Supplementary Figure S11) which is a similar time-
frame as the original publication. Consequently, we measured our
simulated output at this timepoint during the optimisation process
(Supplementary Figure S11).

2.1.3 Toehold mediated strand displacement
systems without fuel

The ODEs for the fuel-removed TMSD system (TMSD-NF)
were adapted from TMSD-F and consist of an equation for the
threshold reaction (with rate kf), the TMSD reaction (with rate ks1)
and the binding to a fluorescent aptamer (with rate ks2; Figure 4A).
The complete set of model reactions and equations are in
Supplementary Methods S1.5. The ODEs describe the change
over time of the input miRNA D, the threshold sequence TH,
the resulting complexes formed with the intermediate output IO and
the output sequence P.

The ODEs were solved with the MATLAB CVODES non-stiff
solver using standard parameters, except absolute tolerance = 10−6

and relative tolerance = 10−6 (Gardner et al., 2022; Hin et al., 2005).

2.2 Mathematical representation of a dose-
response curve

Mathematically, dose-response curves can be described with the
Hill function

O � I + Omax
Dn

Kn
Hill +Dn

, (1)

where KHill is the concentration of input miRNA D that results in
half of the differential system output O (Ang et al., 2013), i.e. if
KHill � D then the system reaches half the maximal output possible
(I + Omax/2) where the intercept I is the system output O at D � 0.
The slope of the curve is denoted by n. The ODEs of each system had

to be simulated for multiple input doses of miRNA D to generate a
dose-response curve from which the parameters of the Hill function
could be extrapolated and used in scoring functions.

Simulating a large number of doses would slow down the
optimisation drastically, so a minimal amount of doses, which
still accurately represent the curve, had to be determined
(Supplementary Methods S1.1). In total, 19 doses are necessary
to create an accurate dose-response curve, with 10 of the total doses
centred around the threshold dose. This is shown schematically in
Figure 1 (step II).

2.3 Optimisation objectives

The objectives of the optimisation of the FFL and TMSD-F
systems are based on the desired dose-response curve (Figure 1, step
II). Ideally, this curve has i) a high threshold accuracy, ii) a high
system output after the threshold is passed, iii) a low basal
expression before the threshold, and iv) a steep slope.

The K from the Hill function (Equation 1) should be at the dose
where the miRNA-dependent threshold should be. Therefore we
want to minimise the difference between the threshold
concentration we want (Kexpected) with the threshold
concentration we obtain with our model (KHill). We define our
first objective to minimise this difference following

f1 KHill( ) ≔ min KHill −Kexpected( ), (2)

where KHill is calculated with the Hill function obtained from an
optimisation solution and Kexpected is the desired threshold value.
This objective was minimised in the optimisation, and we will refer
to this as minimising the threshold differences or maximising
threshold accuracy. The other three objectives were set as
optimisation constraints, meaning that objectives f2, f3 and f4

are constrained to user-input values that comply with well-
performing dose-response curves.

The second objective, which assesses the maximum system
output can be defined as constraint

f2 O D( )( ) ≔ l1 < log10 O Dend( ) − O D1( )( )< u1, (3)
where the lower boundary l1 and the upper boundary u1 were set to
reach the known maximum system output. For FFL the boundaries
were set to l1 � 1 and u1 � 1.5, while for TMSD-F u1 � 2.5. By
defining l1 ≥ 1 then we are enforcing our output atDend, O(Dend), to
be greater or equal to the output produced at the lowest input
concentration, O(D1). Next, the basal expression was quantified by
summing up the system outputs induced by the four lowest doses of
input miRNA

f3 O D( )( ) ≔ l2 < ∑
4

i�1
O Di( )< u2, (4)

where i represents the index of the dose D and both l2 and u2 are a
user-input value to constrain the basal expression. In this work, l2 is
always set to 0, while u2 is set to 2 for the FFL optimisation and 7.5 or
15 for the TMSD-F optimisation. The decision to use the four lowest
input doses is discussed in Supplementary Methods S1.1, 1.2 where
we show that simulating more input doses increases computational
time to optimise a single model, whilst including more doses within
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this scoring function does not influence the score per data point for
an optimal model.

According to (Otero-Muras and Banga, 2017), the slope
objective was split into multiple interval constraints. This
objective function was consequently defined as constraint

f4 n( ) ≔ l3 < n< u3, (5)
where the Hill function was used to calculate slope n, which had to
remain inside the interval boundaries l3 and u3 for a solution to be
accepted. The values for l3 and u3 are iteratively updated, so f1 was
separately optimised for each interval. In this work, we optimised the
system 10 times for 10 evenly spaced intervals between 0 and 20. We
assume that values of n above 20 are not biologically feasible and
higher values do not lead to much improvement in the dose-
response curve. The first single objective optimisation thus
minimised f1, while f4 was kept between a value of 0 and 2.
The second optimisation then aimed to minimise f1 with f4

constrained to bounds of 2 and 4, and so on.
In the optimisation of FFL and three-node networks, a fifth

constraint objective was added to limit the number of node
connections as follows

f5 y( ) ≔ l4 < ∑
i,j

|yi,j|< u4, (6)

with i � A, B, C and j � A, B, C resulting in a summation of
9 absolute y (regulation effect) values in total. The bounds l4 and
u4 are user-input integers and were defined here as l4 � 0 and u4 � 4
to limit the total connections in our three-node system to a
maximum of 4. In a three-node network the maximum amount
of node connections is 9 and we do not enforce the FFL structure on
our networks.

2.4 Multi-objective optimisation algorithm

The optimisation algorithm combined the global solver eSS
(enhanced scatter search; release 2010A) and the local solver misqp
(for FFLs and three-node networks; version 7.1) or fmincon (for TMSD
systems; version MATLAB 2024a) into a hybrid solver (Otero-Muras
and Banga, 2017; Egea et al., 2009; Exler and Schittkowski, 2007). After
10 iterations of the global solver, the local solver refined the best
solution. This process was repeated until a total of 10,000 evaluations
were completed. In the global solver, 320 diverse solutions were initially
generated. From these, 20 solutions were put in the reference set, whose
values were iteratively updated to the 20 new best solutions (Otero-
Muras and Banga, 2017). All solver parameters were obtained from
(Otero-Muras and Banga, 2017).

2.5 Latin hypercube sampling for parameter
space exploration of TMSD-NF

The TMSD-NF system consists of three reactions rates (kf, ks1,
and ks2). This allows us to more extensively assess the relationship
between these parameters and system performance. To do this, we
sampled permissible parameter space for the TMSD-NF system with
a Latin Hypercube sample (nsamples = 10,000). The objectives

presented above were slightly adjusted to better fit the behaviour
of the TMSD-NF system, which has linear dose-response curves that
cannot be described by the Hill function.

The maximum output of the system is determined by the known
concentration of aptamer P (Supplementary Methods S2.3.1).
Therefore, we know what the expected maximum output Omax of
the system should be (Omax,expected). We, therefore, scored how close
the observed maximum output is to the expected maximum as

s1 O( ) ≔ Omax,observed − Omax,expected. (7)
to score the basal expression before the threshold, the formula
remained unadjusted from above, except the lower and upper
boundaries were removed:

s2 O D( )( ) ≔ ∑
4

i�1
O Di( ). (8)

to measure the steepness of TMSD-NF systems, we replaced
function f4 (Equation 5) with

s3 O D( )( ) ≔ ∫Dend

D�Kexpected

d O D( )
d D

dD. (9)

this change was required since TMSD-NF systems produced optimal
dose-response curves with sharp transitions between healthy and
disease regimes (Figure 1, step II) once the threshold input dose has
been crossed - a qualitatively different behaviour to which we had
before. This means that fitting a Hill function, approximating n and
using f4 as a scoring metric, in these cases became unreliable in
high-throughput since the concentration where the output was half
the maximal value could not be fixed to Kexpected. In the
Supplementary Methods S1.2 we discuss the impact of this
change and show that, for simulated test cases, the formulation
of s3 produces qualitatively the same results as function f4.

The change in gradient just before and after Kexpected indicates
the threshold accuracy, where a higher value correlates withminimal
differences between the observed threshold and the expected
threshold. The corresponding scoring function is defined as

s4 ≔
d O DKexpected−1( )
d DKexpected−1

− d O DKexpected+1( )
d DKexpected+1

. (10)

The final score was computed as

Score � w1s1,rescaled + w2s2,rescaled + w3s3,rescaled + w4s4,rescaled, (11)
where w1 � 0.1 and w2 � w3 � w4 � 0.3 and
sn,rescaled � l + [ sn−sn,min

sn,max−sn,min
](u − l). The lower boundary l of the

rescaling was set to 0 and the upper boundary u of the rescaling
was set to 10. sn,min and sn,max are the minimum and maximum
values for each corresponding set of scoring function outcomes from
our sampling. The rescaling to a standardised range of 0–10 was
necessary for a fair comparability of the different scoring functions
as they originally varied over different ranges. Without this, scoring
functions with large outcome values would disproportionately
influence the final score. The scoring function s2 was reverse-
coded to convert the lowest basal expressions to the highest
scores. The scoring function s1 was assigned a lower weight
because it was consistently observed to achieve satisfactory values
and thus less helpful in differentiating the curves.
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3 Results

3.1 Optimising three-node networks and
feed-forward loops

The first mechanism applied to convert continuous input
concentrations of miRNA into a binary fluorescent signal are
three-node networks, of which the FFL system is a special
example (Figure 2A). In the multi-objective optimisation process
(Section 2.3, Equations 2 - 6), the threshold accuracy (f1), i.e. how
close the KHill of the dose-response curve is to Kexpected, was
optimised under additional constraints on the basal expression
(f3), slope (f4) and the number of node connections in the
network (f5). The closer the value for f1 is to 0, the smaller the
difference is between the system’s value of K and what we wish to
achieve. Conversely, this could be a considered as maximising the
threshold accuracy. We visualise our results over a two-dimensional
f1-f4 sample space, i.e. the threshold difference is plotted against
the slope from the estimated Hill function. Multiple intervals of
slope values n, ranging from 0 to 20 in increments of 2, were tested,
resulting in ten combinations of threshold accuracies (f1) and slope
values (f4). Based on our results, we observed a trade-off where
higher slope values (f4) combine with lower threshold differences
(f1). The effect of limiting the basal expression (f3) or the number
of node connections (f5) in our three-node networks was judged
according to their effect on f1 and f4.

According to the plotted search space, our three-node
systems consistently reached minimal threshold differences,
showing that high threshold accuracies are robust to changes
in the slope of output dose-response Hill functions (Figure 2B;
Supplementary Figure S4). These values were reached regardless
of the limits set by f3 and f5, indicating that low basal
expressions and fewer node connections do not compromise
the slope and threshold accuracy. In other words, it is possible
to construct a three-node system complying with all the set
objectives. Outliers with poor threshold accuracies exist but
this was an issue for every constraint combination, suggesting
that the algorithm might sometimes be stuck in a local minima
(Supplementary Figure S4).

Based solely on the objective values, multiple well-performing
systems exist but this is not reflected in the simulated dose-response
curves. There, some curves show irregular behaviour, where the
output at higher doses of input miRNA is not constant. As an
example, from two systems performing similarly in ourf1-f4 search
space, one dose-response curve shows irregular behaviour (Figures
2B,C, dagger), while the other does not (Figures 2B,C, asterisk).
Their respective responses over time expose that systems with
irregular dose-response curves do not reach steady states, but
instead, oscillate (Figure 2D). The differences in behaviour are
reflected in the topologies of the system (Supplementary Figure
S6). Both non-oscillating and oscillating FFL mechanisms involve
strong negative regulation on A (either through ωAA, ωBA or ωCA).
Our non-oscillating systems tend to form more regular FFL systems
or linear pathways, but oscillating systems form a Goodwin
oscillator [positive ωAB, positive ωBC and negative ωCA;
(Goodwin, 1965)]. Therefore, careful design of three-node
networks to constrain our algorithm to FFL systems could thus
be vital to prevent oscillations.

3.2 Optimising fuel-regulated
toehold systems

The TMSD system solely relies on nucleotide binding, providing
an advantage over the energy-demanding transcription and
translation necessary for the functioning of an FFL. The TMSD-F
system contains a fuel strand, which catalytically speeds up and
increases the production of fluorescent output (Figure 3A II). The
same objectives as for the three-node networks, except for f5, were
applied to optimise the reaction rates and improve the dose-
response curve produced with the TMSD-F system from (Qian
and Winfree, 2011).

Basal expression limits (f3, Equation 4) of 7.5 nM and 15 nM,
alongside unconstrained f3, were used as constraints for TMSD-F
optimisation. The effect on the threshold accuracy (f1, Equation 2)
and slope (f4, Equation 5) were again evaluated over a two-
dimensional space. A restriction of f3 to 15 nM did not affect
the threshold accuracy of the switch compared to unconstrained
basal expression (overlap of orange and blue dots in Figure 3B).
However, further reducing the basal expression to 7.5 nM
detrimentally reduced the threshold accuracy, especially for lower
slope values (red dots in Figure 3B). The plotted dose-response
curves revealed that the curve shifts slightly to the right of the
Kexpected when f3 was limited to 7.5 nM, which reduced the
threshold accuracy (Supplementary Figure S7). In contrast to our
three-node networks and FFL systems, no oscillations are observed
in the dose-response curve.

From the observed search space, we discovered that constraining
our slope n to be between 16 and 18 (f4) and the basal expression to
be at most 15 nM (f3) provided a desirable solution for our
purposes. The resulting network combines the minimal difference
between simulated and expected K value, a high slope n, and a limit
on the basal expression (Figure 3B, asterisk). Compared to (Qian
andWinfree, 2011), the optimised system had a slower ks rate, which
slows down the production of the system output and is beneficial in
reducing the basal expression [Supplementary Table S3; (Qian and
Winfree, 2011)]. The slower ks rate caused the time needed to reach
the maximum system output to increase from 2,500 s in (Qian and
Winfree, 2011) to 20,000 s in the optimal system [Supplementary
Figure S11; (Qian and Winfree, 2011)]. This is coupled to a faster kf
rate, which ensures faster binding of the input miRNA to the
threshold strand, further lowering the basal expression and
increasing the threshold accuracy (Supplementary Table S3). To
illustrate this, we performed sensitivity analysis that further
highlighted this beneficial change in rates compared to (Qian and
Winfree, 2011), as both a slower ks rate and a faster kf reduces the
fluorescence output at low input dose concentrations
(Supplementary Figure S8; (Qian and Winfree, 2011)).
Interestingly, decreasing the rate kf decreases the sensitivity of
the system to changes in ks, whilst increasing ks decreases the
system’s sensitivity to changes in kf across different input
miRNA doses (Supplementary Figures S9, S10). The possibility to
adjust the rates of the TMSD-F by changing the length and
nucleotide composition of the strands suggests that these systems
are relatively easy to engineer compared to the protein-based
FFL systems.

With these results in mind, the improved threshold accuracy,
higher slope and reduced basal expression of the optimised TMSD-F
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produces the dose-response curve shown in Figure 3C. Compared to
our three-node systems, the better engineering possibilities and the
absence of oscillations are great advantages for employing the
TMSD-F system as the concentration-dependent module in our
miRNA diagnostic test.

3.3 Optimising toehold systems in the
absence of fuel reactions

As the kinetic model of the TMSD-NF system was adapted from
TMSD-F, we assumed that the rates of similar reactions could be
transferred between the systems (Figure 4A). Therefore, the
threshold reaction proceeds again with rate kf, while the TMSD
and aptamer binding reaction proceed with rates ks (here named ks1
and ks2, respectively).

In simulations with these reaction rates, the TMSD-NF system
generates more linear dose-response curves than the TMSD-F
system. The TMSD-NF system showed minimal basal expression,
but the slope of the dose-response curve was less steep than in the
TMSD-F system (Figure 4B, pink line). To test whether the decrease
in basal expression was due to removing the fuel reaction, the initial
concentration of the fuel component was set to 0 in the TMSD-F
system, thereby eliminating the fuel reaction (Supplementary Figure
S12). The simulations showed a small increase of basal expression in
the absence of the fuel reaction.

To further engineer the TMSD-NF system, the initial
concentrations of intermediate output IO (in complex with TH)
and aptamer P were adjusted to observe the trade-off between
maximum system output and the slope of the resulting dose-
response curve (Supplementary Figures S17, S18). Concentrations
of IO and P equal to 1

3Kexpected produced dose response curves with
steep slopes and high levels of fluorescence when miRNA inputs are
above Kexpected (set to 2 nM in Supplementary Figure S18).
Consequently, though, the fluorescent output cannot exceed
1
3Kexpected, which could be problematic when trying to detect
miRNA with low threshold concentrations between off- and
on-states.

In Qian and Winfree (2011), the system was designed on the
assumption that the threshold reaction should be faster than the
TMSD reaction (i.e., kf > ks1) to produce a dose-response curve that
converts the continuous input into a binary output. This principle
was transferred to the TMSD-NF system. According to sensitivity
analysis of the ODEs, the kf and ks1 rates have opposing effects on
fluorescent outputs (Supplementary Figure S13). At low input
miRNA levels, increasing kf decreased output fluorescence whilst
increasing ks1 led to increased output. Furthermore, the sensitivities
were constant over time, possibly owing to the system reaching
steady state almost instantaneously (Supplementary Figure S16). As
with the TMSD-F system, we saw that increasing ks1 (or decreasing
kf) leads to the system being more robust to changes in kf (or ks1;
Supplementary Figures S14, S15). Therefore, we hypothesised that
the behaviour of the system is mostly dependent on the ratio
between rates kf and ks1.

To test this observation, a Latin Hypercube sample (Section 2.5)
was created of the permissible parameter space to get a better
understanding of the relationship between these TMSD-NF
parameters. The permissible parameter space is defined by

scoring functions s1 to s4 (Equations 7 - 10). Upon plotting the
ratio kf

ks1
against the performance score (Equation 11), a clear trend

emerged. The larger the ratio, the better the dose-response curve is
observed by high score values. From roughly kf

ks1
� 103 onwards, the

TMSD-NF system always manages to produce the intended
outcome (Figure 4C). Interestingly, ks2 has a defining character
when the ratio is small. Even though kf < ks1, a low-binding aptamer
(low ks2) led to a high score. Potentially, the output TMSD strand IO
is produced much quicker, but IO must accumulate to larger
quantities to overcome the poor aptamer binding imposed by ks2.
In this sense, the aptamer P creates the threshold instead of the
antisense strand TH. Nonetheless, our results suggest that a
threshold reaction should have a kf that is at least 1,000 times
faster than ks1. This can be achieved by extending the toehold length
of the threshold reaction, thereby increasing kf, or shortening the
toehold length of the TMSD reaction described by ks1.

3.4 Comparison of the three systems

As many miRNAs can differentiate between healthy people and
patients diagnosed with MS, we want to create a system that can
respond to a suite of differentially-expressed miRNAs. However,
each miRNA will have a different threshold concentration that
distinguishes between healthy patients and those with MS.
Therefore, the concentration-dependent module requires a
modular design that is easily adaptable to new Kexpected values.

By changing the input concentrations of the system, where the
threshold strand (TH) concentration is equal to Kexpected, we can
study how adaptive the systems are to new threshold values
(Figure 5). The switching behaviour of the TMSD systems
(yellow and pink lines) track the value of Kexpected used in the
simulations, indicating good adaptive behaviour to new input
miRNAs necessary for a modular system. Conversely, regardless
of input miRNA’s Kexpected values, the FFL system will always
produce the same dose-response curve, which converts the
miRNA input to a binary output at Kexpected equal to 50. For a
new threshold value, the optimisation of our three-node networks
would have to be redone to find the best topology, which is
disadvantageous relative to the easy changes in input
concentrations that can be made for the TMSD systems.

Focussing back on a Kexpected of 50 nM, the FFL system does
have a very high threshold accuracy, an acceptable basal expression,
and a sufficiently steep slope (Figure 5C). The FFL topology does not
oscillate over time resulting in the maximum output of the system,
20 nM, being consistent after the Kexpected mark (Supplementary
Figure S5). In comparison, the TMSD-NF system has an even lower
basal expression and a similar slope, but the maximum output of the
system is limited by the Kexpected value as discussed above. The
incorporation of the fuel reaction in TMSD-F introduces both
benefits and limitations compared to the other two systems. The
maximum possible fluorescence is the highest of the three systems
and can be engineered to be even higher, but this comes at the cost of
high basal expression (Figure 5C). Limiting the basal expression
further might further slow down the system which would be
undesirable depending on the system’s application. The TMSD-F
system does accurately detect the threshold, and the slope in the
dose-response curve is the steepest out of the three systems.
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In the final diagnostic test, our results recommend the use of
TMSD systems as the chance of oscillations and the limited
scalability of three-node networks, like the FFL system, are
undesired. The TMSD-F system has the most potential if further
reduction of the basal expression can be achieved. TMSD-F has a
high threshold accuracy, the highest slope and the highest maximum
system output. The latter point, in particular, is a disadvantage of the
TMSD-NF system, where the maximum system output is relatively
low. If further optimisation of the TMSD-F system proves difficult,
the system would be best employed at low Kexpected values as the
increase in system output provided by the fuel is most relevant at
these input concentrations. At higher Kexpected values, the basal
expression of the TMSD-F system can increase and cause false
positives, so for those Kexpected values, the TMSD-NF system might
be preferred. Ultimately, we have shown the TMSD systems have the
theoretical potential to be simply engineered for application as
concentration-dependent modules in a range of miRNA-based
detection tools.

4 Discussion

In this work, we have utilised a previously published multi-
objective optimisation strategy to design biological mechanisms that
are capable of converting (continuous) miRNA inputs into binary
output signals. As per the last section of the results, the RNA-based
TMSD systems outperform the protein-based three node FFL
system. These TMSD systems can easily be adapted to other
input miRNAs (with different Kexpected values), have a high
threshold accuracy, and do not cause aberrant behaviour such as
oscillations. Crucially, though, our key insights into the functioning

of toehold systems are yet to be experimentally validated. The
previous success whereby models of toehold systems have been
experimentally validated (see the Supplementary Material of Qian
andWinfree (2011) for examples) gives us hope that the conclusions
we discuss below apply in experimental contexts too. We will
highlight here how our modelling framework can be extended to
account for more biological detail, which experiments would be
needed to provide more information to our model, and how our
results can be translated into experimental insights by future iGEM
teams and researchers.

4.1 TMSD engineering

The fuel reaction in particular is an interesting target for
optimising the TMSD-F system further. Our results showed that
this reaction in the TMSD-F system results in a trade-off between a
high fold-change in the system output versus lower basal expression
(Figure 3B). The optimisation results showed that the basal expression
can be decreased by lowering the ks rate describing the fuel, TMSD,
and reporter reaction (Figure 3A, reactions II, III and IV, respectively).
Biologically, this could be achieved by shortening the toehold length
which initiates the reaction (Zhang and Winfree, 2009; Machinek
et al., 2014). In their Supplementary Material, Qian and Winfree
(2011) proved — with a mix of modelling and experimental work
— that a smaller toehold length decreased basal expression of output
reporters (Qian and Winfree, 2011). The fuel concentration that best
balances increased system output with basal expression is an
interesting problem for future design strategies. However, the fact
that lower basal expressionsmight result in lower threshold accuracies
should not be forgotten.

FIGURE 5
Normalised dose-response curves for FFL (blue), TMSD-F (orange), TMSD-NF (pink) and a perferct binary response (purple) at multiple values of
Kexpected . The curves were normalised by dividing the fluorescent output for each dose by the maximum system output. (A) Kexpected = 1 nM. (B) Kexpected =
25 nM. (C) Kexpected = 50 nM. (D) Kexpected = 75 nM.
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A critical limitation of the current TMSD-F and TMSD-NF
models is the systems’ reliance on domain binding (i.e., toehold to
toehold) rather than sequence-specific binding. While, for example,
the length of the toehold is essential for the speed of the TMSD
reaction rates, the sequence itself also plays a role (Zhang and
Winfree, 2009; Berleant et al., 2018). This indicates that the ks
rates might differ for the TMSD, fuel and reporter reactions as their
sequences are not completely identical, which is currently an
assumption we are making within our models. To account for
this, the mathematical models could be further refined by
including three separate ks rates. Moreover, modelling and
optimising three separate ks rates could aid in accelerating the
speed of TMSD-F systems. For example, a faster fuel reaction
rate might speed up the re-use of input miRNA, while TMSD
and reporter reaction rates are kept lower to reduce the basal
expression. Additionally, replacing the universal toehold with
reaction-specific toeholds could help prevent unintended side
reactions, in which incompatible strands temporarily bind at the
universal toehold without completing the reaction. Eliminating
these non-productive interactions would likely speed up the
reaction dynamics and result in faster fluorescent production.
Furthermore, slight alterations in the secondary structure of the
strands in the TMSD system could decrease their free energies and
speed up the reaction (Jung et al., 2022). To experimentally verify the
role of separate ks rates, future experiments could be directed to
tracking the individual concentrations of the compounds over time
or applying TMSD rate prediction algorithms to find more specific
ks rates (Akay et al., 2024; Berleant et al., 2018).

Including sequence-specificity in the model becomes even more
evident when considering the application of the TMSD system in
diagnostic tests. Ultimately, our designed system would be used in
applications to detect multiple miRNAs simultaneously, meaning
that multiple TMSD systems will need to work in parallel. Here,
sequence specificity becomes crucial, as the wrong miRNA should
not trigger a TMSD reaction and produce false positives or
negatives. In this work, we assumed that parallel detection is
possible, allowing us to model one TMSD system that can be
repurposed for all miRNA that we wish to detect. This
assumption could potentially be violated on sequence level, which
could, for example, lead to a decoy miRNAwith a slight mismatch to
bind to the threshold strand of the target miRNA. This could cause
false positives where the concentration of the target miRNA did not
pass the threshold but, together with the decoy miRNA, the
threshold is surpassed. This signifies the need for well-designed
toeholds that are highly specific for one miRNA only. Fortunately,
when TMSD was used as an amplification module, it was specific to
single nucleotide mismatches (Zhang et al., 2020). Other work
underlines the importance of sequence specificity, but current
models of this mismatch effect are dependent on specific toehold
lengths and the position of the mismatching nucleotide (Machinek
et al., 2014). The incorporation of precise sequence design into the
model could clarify whether the reaction is specific enough to detect
particular miRNAs.

To tackle these issues of sequence specificity and decoy miRNAs
for our designed systems, we propose three extensions to our work
for practitioners and future research through the use of Figure 4C. In
the first instance, our modelling framework could be extended to
incorporate sequence specificity by making use of the previously

developed KinDa tool. This tool compares the functioning of TMSD
systems at the domain and sequence level with stochastic modelling
(Berleant et al., 2018). This way, the behaviour of nucleotide-specific
sequence designs can be checked on the domain level. Furthermore,
KinDa can predict the kinetic rates of both the toehold binding and
the branch migration reactions that form the TMSD system (e.g.
Figure 4A). Modifications to the secondary structure can also be
tested with KinDa. Therefore, before implementing TMSD-NF in
the lab, proposed sequence designs could be evaluated with KinDa,
ruling out any disturbing side reactions, and the predicted kinetic
rates could be cross-referenced with the kf/ks1 ratio found through
Latin hypercube sampling (Figure 4C). Those sequences that utilise
kf/ks1 ratios with high scoring outputs could then be considered as
acceptable TMSD mechanisms for our tested biomarker miRNA.

Alternatively, extra experimental data could be obtained to
further evaluate the performance of TMSD systems. For example,
in the first instance, practitioners could evaluate the performance of
the TMSD system with varying amounts of initial aptamer
concentration or testing aptamers of different binding strength.
As we observe in Figure 4C, when the parameter ks2 (related to
concentration of aptamer) is varied then at low kf/ks1 ratios we
observe varying TMSD performance. Consequently, if TMSD
performance is shown to depend on aptamer concentration or
sequence then this correlates with a low kf/ks1 ratio suggesting
there is an issue within the system (e.g. decoy miRNAs or nucleotide
mismatches could be present in the sample perturbing the TMSD).
Second, the robustness of a TMSD system’s response to a particular
miRNA could be evaluated in conjunction to dose-response curves
obtained when using decoy miRNA or miRNA with mismatching
nucleotides as inputs. In the event that significant overlap of dose-
response curves is observed between these conditions, then this is
suggestive of the TMSD system being insensitive to changes in
nucleotide sequence since mismatching miRNA inputs can trigger
the TMSD system as well as perfectly matching miRNA inputs. In
both instances — either when TMSD systems are sensitive to
aptamer alterations or TMSD performance significantly overlaps
between perfect and mismatching miRNA inputs — then we would
encourage testing other TMSD designs for other potential
biomarkers to find robust detection mechanisms.

4.2 Improving optimisation for better design
of FFL threshold mechanisms

A major issue in our three-node network designs is the
formation of topologies that cause oscillations over time in the
fluorescent output. For a correctly working threshold mechanism,
the system should reach steady state within a reasonable time period.
Otherwise, the output signal is inconsistent, and accurate
measurements of the miRNA concentrations are difficult.
Although the topologies of the networks causing oscillations and
the networks resulting in smooth dose-response curves do not
entirely overlap, they share heavy negative regulation on node A
(Figure 4A; Supplementary Figure S6). In previous studies, this type
of negative feedback has been associated with networks that provide
robustness to noise, as well as oscillations (Kholodenko, 2006;
Holehouse et al., 2020; Tyson and Novák, 2010). The former is
beneficial for the functioning of the threshold mechanism if the
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input doses below Kexpected are considered noise. Noise suppression
was observed in the time responses of well-functioning threshold
mechanisms, where an initial peak was followed by downregulation
to a low fluorescent output level. The motif of node A activating
node B, which in return inhibits A, has been specifically linked to
noise suppression and is an important part of the best-performing
topologies (Tyson and Novák, 2010). It might be interesting to
explore if even stronger negative regulation on node A reduces the
time it takes for the system output C to reach steady state
(Figure 2D). This system speed up would be beneficial since,
with our current results, there is the potential that the initial
peak of output C might accidentally trigger the detection module,
which comes after the concentration-dependent threshold module.

However, strong negative feedback is also associated with
oscillating networks (Kholodenko, 2006; Tyson and Novák,
2010). The specific motif responsible for the oscillations found in
our optimisation strategy are known as Goodwin oscillators, and the
network’s dynamics have been extensively studied as the network
motif has been found in circadian clocks (Goodwin, 1965; Ullner
et al., 2009; Baum et al., 2016; Gonze et al., 2005). Furthermore,
negative autoregulation on node A is associated with robust
oscillatory behaviour (Woods et al., 2016). In the optimisation of
our three-node networks, this negative autoregulation was more
often observed in the topologies with smooth dose-response curves
than in the topologies resulting in oscillations. It has been proposed
that the properties of negative autoregulation depend on the other
parameters in the system, which might explain negative
autoregulation being a part of both oscillating and threshold
mechanism FFL systems (Marquez-Lago and Stelling, 2010). This
illustrates that further careful and robust design of the FFL system is
necessary before it is tested in the lab. If the behaviour of the dose-
response curve is highly dependent on the exact strengths and node
connections found with the optimisation, it might not work as well
as it should in the final test.

Therefore, adding a constraint to the optimisation strategy that
prevents any solutions with oscillations would be necessary. This
could be achieved by adding careful constraints to which reactions
within a network are allowed, and is required since our current
constraints are insufficient to achieve this currently. Alternatively,
the method of Otero-Muras and Banga (2016) used to find three-node
topologies capable of oscillations could be adapted to filter out
oscillations in the FFL optimisation through alterations of their
scoring functions. Their oscillation constraint was based on the
autocorrelation function, which determines how well the peaks of
oscillations align over time. By assessing the behaviour of these
constrained designs (e.g., lower basal expression), we could
potentially obtain general design principles for robust miRNA
detection tools. With these design principles to hand, other system
properties, such as robustness or the effects of stochastic behaviour,
could further distinguish the solutions (Woods et al., 2016).

If we take a step back and evaluate the multi-objective
optimisation framework as a whole, we have observed trade-offs
between different objectives through the visualisation of our search
spaces in Figures 2B, 3B. However, decisions cannot be based on this
information alone. Careful examination of the dose-response curves
and time-responses was necessary to filter out undesired behaviour,
like oscillations produced by three-node networks, and determine
the influence of a smaller ks on the time required to reach the steady

state in the TMSD-F optimisation. With additional constraints,
these filtering steps could be included in future design strategies
based on the approach used here.

5 Conclusion

In summary, this study modelled and explored three biological
mechanisms in their ability to convert continuous miRNA input
into a binary output above a specific threshold. All the system
designs studied here showed potential for future use in sensor- or
diagnostic tests. However, the RNA-based TMSD systems are easier
to engineer, more stable, and more adaptable to new input miRNAs
than protein-based networks such as the FFL system. The TMSD-F
system would outcompete the TMSD-NF system at higher threshold
values if the basal expression produced by our TMSD-F design could
be further reduced.

In the future, the miRADAR project of theWUR iGEM 2024 team
envisions the incorporation of this concentration-dependent module
into cell-free miRNA diagnostic tests (iGEM, 2024). The threshold
mechanism allows clear separation of input miRNA concentrations
into a binary output to distinguish miRNA concentrations of healthy
people from those with MS, which is a feature lacking in current tests.
The adaptability of the TMSD system to new sequences and thresholds
enables the test to be modified for other diseases besides multiple
sclerosis, further highlighting the importance of continued research
into these concentration-dependent modules.
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