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Global textile manufacturing practices are responsible for an increasing amount
of textile waste that pollutes our planet. Mixed fiber blends pose a recycling
challenge due to their heterogeneous structure. Current mechanical, chemical,
thermochemical and enzymatic strategies suffer from several limitations such as
high energy costs, extensive pre-treatment requirements and enzyme instability.
This mini-review aims to present recent developments in the research field and to
introduce Spore Surface Display (SSD) technology as a new biological approach
for mixed textile degradation. SSD allows enzymes to be anchored on the robust
bacterial spore surface, immobilizingmultiple enzymes required for simultaneous
cotton-polyester degradation into their respective monomers. The mini-review
also includes an initial proposal for a process design suitable for a full mixed textile
degradation process using this synthetic biology approach.
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1 Introduction to textile waste and mixed
fiber recycling

In recent years, the textile industry has shown rapid growth globally. The fast fashion
business model is based on selling fashionable clothes at low prices (Caro andMartìnez-De-
Albèniz, 2015). It comes with rapid production cycles, which lead to an increase in clothing
waste. In 2020, global clothing production reached 109 million tonnes, and it is projected to
rise to 145 million tonnes by 2030 (European Parliament, 2024). Every year, approximately
92 million tons of textile waste are produced globally (Ruiz and Arabella, 2024), of which
87% are incinerated or landfilled, contributing to approximately 10% of global carbon
emissions (Fan et al., 2024).Only 1% of this textile waste is recycled into new garments
(European Parliament, 2024). Recycling blended textile waste poses further technical
challenges compared to single-material textiles. Most blended textiles consist of
polyester and cotton fibers, which can be structurally regarded as polyethylene
terephthalate (PET) and cellulose, respectively (Egan and Salmon, 2022). Recycling
mixed textiles, such as cotton-polyester blends, remains challenging and typically
requires the separation of each composite fiber type (Loo et al., 2023). Hence, the
development of new recycling approaches is necessary.This mini-review provides a
compact introduction to current strategies in mixed textile recycling, particularly for
cotton-polyester blends. In addition, recent advances in Spore Surface Display (SSD)
technology are discussed, which is then applied to the issue of textile recycling through a
process engineering perspective.
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2 Strategies for mixed fiber
textile recycling

Mixed fiber textiles consist of at least two different polymers,
such as cotton, polyester, wool, or nylon. The respective polymers
are intertwined during fabric formation, resulting in a more durable
product but also presenting recycling challenges. The heterogeneous
microstructure hinders conventional separation approaches (Harlin
et al., 2024).

Consequently, mechanical recycling, the dominant approach for
recycling single fiber textile waste, is not suitable for mixed fibers
(Chen et al., 2023). In essence, mechanical disintegration is a
downcycling approach, making it suitable only for limited use
cases such as insulation (Hussain et al., 2023). To recover high-
value monomers in the fiber blends and return them into production
cycles, chemical, thermochemical, or enzymatic approaches have
attracted increasing interest.Among mixed fibers, textile recycling
has seen the greatest progress for the dominant species of cotton-
polyester blends. Current efforts in cotton-polyester blends focus on
the separation of the synthetic compound from the natural fibers by
degrading cellulose, thereby enabling retrieval of the higher-value
synthetic compound.

Recent advances have significantly improved the deconstruction
of blended textile waste through chemical or enzymatic means. An
Overview is given in Table 1. Chemical recycling techniques have
been shown to selectively remove cotton or PET from cotton-
polyester blends. For instance, superconcentrated hydrochloric
acid successfully depolymerised PET into Bis(2-Hydroxyethyl)
terephthalate (BHET), making removal of the cotton fraction
possible (Andini et al., 2024). Less harsh sustainable
solvents—including 1,5-diazabicyclo [4.3.0] non-5-enium acetate
([DBNH] [OAc]) ionic liquids—have shown promising dissolving
effects on the cellulose fraction (Haslinger et al., 2019). Betaine-

based Deep Eutectic Solvents were used to catalyze cotton-polyester
blend recycling, selectively targeting polyester and preserving the
integrity of cotton fibers (Liu et al., 2022). Demonstrated that acid-
and base-free depolymerization of PET with ethanol is possible,
when catalyzed with FeCl3 or FeBr3 (Nor Wahida Binti Awang
et al., 2025).

Another recycling approach, called hydrothermal processing,
selectively degrades cotton components at high temperatures
(220°C–230°C) while maintaining fabric shape (Matsumura et al.,
2024). Meanwhile, solid-state mechanoenzymatic processes combine
physical agitation with engineered enzymes. This approach promotes
selective depolymerization of PET inmixed textiles, leaving the cotton
fraction largely intact (Egan et al., 2023). Unlike previous examples,
Gamma-Valerolactone solvent systems were reported to successfully
co-hydrolyze cotton-polyester blends at lower acid
concentrations—rather than focusing on the degradation of one
fraction and separating the other (Zhang et al., 2024).

While these methods have demonstrated effectiveness in
breaking down complex blends, key limitations remain. The need
for extensive pre-treatment requirements (e.g., milling or chemical
oxidation) and the inherently slow kinetics due to the intricate
synthetic fibre structure significantly limit process efficiency.
Additionally, for enzyme-based approaches, enzyme deactivation
and product inhibition further complicate the recycling of
heterogeneous materials (Osbon and Kumar, 2019). Enzyme
deactivation primarily results from two factors: first, utilizing
enzymes beyond their normal operating conditions (at extreme
pH-levels or temperatures) detrimentally affects enzyme activity;
and second, product accumulation inhibits enzyme activity,
reducing overall process efficiency (Jönsson et al., 2021).
Immobilization techniques are currently being explored to
enhance enzyme stability and recyclability (Osbon and
Kumar, 2019).
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3 The case for spore display technology

Some microorganisms can temporarily turn into spores when
they witness harsh conditions. Their resistance to environmental
stress (chemicals, heat, ultraviolet radiation) is mainly achieved
through the spore coat (Driks, 2016). It serves as a defensive
barrier, protecting the spore from toxic substances and predatory
microbes (Balassa, 1971; Klobutcher et al., 2006). Meanwhile, the
envelope is also permeable for certain substances like nutrients that
pass through to receptors in the inner membrane. This can trigger a
signal for germination, making the spore turn back into a normal cell
(Gao et al., 2023). The spore coat has a very complex structure,
containing at least 80 proteins arranged in four layers: basement
layer, inner coat, outer coat, and crust (Driks, 1999).

The SSD technology is an innovative approach, taking advantage
of the inherent characteristics of such endospores. During this
technology, a protein of interest is joined together with the spore
surface. The goal of anchoring proteins in the spore coat is to
improve their stability and functionality (Zhang, 2019). The protein
benefits from the spores’ ability to survive harsh environments while
maintaining their resistant properties after genetic modification
(Hinc, 2013). Through these strategies, proteins may be protected
from heat-induced denaturation and organic solvents. Meanwhile,
the spores’ characteristics allow for easy recovery and reusability,
something very difficult to achieve with live cell cultures. Therefore,

SSD technology represents a sustainable and cost-effective tool in
biotechnology (Bartels, 2018; Sheldon, 2007).

Of all sporulating microorganisms, B. subtilis has been at the
forefront of SSD (Cutting, 2011; Westers et al., 2004; Isticato et al.,
2001). B. subtilis is capable of forming highly resistant endospores
while offering a very efficient secretion capacity (Cui et al., 2018;
Errington, 1993; Harwood, 1992; Hecker et al., 1996). Thus, B.
subtilis offers essential features necessary for a suitable host
organism for the expression of heterologous proteins. When
entering the sporulation phase, target proteins are synthesized
along with spore-coat proteins that serve as anchors. Fusing the
target protein with a sporulation-dependent promoter such as
PcotYZ of B. subtilis, expression is guaranteed under sporulation.
This anchor PcotY is located in the crust, the outermost layer of the
spores. PcotY is well suited for protein immobilization and provides
the highest activity for SSD (Bahrulolum and Ahmadian, 2018;
McKenney et al., 2013; Lin et al., 2020).

3.1 Limitations and challenges

Despite its promise, SSD technology faces challenges, such as
ensuring the genetic stability of the modified spores, overcoming
regulatory hurdles, achieving adequate enzyme loading and scaling
up the process for industrial applications (Lin et al., 2020).

TABLE 1 Overview of mixed textile recycling approaches.

Approach Outcomes Notes References

[DBNH] [OAc] Ionic Liquid Selective cotton targeting, polyester preserved More sustainable, less harsh solvent Haslinger et al. (2019)

Betaine-based Deep Eutectic Solvents Selective polyester targeting, cotton preserved High yield, mild conditions,
environmentally friendly

Liu et al. (2022)

Solid-State Mechanoenzymatic Selective polyester targeting, cotton preserved Enzyme stability challenges due to
physical agitation

Egan et al. (2023)

Superconcentrated HCl
Depolymerization

Selective polyester targeting, cotton preserved Uses harsh chemicals Andini et al. (2024)

Hydrothermal Treatment Selective cotton targeting, polyester preserved Requires high temperatures, making
scale-up costly

Matsumura et al. (2024)

Gamma-Valerolactone Co-hydrolysis Sequential hydrolysis and glycolysis, 75% glucose yield,
78% PET conversion

Allows lower acid concentrations Zhang et al. (2024)

Ethanolamine depolymerization (FeCl3
and FeBr3)

Selective polyester targeting, cotton preserved Mild conditions, good selectivity NorWahida Binti Awang et al.
(2025)

TABLE 2 Explanation of the total number of spore-enzyme combinations possible with the four enzymes PETase, Endoglucanase, Exoglucanase and 1,4-
β-glucosidase. The conducted combinatorial analysis is based on no repetitions and without respecting the order of the combinations. Thus, only unique
combinations of enzymes on the spore are counted.

Enzymes on spore Combinatorial analysis Possible combinations

1 (41) 4

2 (42) 6

3 (43) 4

4 (44) 1

Total Number of Combinations 15
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4 Reasoning for mixed fiber processing

Current strategies for mixed fiber textile recycling separate
cotton-polyester blends, i.e., no simultaneous recycling of both
polymers. Thus, the degradation process is either conducted
under optimal conditions for cellulose or PET leaving products,
by-products and the not degraded polymer behind depending on the
actual process. However, SSD technology can introduce several
catalysts, namely, enzymes, to the process at the same time,
paving a new way to transform both polymers to their
monomers within one step. As enzymatic approaches to clothing
recycling have seen increasing interest, recently, due to their ability
to work under lower temperatures, reducing the risk and energy cost
of conventional thermochemical approaches (Jönsson et al., 2021),
enzymes themselves also come with a production cost. Their
efficiency is highly temperature-dependent, and they are typically
single-use in their free form (Madhu et al., 2017; Andreaus et al.,
1999). In contrast, SSD technology can be used multiple times as
long as the spores have not germinated yet, is resistant to harsh
environments as found in industrial contexts and inherently
produces the necessary enzymes itself.

The enzymes of interest for mixed fiber degradation are PETases
(polyethylene terephthalate hydrolases, EC 3.1.1.101) catalyzing the
formation of terephthalic acid (TPA) and ethylene glycol (EG) from
PET and three types of cellulases (β-glucosidases, exo- and
endoglucanases) catalyzing the degradation of cellulose to glucose
(Egan and Salmon, 2022; Behera et al., 2017). Endoglucanases
(endo-1,4-β-D-glucanases, EC 3.2.1.4) cleave internal β-1,4-
glycosidic bonds in cellulose, thereby releasing reducing and non-
reducing chain ends. Exoglucanases, also called 1,4-β-cellobiosidase,
remove cellobiose, a disaccharide, from the exposed ends in the
crystalline region. Some exoglucanases work only on reducing ends
(EC 3.2.1.176) while others cleave cellobiose only from non-
reducing ends (EC 3.2.1.91). Finally, β-glucosidases (1,4-
β-glucosidases, EC 3.2.1.21) hydrolyze cellobiose or cello-
oligosaccharides to glucose monomers. As there exist a fungal
and a bacterial version of the aforementioned cellulases, only the
bacterial versions are recommended to use for SSD regarding the
bacterial expression system of B. subtilis. Thus, the enzyme
expression during sporulation is more likely and, furthermore, it
is even a producer of endoglucanase itself (Aa et al., 1994). Finally
mounted on the spore surface, the PETase performs its degradation
procedure in a two-step manner, i.e., an acylation reaction followed
by a deacylation reaction (Burgin et al., 2024). The three types of
cellulases, however, work synergistically where endoglucanase
creates randomly internal free chain ends that are processively
degraded by exoglucanase to cellobiose which is then cleaved into
two glucose molecules by β-glucosidase. As cellobiose inhibits the
activity of endo- and exoglucanase, especially the last step has a great
effect on the cellulose degradation rate (Wu et al., 2018).

In contrast to other biocatalyst systems that do not use the
enzymes’ free form, the application of SSD technology comes with
several advantages. The most significant difference with established
immobilization platforms is that the connection between protein
and spore crust is inherent because it is created during the spore
formation, whereas for conventional immobilization methods the
enzyme and the enzyme carrier must be produced separately.
Therefore, no production of toxic immobilization materials as

carbon tubes or metal powders is necessary (Khafaga et al.,
2024). In addition, spores are still small in size (1.2 µm long and
0.8 µm wide) compared to other immobilization platforms (Chada
et al., 2003). This makes it more likely for displayed enzymes to be
able to access dense textile fibers, which is crucial for efficient textile
degradation. Moreover, the spores’ protection against harsh
environmental conditions makes them suitable for industrial
applications (Lin et al., 2020). Additionally, enzyme purification
is not necessary, as the enzymes are directly displayed on the spore
surface. Finally, displaying the enzymes might also increase the
stability of proteins (Lin et al., 2020; Zhang et al., 2019).

5 Bioprocess engineering realization

Despite the findings on the SSD’s suitability, it remains
challenging to implement it in an appropriate process. Inspired by
existing recycling technologies, the process could be divided into four
main steps: mechanical disintegration, pre-treatment, biochemical
degradation and separation/filtration of the products (see Figure 1).

5.1 Mechanical disintegration

Textile waste comes in various forms, from industrial scraps to
unsold clothing. To guarantee high-quality products and a stable
process, homogeneity of the substrate is desired to ensure equal
amenability to the displayed enzymes. Delivered substrates must be
sorted to manually remove insoluble parts such as buttons, zippers
and other non-textile components. It must be mechanically
disintegrated to destroy the fiber structure, which is best done
with a shredder and hammer mill. Producers of such potential
feedstock are companies such as ALTEX and Soex, which sell it
mainly as a filler to industrial customers for other applications.

5.2 Pre-treatment

Mechanical disintegration leads to macroscopic changes in the
fiber structure but not microscopic changes (Cao et al., 2015). While
this is not as important for PET, it is critical for cellulose. To further
increase the amenability of the enzymes, a treatment is required that
breaks the crystalline structure of the cellulose. Although the
substrate composition is slightly different, there are several
methods to achieve this (Chen et al., 2019; Ang et al., 2012; Arlai
et al., 2025). Some of these methods require either special chemicals
or mills, making these approaches not suitable for industry.
However, one treatment stands out due to its high enzymatic
hydrolysis yield and relative ease of implementation. It consists
of using a 15% NaOH solution at 120°C in an autoclave (Boondaeng
et al., 1964).

The shredded textiles absorb the lye, which deprotonates the
hydroxide groups of the cellulose, increasing its overall charge. This
weakens the intermolecular forces within the cellulose, as equally
charged particles repel each other. Compared to other common
methods, the PET and cellulose fibers do not react too strongly to the
alkaline treatment, so the chemical structure is largely retained
(Yokota et al., 2022). Another pre-treatment - normally applied
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to wood - is the combination of chemical and physical forces, which
come together in the steam explosion process. The cellulose
structure is disrupted more efficiently, resulting in an even more
damaged polymer (Auxenfans et al., 2017). For potential
implementation, a comparison of the degree of efficiency between
an autoclave and a steam explosion machine is necessary to identify
the better strategy.

5.3 Cultivation of spores

Before the actual depolymerization of cellulose and PET, the
biocatalyst, the spores, must be cultivated. The production of
enzyme-displaying spores requires careful cultivation strategies, as
the B. subtilis strain used is genetically modified and therefore
competes with its potentially plasmid-free offspring. As with most
whole-cell catalysts, the seed train starts with pre-cultures of increasing
volume, followed by a main culture optimized for biomass production.
A fed-batch reactor is ideal for this purpose, with optimal growth of B.
subtilis occurring aerobically at 37°C at pH 7.0 with glucose as the
primary substrate (Luo et al., 2010). Once sufficient biomass has been
produced, the sporulation process is initiated by transferring the culture
to conditions that promote spore formation, such as depletion of
carbon sources. The resulting spores can be harvested, dried if
necessary, and stored until needed for the textile degradation process.

5.4 Biochemical degradation

The conversion of cellulose into glucose and PET into TPA and,
EG is the main focus of the process. Since the pretreatment solution
is highly alkaline, the pH must be adjusted to the optimum for the
enzymes on the spore crust. In addition, the current enzymatic
degradation rates of PET are still not economically viable (Chen
et al., 2022). As any chemical reaction, the degradation of PET is also
temperature dependent. It is characteristic of PET that high reaction
rates are observed around 70°C. This temperature - also known as
the glass transition temperature - reduces the density of PET and
thus improves the accessibility of enzymes to the PET surface
(Akram et al., 2024). Only some modified PETases can operate

in such an environment, but their industrial application has not yet
been demonstrated (Stevensen et al., 2025). Due to this uncertainty
in affinity and activity, the robust nature of spores inspired their
choice as an anchor for the enzymes in the first place.

5.5 Separation and filtration of products

As the spores are only the catalyst and not part of the desired
product, they must be removed. This can be done using
conventional filtration technologies such as tangential flow
filtration. It is efficient for processing large volumes of liquid and
operates at lower pressures than other filtration methods. This
makes it ideal for separating spores from the rest of the solution
on an industrial scale. The lower pressure even helps to preserve the
filtration membrane, so the time between failures is relatively longer.
Nevertheless, these advantages are accompanied by a higher energy
demand and operational complexity compared to other filtration
technologies.

After spore separation, managing the separation of the three-
component mixture - glucose, TPA and, EG - is the next challenge.
TPA can be precipitated under acidic conditions, while such
conditions do not affect the solubility of glucose or, EG (Kumar
Sandhwar and Prasad, 2019; López-Fonseca et al., 2009). The
precipitate could be collected by centrifugation or using a gravity
separator. Several approaches are possible for the separation of
glucose and, EG. While distillation could be considered due to
the different boiling points, the energy requirements would be
prohibitive given the high water content. Alternative solutions
include membrane separation or enzymatic purification, but these
may add complexity and cost to the process (Osman et al., 2024).
Another option may be to further ferment the remaining, EG and
glucose to obtain high-value chemicals, thus making separation
unattractive (Vikram Pandit et al., 2021; Wagner et al., 2023).

6 Discussion

Although SSD is a promising strategy for recycling textile waste,
the real performance of the spores remains unclear. Firstly, at the

FIGURE 1
Piping and Instrumentation Diagram for the proposed mixed textile recycling approach.
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cellular level, the different combinations of spores with displayed
enzymes need to be addressed. With three cellulases and one
PETase, 15 different spores are theoretically possible, considering
one, two, three or four enzymes on one spore (see Table 2).
Furthermore, considering the 33 different spore proteins suitable
for anchoring opens the way to even more possibilities (Todd et al.,
2024). Given the combinations of designed spores in the process, the
optimal combination also needs to be clarified. Secondly, at the
enzyme level, the consequences when multiple enzymes are
anchored to the spore surface cannot be foreseen, yet. This
uncertainty comes along with the usual problem for immobilized
enzyme systems, i.e., for SSD technology, it has not yet been
conclusively clarified whether it represents an advantageous
trade-off between stability and catalytic activity of the anchored
enzymes. The access to the substrate is significantly different for the
anchored enzyme compared to the free form, since it moves with the
spore. However, if several enzymes are fixed on the spore, several
substrate molecules can probably be processed simultaneously while
adsorption/desorption kinetics might not remain the same. In terms
of stability advantages, they also depend in part on how the process
is designed, as increased thermostability is only advantageous if the
enzyme must be active at higher temperatures. Thus, the proposed
recycling process calls for such a solution whereas a different process
design might not. At least, it is known that the SSD enzymes can be
used for several reaction cycles without significant loss of the
catalytic rate, e.g., for degrading the substrate p-Nitrophenyl
butyrate to p-Nitrophenyl a catalytic rate of 84% was reported
after the recombinant spores were used for three reaction cycles
(Chen et al., 2015). Finally, at the process level, parameters must be
experimentally evaluated at the reactor scale to define the optimal
operating conditions. This will allow the effects of enzyme-textile
interactions, mixing speeds, pH values and temperatures to be
determined. Overcoming these hurdles is crucial for scaling up
the SSD-based process to an industrial level.

7 Conclusion

In this work, current approaches for cotton/PET mixed fibre
recycling were reviewed. The SSD Technology applied to B. subtilis
was presented as a promising strategy for mixed fiber recycling. Due
to the stability and reusability of spores, combined with the
specificity of immobilized enzymes required for PET and
cellulose degradation, it expands the toolbox of recycling
technologies to reduce textile waste. Compared to traditional
enzyme applications, the ability to immobilize multiple enzymes
on a single biological platform is advantageous regarding process
efficiency and cost reduction. To facilitate the up-scaling of this
technology in case of successful advances in SSD, an appropriate
process design has been proposed. This approach contributes to a

circular textile industry by returning textile waste back to the
production cycle. Future developments should focus on
optimizing enzyme combinations and spore display effectiveness.
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