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Study objectives: This study examines age-related variations in activity patterns
using actigraphy data from the National Health and Nutrition Examination Survey
(NHANES). By analyzing sleep onset, wake times, and daily activity levels across
different age groups, we aim to uncover key changes in chronotype and physical
engagement with aging. From a systems-biology perspective, minute-level
rest–activity traces are emergent outputs of coupled
circadian–homeostatic–behavioral networks. Treating actigraphy as a high-
throughput phenotyping readout, we use NHANES to extract system-level
markers (phase, amplitude, and transition dynamics) that reflect network
organization across the lifespan.
Methods: Actigraphy data from NHANES (2011–2013) were analyzed using
machine learning techniques to identify distinct activity clusters among four
age groups (19–30, 31–50, 51–70, 71–80). We implemented an unsupervised
machine learning pipeline that clustered average-day actigraphy profiles,
enabling the identification of distinct, age-dependent rest–activity phenotypes
from the NHANES dataset. Sleep-wake cycles, activity intensities, and circadian
periodicities were assessed through clustering and statistical modeling. Key
metrics, including winding down activity and time to alertness, were derived
to evaluate age-related variations.
Results: Younger individuals exhibited delayed chronotypes with later sleep and
wake times, whereas older adults showed advanced and more structured
schedules. Winding down periods lengthened with age, and overall activity
levels declined progressively. Time to alertness showed a strong correlation
with wake time in younger groups but diminished with age, indicating a
weakening circadian influence.
Conclusion: Aging is associated with shifts in sleep-wake cycles and activity
patterns, reflecting biological and behavioral adaptations. These findings
highlight the importance of personalized interventions to support optimal
activity and sleep alignment across the lifespan. Insights from actigraphy data
can inform public health strategies and clinical approaches to aging-related
changes in physical activity and circadian regulation. These age-stratified,
interpretable “dynamical phenotypes” provide observables to calibrate and
validate systems-level models of sleep–wake regulation and
behavior–physiology coupling, supporting hypothesis generation and
intervention design in systems biology.
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Introduction

Understanding a person’s activity patterns is crucial for health,
wellbeing, and productivity. Activity patterns reflect the timing,
intensity, and regularity of physical movements and behaviors
throughout the day, providing insights into an individual’s
lifestyle, habits, and overall functioning (Sani et al., 2015;
Mitchell et al., 2017). Researchers and clinicians can identify
health risks by analyzing activity patterns, as disruptions like
sedentary behavior or irregular routines contribute to chronic
diseases. In circadian biology, misalignment between biological
rhythms and daily schedules (e.g., shift work, social jetlag) can
impair sleep, cognition, and mental health. In clinical settings,
monitoring activity patterns can assist in diagnosing conditions
such as sleep disorders, depression, or circadian rhythm disorders
(Liguori et al., 2023; Hashimoto et al., 2015). Understanding activity
patterns enables personalized interventions, optimizing exercise,
behavior, and rest for better health and quality of life. Societally,
these insights inform public policies that promote physical activity,
enhance productivity, and reduce lifestyle-related illnesses, fostering
healthier, more sustainable lifestyles. Appreciation of a person’s
activity patterns is particularly important in the context of aging, as
these patterns undergo changes with advancing age and provide
critical insights into health and functional status (Stenholm et al.,
2021). As people age, physical activity declines, and daily patterns
become less structured due to biological changes, chronic
conditions, and social factors. Monitoring activity in older adults
can signal declining physical function, frailty, or cognitive decline,
helping predict risks like falls, cardiovascular disease, and loss of
independence.

Actigraphy is a non-invasive method for recording activity
patterns by measuring wrist movement with a small motion
sensor called an accelerometer, offering a window into how
external factors like work, social demands, or environmental light
influence activity timing (Gao et al., 2023). Actigraphy is widely used
in sleep research due to its convenience, affordability, and ability to
collect data over long durations in real-world settings (Fekedulegn
et al., 2020). Actigraphy objectively tracks sleep and activity,
reducing recall bias and accurately identifying chronotypes
(chronotype: an individual’s characteristic timing of sleep–wake
and daily activity, reflecting the phase of their endogenous
circadian system relative to the 24-h day.) By analyzing sleep
timing, duration, and variability, researchers classify individuals
as morning or evening chronotypes. Beyond sleep, actigraphy
reveals daily activity rhythms, reflecting energy levels and
preferences. Of particular importance are studies that assess
variations in a patient’s activity levels throughout the day in the
presence of disease (Hashimoto et al., 2015; Kos et al., 2007; George
et al., 2021; Nikbakhtian et al., 2021; Schneider et al., 2022).
Actigraphy generates vast data, often leading to storage,
processing, and analysis challenges. Several computational
approaches have been proposed for the statistical analysis of
physical activity based on actigraphy (Zhang et al., 2019; Krafty

et al., 2019; Roberts et al., 2023), which is a subset of a more
significant problem focusing on the analysis of time series data
(Bagnall et al., 2017).

Understanding age-related rest–activity patterns at population
scale is limited by (i) reliance on pre-specified sleep windows or
questionnaire chronotype, (ii) single-metric summaries that obscure
multimodal behavior, (iii) small or device-specific cohorts, and (iv)
minimal, age-specific normative references derived from minute-
level data. We address these gaps with a scalable, unsupervised
pipeline that (1) filters for robust 24-h periodicity, (2) compresses
minute-level NHANES MIMS data into an interpretable “average-
day” profile, (3) performs age-stratified clustering to reveal
behavioral phenotypes, and (4) derives simple, clinically legible
markers—sleep onset and wake proxies from a piece-wise
constant model, winding-down time/activity, and time-to-
alertness. This framework yields age-specific normative
distributions from a nationally representative sample and
provides transparent, reproducible endpoints for research
and practice.

In the present work, we analyzed actigraphy data from the
U.S. National Health and Nutrition Examination Survey
(NHANES) database, encompassing over 10,000 individuals,
and applied unsupervised clustering to uncover distinct
activity patterns as a function of age. In NHANES 2011–2014,
participants wore wrist-worn ActiGraph GT3X + accelerometers
continuously for 7 days, enabling analysis of minute-level
rest–activity rhythms. Earlier NHANES cycles (2003–2006)
used hip-worn ActiGraph AM-7164 accelerometers primarily
for physical activity assessment. A simple yet informative
methodology facilitated by machine learning techniques
identified several distinct age-dependent patterns
characterized by activity onset, resolution, and intensity
variations. Our age-dependent analysis revealed biases
towards specific age groups within these clusters,
underscoring the relationship between age and chronotype.
Notably, younger clusters exhibited delayed chronotypes with
significant differences in sleep onset time (SOT) and wake time
(WT) compared to older clusters, suggesting a phase advance in
sleep patterns with age. Additionally, the clusters displayed
distinct patterns in winding up and winding down periods,
providing valuable insights into the dynamics of activity
transitions. This study demonstrates that efficient processing
of large-scale actigraphy data enables robust chronotype
characterization which can inform personalized healthcare
and public health initiatives.

In systems biology, observable behaviors such as sleep–wake
timing and diurnal activity arise from interacting control loops,
circadian pacemakers, homeostatic sleep drive, endocrine and
autonomic modulators, and social/lighting inputs. We therefore
treat minute-level MIMS actigraphy as a behavioral “omics”
signal and compress it into an average-day macro-observable on
which we perform unsupervised phenotyping. The derived
markers,sleep onset/wake proxies, winding-down time/activity,
and time-to-alertness, map onto classical systems concepts
(phase, gain/amplitude, and transition kinetics), offering
population-scale constraints for mechanistic models (e.g., coupled
ODEs of sleep–wake regulation and entrainment). In short, our
pipeline links wearable data to system-level parameters, enabling

Abbreviations: ACF, Autocorrelation function; PCA, Piece-wise constant
Approximation; TtA, Time to alertness; SOT, Sleep onset time; WT, Wake time.
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integrative studies of aging as progressive reparameterization of the
underlying regulatory network.

Methods

Data

We extracted physical activity monitoring data from the
NHANES database. Specifically, we considered recordings from
the20111 and20132 surveys. The actigraphy data are provided per
minute (variable name: PAXMTSM). The nationwide, cross-
sectional surveys contained recordings for 6,710 (2011) and 7,401
(2013) individuals, respectively. Thus, our study considered
14,111 recordings of actigraphy data over 7 days. Not all
individuals had complete records. However, our approach
considers an average day, so missing data were averaged. The
collection process details are standardized and have already been
described in earlier publications (Shim et al., 2023; Su et al., 2022).

Our study examines age-dependent changes in adult activity
patterns by dividing participants into four age groups: 19–30, 31–50,
51–70, and 71–80. Individuals under 19 were excluded because
sleep–wake timing and activity patterns change markedly through
childhood and adolescence (e.g., pubertal phase delay, different sleep
needs, and strong weekday–weekend swings driven by school
schedules), while adults, with more structured routines shaped by
work, family, and social obligations, provide more reliable
comparisons. These divisions align with widely accepted
classifications (Geifman et al., 2013), such as those in the
Medical Subject Headings (MeSH, http://www.ncbi.nlm.nih.gov/
mesh), ensuring relevance to distinct life stages and
behavioral patterns.

• Young Adulthood (19–30): Characterized by high physical
fitness, diverse activities, and flexible routines influenced by
education, work, and social life. Activity patterns vary widely,
with irregular sleep-wake cycles common.

• Mid-Adulthood (31–50): Defined by structured routines
shaped by career and family, reduced leisure activity, and
emerging age-related declines. Actigraphy reveals the impact
of work, caregiving, and physiological changes on movement.

• Older Adulthood (51–70): Marked by retirement, shifting
activity patterns, increased chronic conditions, and sleep
fragmentation. While mobility declines, some remain active
through recreation and exercise, making actigraphy crucial for
assessing aging’s impact.

• Senior Years (71–80): Characterized by increased sedentary
behavior, reduced physical activity, and reliance on assistive
devices due to frailty and chronic conditions. With stable
routines, actigraphy guides interventions to promote mobility
and quality of life.

Analysis

Activity data are recorded at 1 min resolution, and the
wearable devices are used for a maximum of 7 days. The
NHANES Survey objectively measures physical activity using a
Physical Activity Monitor (PAM). This device recorded
acceleration across three axes (x, y, and z) at a frequency of
80 Hz, along with ambient light levels at 1 Hz. In the NHANES
dataset, PAXMTSM represents each minute’s MIMS (Motion
Intensity Measurement Summary) triaxial value. It is a summary
measure derived from accelerometer data collected by physical
activity monitors (PAMs) worn by participants. The PAXMTSM
variable is calculated by summing the minute summary
acceleration measurements obtained on the x-, y-, and z-axes
(PAXMXM, PAXMYM, and PAXMZM). It represents the total
movement intensity recorded during that minute. NHANES
provides these MIMS variables directly, so no additional
processing of raw accelerometer signals was required for our
analyses. We include the NHANES variable name to enable
readers to locate the exact field in the public database. A
plethora of methods exist for analyzing longitudinal data,
including actograms (Shim et al., 2023). Our analysis aimed at
describing succinctly broad characteristics of groups of
individuals.

Data selection and representation: The raw data (Figure 1a)
is reshaped into a three-dimensional matrix representing
minutes, hours, and days. Hourly averages are then
computed by taking the mean of the minute-level data for
each hour, producing a compact representation of the activity
pattern as a 7-day by 24-h matrix (Figure 1b). This step reduces
the dimensionality of the data and highlights broader patterns
in daily activity. To identify intrinsic periodicities, the hourly-
averaged activity data are subjected to autocorrelation analysis
(Figure 1d). The autocorrelation function (ACF) is calculated to
measure the similarity of the activity signal at different time
lags, up to 168 h (the total hours in 7 days). Peaks in the
smoothed ACF represent recurring patterns, and the time
intervals between successive peaks (lags) are extracted to
estimate the dominant periodicity. These intervals indicate
how often activity patterns repeat, with periodic peaks
around 24 h suggesting circadian alignment. The estimated
periodicities are statistically evaluated using a chi-square test
to determine their alignment with the expected 24-h cycle. The
null hypothesis assumes the periods are centered around 24 h. A
pval is calculated to assess the likelihood of observing the
detected periodicity under this assumption. If the pval

exceeds a threshold (e.g., 0.01), the data are considered
consistent with a 24-h rhythm; otherwise, it is classified as
inconsistent. The results guide the classification of subjects:
data demonstrating consistent 24-h periodicity is accepted for
further analysis, while inconsistent data are excluded. This
rigorous approach ensures the identification of intrinsic
rhythms that align with circadian patterns, providing robust
insights into the periodic behavior of activity data.

The recordings are reported at the rate of one per minute,
therefore, there are 24 × 60 � 1440 daily samples, one for each
minute of the 24-h day. Subsequently, (Figure 1c), the recording
at each minute of the day is averaged over the number of days for

1 https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?

Component=Examination&CycleBeginYear=2011

2 https://wwwn.cdc.gov/nchs/nhanes/search/datapage.aspx?

Component=Examination&CycleBeginYear=2013
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which recordings exist, Y(t) � 1
Nd ∑

Nd

d�1
y(t, d); t � 1, . . . , 24 × 6 0.

We do so because we treat each day as a replicate. In doing so, we
may lose day-to-day variations. However, because of the short timespan
for recordings, it is hard to differentiate between errors and persistent
patterns (such as shift work). The method would still be valid without
losing generality if one considered daily variations (this issue will be
further discussed later.) Finally, the per-minute average day’s activity
profile is transformed using a piece-wise constant approximation (PCA)
to generate an hourly average activity profile

ypa(τ) � 1
60 ∑τ×60

t�(τ−1) × 60+1
Y(t); τ � 1, .., 24, Figure 1c. The piece-wise

constant representation of the average day of each subject is used for
further analyses.

Clustering and piece-wise representation of cluster centers:
Once the subjects’ actograms have been approximated as
described earlier, the profiles are clustered using Kmeans with
the center clusters depicted in Figure 2.

Each center’s cluster is approximated by a piece-wise contsant
function (Equation 1; Figure 2) such that:

PLA t( ) � α, SOT≤ t≤WT
β, t≤ SOT ∨ t≥WT

{ (1)

We also compute the derivative of the activity level over time for
each cluster center (Figure 2). The derivative of the activity of the
cluster center is an indication of the direction of the subject’s activity
levels: a positive derivative indicates the period of the day during

which the person is engaged in increased activity levels, whereas a
negative implies the opposite. The derivative, along with the activity
values over time of the cluster center, will be used to calculate some
essential quantities, which will be discussed in greater detail in the
next section.

Results

Combining the 2011–2013 data created a cohort of
10,016 individuals for which 7 days of actigraphy and age data
were available. The data represent a 50/50 split between males and
females, ranging in age from 12 to 80, with a median age of 41.
Considering individuals older than nineteen, 4,775 subjects were
found to have actograms with a leading periodicity of 24 with a high
level of confidence. The remaining actograms were of relatively poor
quality and unsuitable for further analysis. The final set had
938 subjects aged 19–30; 1,633 subjects aged 31–50;
1,576 subjects aged 51–70; and 628 subjects aged 71–80. Each
actogram was analyzed as previously described, and the “per
minute” activity data were combined to generate an “average”
day for each subject. To estimate the optimal number of clusters,
we employed a data-driven approach based on analyzing the within-
cluster sum of squares (WCSS) across a range of cluster counts.
Specifically, we computed the first and second derivatives of the
WCSS curve to identify the point where the rate of improvement in
clustering performance begins to level off. The optimal number of
clusters is selected as the value of k just before the second derivative

FIGURE 1
Steps for the representation and analysis of an actogram. (a) Raw activity data recorded per minute for a subject across multiple days, denoted as
y(t,d),where dd is the day and tt is the minute of observation. (b) Hourly activity averages, y′(τ,d) computed by aggregating minute-level activity within
each hour (τ= 1, . . . ,24). (c)Daily activity profiles, derived by averaging across all days, showing both raw (Y(t), green line) and hourly averaged data (ypa(τ),
red line), highlighting daily activity patterns. (d) Autocorrelation of the activity data over multiple lags (hours), revealing periodicities and rhythms in
the activity patterns. These steps illustrate the processing pipeline for creating a representative actogram and analyzing further circadian activity trends.
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reaches its minimum, which corresponds to the point where the
curve becomes flattest, i.e., where adding more clusters yields
diminishing returns. While this method does not guarantee
identification of the visually apparent “elbow” in all cases, it
offers an objective and reproducible way to detect stabilization in

cluster compactness. This is particularly valuable when the elbow is
not sharply defined. Although some sensitivity to noise or gradual
curves may occur, the approach is grounded in the underlying
curvature of the WCSS trajectory and provides a mathematically
coherent criterion for model selection. As such, it represents a

FIGURE 2
(Continued).
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reasonable and justifiable method for estimating the optimal
number of clusters, especially in exploratory analyses where fully
automated guidance is desirable. Each group was clustered
separately, and the results are shown in Figure 2 for all age
groups. The figure depicts each cluster center’s per-hour activity

levels in the form of bar graphs. The corresponding PCA is also
shown for each cluster center. The parameters for each fit in (1) are
presented in Table 1. In this approximation, we loosely define sleep
onset time (SOT) and wake time (WT) as the beginning and end of
the lower activity periods based on the piece-wise constant

FIGURE 2
(Continued). Cluster center activity profiles for all age groups represented on an hourly basis. Each subpanel corresponds to a specific cluster and
shows the hourly activity levels (bar plots), the derivative of activity (red line), and the linear approximation of cluster center activity trends (green line). The
shaded yellow region indicates typical daytime period. These profiles highlight distinct activity patterns across clusters and age groups, emphasizing
variations in activity intensity, temporal distribution, and transitions between active and resting states.
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approximation. The left axis (bars) depicts the hourly activity of each
cluster center: activity(t), t � 1, . . . , 24, whereas the right axis
depicts (red line) the derivative of the cluster center activity:
d[activity(t)]

dt , t � 1, .., 24. The derivatives are calculated using 4th-
order finite difference approximation for the interior points and
lower order for the endpoints. The derivatives are calculated to
determine periods of the day during which the subjects exhibit
increases and decreases in activity levels.

We further calculate several critical properties for each cluster
center. Namely:

• Winding down period is defined as the period of time during

which d[activity(t)]
dt < 0. We calculate this quantity

as ∫
t∈d(activity)

dt < 0
tdt

• Winding down activity is defined as the overall activity level
during the winding-down period. This is calculated

as ∫
t∈d(activity)

dt < 0
activity(t)dt

• Overall activity is defined as the overall activity level of the
subject. This is calculated as ∫24

0
activity(t)dt

The three metrics above for all cluster centers are depicted in
Figure 3 for all age groups in the form of cumulative frequency
distributions. In other words, we depict the fraction of a cluster’s
population and the corresponding value for each metric. The
Wasserstein Distance test was implemented to confirm the
statistical significance of the differences between the curves which
quantifies the “cost” of transforming one distribution into another
by considering the cumulative differences across the entire
distribution, weighted by the distance the “mass” is shifted. It
provides a more intuitive measure of overall distributional shifts
and differences in shape, location, or scale.

We further examined the time it takes for the individual
represented by the cluster center to reach the start of its peak
performance. We define this term (Equation 2) as time to
alertness and it is calculated as:

TtA � t
max

d activity( )
dt( ){ } − t d activity( )

dt �0{ } (2)

TtA is defined as the time from when the derivative of the
activity is 0, which denotes a transition from inactive to active, to the
time when the derivative of the activity reaches its peak; that is, the
time derivative of the activity is 0. Figure 4 depicts TtA for all cluster
centers and all age groups (the insert on the left depicts the
definition). The weighted cumulative distribution of SOT and
WT across age groups is shown in Figure 5. Finally, in the form

TABLE 1 Comparison of SOW, WT, α, and β metrics across different age
groups (19–30, 31–50, 51–70, and 71–80) with corresponding counts.

Age group 19-30

SOT WT α β count

21.71 6.92 3.72 15.71 110

23.42 11.97 3.75 14.67 98

2.03 13.93 14.09 4.35 78

23.05 7.23 2.54 14.07 196

22 8.18 3.55 15.31 109

23.37 9.07 3.12 14.48 191

1.16 10.55 13.95 3.66 142

5.06 17.82 14.12 5.83 14

Age group 31-50

SOT WT α β count

22.41 6.24 2.5 14.55 362

1.28 11.4 14.18 4.36 154

23.99 7.08 2.33 14.03 397

20.5 5 3.35 16.18 167

23.14 9.93 3.4 13.58 245

7.56 18.08 14.32 5.77 13

20.94 7.01 3.34 15.71 238

Age group 51-70

SOT WT α β count

23.51 7.85 2.49 13.41 274

21.19 6.89 3.13 13.87 327

0.82 9.71 12.68 3.36 188

2.66 12.75 12.48 4.11 51

20 5.18 3.43 14.52 220

20.98 7.85 3.01 14.31 241

21.55 8 2.77 13.5 228

22.35 10.78 3.29 13.09 104

Age group 71-80

SOT WT α β count

21.14 7.49 2.42 11.54 89

0.84 9.98 10.44 2.7 46

20.65 8.72 2.75 11.41 105

19.89 6.79 2.59 11.59 52

23.51 7.96 1.92 11.61 93

21.91 7.81 2.67 11.18 84

(Continued in next column)

TABLE 1 (Continued) Comparison of SOW, WT, α, and β metrics across
different age groups (19–30, 31–50, 51–70, and 71–80) with
corresponding counts.

Age group 71-80

SOT WT α β count

22.94 9.23 2.64 10.42 90

20.16 5.25 2.43 11.27 69
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of polar plots we depict the sleep onset (filled circles) and wake times
(open circles) across four age groups, with circle sizes proportional
to the frequency of each timing. These results are used to examine
the progressive shift of sleep onset and wake times with increasing
age, along with examining sleep duration changes across age groups.

Discussion

We analyzed actigraphy data collected over 7 days to determine
the predominant characteristics in the recorded activity. Figure 1a
presents an example (NHANES SEQN 67096) of how the original
minute-by-minute activity data are visualized, showing variations in
activity throughout the 7-day period. This raw representation
provides an overview of the subject’s activity. To identify
periodicity, we compute the autocorrelation function (ACF),
which measures the similarity of the activity time series at

different time lags. This analysis is critical for detecting repeating
patterns in the data, such as the circadian rhythm. The
autocorrelation is computed for lags up to 168 h (7 days). The
ACF values are smoothed to reduce noise, and peaks in the function
are detected. These peaks represent time intervals at which activity
patterns repeat. Figure 1d shows the resulting autocorrelation
function, where clear periodic peaks occur around the 24-h
mark, indicating the presence of a circadian rhythm. The time
intervals between successive peaks are calculated from the
detected peaks to estimate the dominant periodicity. A statistical
χ2 test is applied to compare the observed periods against the
expected 24-h rhythm. The null hypothesis assumes that the
periodicity is centered around 24 h. If the pval exceeds a
predefined threshold, the data are considered consistent with a
periodic pattern. If the pval falls below the threshold, the
periodicity is deemed inconsistent. This classification determines
whether the file is accepted or rejected for further circadian analysis.

FIGURE 3
Cumulative frequency distributions of different metrics across age groups. (A) The distribution of the winding down period (in hours) for four age
groups: 19–30, 31–50, 51–70, and 71–80. (B)Cumulative distribution of winding down activity levels (arbitrary units, a.u.) across the same age groups. (C)
Cumulative distribution of overall activity levels (arbitrary units, a.u.) for the age groups. The analysis reveals distinct trends across the metrics, reflecting
variations in behavior patterns between the age groups. TheWasserstein Distance test was implemented to confirm the statistical significance of the
differences between the curves.
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Our analysis has focused on identifying actograms reflecting a
24-h periodicity. Clearly, this is a hypothesis/limitation. However, it
does not take away from the analysis. Having access to only 7 days of
data are somewhat limiting in determining with confidence whether
multiple patterns exist within one sequence of recordings. Therefore,
we limit ourselves to actograms exhibiting robust periodicity,
realizing we have omitted other patterns. A wealth of
information is generated and needs to be better understood.

Figure 1b is an hourly averaged representation of the activity
data, simplifying daily patterns’ visualization. Peaks and troughs
in this panel reflect the subject’s daily activity cycles, offering
insights into the circadian structure. Figure 1c represents the
average, per min, activity across all days (green line,
Y(t), t � 1, . . . , 24 × 60). This represents the “average day”
combining the recording from all days. This average
representation is subsequently represented on an hourly basis by

FIGURE 4
(a) Typical cluster center distribution of activity levels throughout the day with the shaded yellow region highlighting the waking period. TtA (time to
alertness) is marked as the time interval between waking up and reaching a defined activity threshold defined as TtA � t

max (d(activity)dt ){ } − t d(activity)
dt �0{ }. The

histogram (blue bars) is overlaid with the activity curve (red line) and its derivative (Bottom) Scatter plots of wake-up time versus time to alertness (TtA)
across four age groups: (b) 19–30, (c) 31–50, (d) 51–70, and (e) 71–80. Linear regression of wake-up time versus time-to-alertness across age
groups. Significant positive associations were observed in younger adults (19–30 years, R2 � 0.867, p = 0.0023; 31–50 years, R2 � 0.779, p = 0.0199),
while no significant associations were detected in older adults (51–70 years, R2 � 0.214, p = 0.248; 71–80 years, R2 � 0.027, p = 0.697).
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average consecutive 60 min elements to express an average hourly
activity of each individual (red line, ypa(τ), τ � 1, . . . , 24).
Averaging activity recordings over 7 days to generate a
representation of an “average day” can be justified when
examining circadian behavior patterns (Shim et al., 2023).
Averaging data over 7 days enhances reliability by minimizing
daily fluctuations from external factors, highlighting stable trends
in activity and rest. It improves consistency, reduces outliers’ impact,
and facilitates clustering and comparability across individuals. This
approach effectively captures habitual rhythms, offering a clearer
depiction of typical behavior. However, it may obscure irregular
routines, short-term fluctuations, or disruptions like insomnia,
potentially masking meaningful variability. While it improves
robustness and standardization, it cannot distinguish between
true circadian rhythms and misalignments, limiting sensitivity to
subtle changes in activity timing and intensity.

Our analysis considered each age group separately. Unlikely
earlier works (Shim et al., 2023) we wanted to focus on elucidating

age-dependent characteristics. Although an integrated analysis has
also been performed (results not shown), the aggregation of age
group obscures the analysis. As such, we considered four age groups,
as explained earlier: [age group 19–30], [age group 31–50], [age
group 51–70], [age group 71–80]. Each group’s actograms were
clustered separately and the clusters for all groups are shown in
Figure 2. The graphs depict:

a. The hourly activity levels for each cluster’s center (bars);
b. The numerical calculated derivative of the activity levels (red

line); and finally,
c. the piece-wise constant approximation (green line).

The latter is used to develop a general estimate of the SOT and
WT proxy. By considering the clusters, several informative
observations can be made. First of all, it must be noted that
cluster dynamics are relatively common across all age groups. In
other words, the age-dependent differences are somewhat subtle,
and it is hard to assign unique characteristics only based on age.
Furthermore, by considering the activity level it is generally observed
that the level of activity, looking at the maximum levels of activity,
overall drops as age increases. However, it is hard to develop clearer
insights when considering the form of emerging dynamics per age
group. Further analysis of this data begins to unravel interesting
differentiating characteristics.

Figure 3 provides a detailed comparison of actigraphy-derived
sleep and activity metrics across all age groups. All distributions
were determined to be statistically different from each other. The
metrics are depicted in the form of CDF represented by the fraction
of individuals (within a cluster) that have been assigned a specific
property value. Figure 3 (top panel) explores the winding down
period, defined as the duration where activity decreases (negative
derivative), ∫ tdt: t ∈ d(activity)

dt < 0, and reveals a slight increase in its
length with age. The winding down period aims at determining the
period of time during which activity level are maintained. This is
determined by evaluating the derivative of the activity: positive
derivatives indicate period of increased activity, near zero
derivatives indicate constancy in activity, whereas negative
derivatives indicate a slowing down of activity. Younger
individuals [age group 19–30] show a shorter winding down
period, consistent evidence supporting an increase in sleep
latency with age (Mander et al., 2017). In older groups, especially
the [age group 71–80] cohort, the winding down period becomes
longer, suggesting that the in older population there is a protracted
period of slowing down, or in other words the length of time during
which activity remains high is reduced.

Figure 3 (middle panel) quantifies winding down activity,
defined as the integral of activity during periods of slow down,
∫ activity(t)dt; t ∈ d(activity)

dt < 0. Younger individuals show higher
winding down activity, which could indicate more pronounced
evening behaviors such as physical or social activities before
sleep. As age increases, winding down activity decreases,
particularly in the [age group 71–80] group, suggesting lower
levels of evening activity and a more gradual, subdued decline in
activity leading up to sleep. What this implies is that in younger
individuals the winding down period may be short, expressed in
time units, however, younger individuals remain relatively more
active even during their slowing down period.

FIGURE 5
Cumulative frequency distribution of wake times (top) and sleep
onset times (bottom) across age groups: 19–30 (red), 31–50 (blue),
51–70 (green), and 71–80 (black). The yellow region marks typical
daytime (07:00–19:00). Younger groups show later sleep onset
and wake times, with curves shifting earlier as age increases. Older
groups (51–70 and 71–80) predominantly wake earlier and go to bed
earlier, reflecting age-related shifts in circadian rhythms. The
Wasserstein Distance test was implemented to confirm the statistical
significance of the differences between the curves.
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Figure 3 (bottom panel) examines overall activity during the day,
showing a decrease with age. The [age group 31–50] age group
exhibits the highest levels of activity, with values decreasing
progressively across age groups, culminating in the lowest overall
activity in the [age group 71–80] cohort, consistent with prior
observations (Milanovic et al., 2013). This decline reflects the
natural reduction in physical activity associated with aging, likely
influenced by reduced mobility, health-related limitations, and
lifestyle changes. Notably, the variability in overall activity is
higher in younger groups, likely reflecting a mix of active and
sedentary individuals, whereas older groups show more uniform
patterns of lower activity. Together, these findings highlight the
progressive changes in sleep-wake dynamics and physical activity
with age: younger individuals display later wake times, shorter
transitions to sleep, and higher overall activity, while older adults
experience earlier wake times, extended winding down periods, and
reduced physical activity, reflecting age-related biological and
behavioral adaptations.

Figure 4 examines how time to alertness (TtA) varies with age,
and the results are particularly interesting. As earlier noted, we
define (Equation 3) the time to alertness as

TtA � t
max

d activity( )
dt( ){ } − t d activity( )

dt �0{ } (3)

In younger adults [age group 19–30], the results demonstrate a
robust positive relationship between wake-up time and time to
alertness, with an R2 � 0.867. This strong correlation reflects the
heightened sensitivity of this age group to circadian phase shifts.
During adolescence and early adulthood, individuals typically
experience a delayed circadian phase (Gradisar and Crowley,
2013), leading to a preference for later bedtimes and wake-up
times, commonly referred to as an “evening chronotype.” This
delay in biological rhythms peaks around the early 20 s and
begins to shift earlier with age. Consequently, when young adults
wake up later than usual, the misalignment of their biological clock
amplifies sleep inertia, the grogginess experienced after waking,
resulting in a longer time to reach full alertness. This group is
also prone to accumulating sleep debt due to inconsistent schedules,
social obligations, and external demands such as school and work.
The variability in wake-up time can exacerbate social jetlag, a
condition where the internal body clock misaligns with socially
imposed schedules. These disruptions to the sleep-wake cycle impact
how quickly alertness can be regained after waking. For middle-aged
adults aged [age group 31–50], the relationship between wake-up
time and time to alertness remains positive, though weaker, with an
R2 � 0.779. As individuals move into their 30s and 40 s, the
circadian rhythm becomes more stable and begins to advance
slightly, favoring earlier wake-up times, a trend known as a
“morning chronotype.” This stability, coupled with structured
sleep patterns often imposed by work and family responsibilities,
reduces the variability in sleep schedules compared to younger
adults. While sleep deprivation can still impair alertness, the
resilience of this age group to circadian disruptions increases.
Moreover, their reduced sensitivity to phase delays means that
later wake-up times have a slightly smaller impact on time to
alertness than in younger individuals. However, sleep inertia
persists in middle age, indicating that regular wake-up times
remain important for optimizing morning alertness. In adults

aged [age group 51–70], the relationship between wake-up time
and time to alertness weakens considerably, with anR2 � 0.214. This
reflects a shift in both biological and behavioral patterns. As people
age, their circadian rhythms advance, leading to earlier bedtimes and
wake-up times. This phase advance is accompanied by a reduction in
the amplitude of the circadian rhythm, meaning that the signals
governing the sleep-wake cycle become weaker. Additionally, sleep
architecture undergoes changes with age: slow-wave sleep (deep
sleep) decreases, REM sleep may shorten, and overall sleep becomes
lighter and more fragmented. These changes contribute to poorer
sleep efficiency, even though wake-up times tend to become more
consistent due to habitual routines and fewer external demands. The
diminished impact of wake-up time on time to alertness can be
attributed to these more predictable schedules and the reduced
ability of older adults to extend sleep duration, regardless of
wake-up time. The weaker correlation suggests that factors
beyond wake-up time, such as sleep quality, physical health, and
medication use, may be more prominent in determining alertness in
this age group. In older adults [age group 71–80], the correlation
between wake-up time and time to alertness nearly disappears, with
an R2 � 0.027. This finding is consistent with the literature, loss of
circadian rhythmicity with age (Hood and Amir, 2017). The
amplitude of circadian oscillations weakens, reducing the body’s
responsiveness to changes in sleep timing or external cues such as
light exposure. Elderly adults often exhibit short, fragmented sleep
due to reduced homeostatic sleep drive and age-related changes in
the brain’s ability to regulate sleep. Consequently, time to alertness
becomes less dependent on wake-up time and may instead reflect
other factors such as health conditions, medications, or daytime
activity levels. Additionally, this age group often maintains
consistent wake-up schedules driven by biological changes and
behavioral routines, minimizing variability in time to alertness.
As seen in the actigraphy results, the relationship between wake-
up time and time to alertness varies across age groups. The
relationship between aging and sleep inertia is very complex and
hard to decipher in detail and is known to exhibit substantial
variability (Ruby et al., 2024; Tonet et al., 2022). The results
highlight a strong correlation between wake-up time and time to
alertness in younger age groups, a gradually diminishing trend in
middle-aged adults, and a near absence of any relationship in older
adults. These patterns are likely deeply rooted in both biological and
behavioral changes across the human lifespan.

Figure 5 illustrates the cumulative frequency distribution of
wake times (top panel) and sleep onset times (bottom panel)
(determined based on the piece-wise constant approximation)
across four age groups: [19–30] (red), [31–50] (blue), [51–70]
(green), and [71–80] (black). Overall sleep onset and offset are
generally calculated based on scoring rules that use a predefined
number of consecutive minutes over which the individual is at rest
or exhibits movement following rest (Fekedulegn et al., 2020). In our
case, these were determined based on the fitted parameters of each
cluster’s center. The yellow-shaded region represents the typical
daytime period from 07:00 to 19:00, providing a visual reference for
the alignment of sleep-wake patterns with the conventional day-
night cycle. Younger age groups, particularly those aged [19–30],
exhibit a wake time distribution that peaks substantially later in the
day, with the curve rising steeply in the late morning. The [31–50]
age group shows a shift toward earlier waking, the [51–70] and
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[71–80] display similar wake times, flanked between the two other
groups. This progression suggests a clear trend toward earlier wake
times with increasing age. A similar pattern is observed for sleep
onset times. The youngest group [19–30] demonstrates a later sleep
onset, with a higher frequency of individuals going to bed closer to
midnight. The 31–50 group follows a similar trend but with slightly
earlier sleep onset times compared to the youngest cohort. Among
individuals aged [51–70], sleep onset times are predominantly
earlier in the evening, peaking between 9:00 p.m. and 10:00 p.m.
For the oldest group (71–80), sleep onset times shift earlier, with
most individuals going to bed well before midnight. These
observations collectively highlight the impact of age on sleep-
wake patterns, with older individuals tending to wake up and go
to bed earlier, reflecting age-related changes in circadian rhythms.
Conversely, younger adults exhibit a preference for later wake times
and sleep onset, consistent with delayed sleep-wake preferences

typically associated with younger age groups. The results reveal
interesting characteristics. WT and SOT vary widely within age
groups, but also there is a general trend for moving toward an earlier
chronotype, based on ofWT, with aging.Wake-up time shifts earlier
with increasing age, a trend that aligns with the well-documented
age-related phase advance in circadian rhythms, where older adults
tend to shift toward morningness (Duffy et al., 2015). The variability
in wake-up time is greater in younger age groups, likely due to
irregular sleep schedules influenced by lifestyle factors such as work,
study, and social activities. In contrast, wake-up times in older adults
are more consistent, reflecting a greater regularity in daily routines
and biological changes that reduce sleep duration.

Figure 6 illustrates, in the form of polar plots, the distribution of
sleep onset times (filled circles) and wake times (open circles) for the
four age groups with lines connecting the two times for each cluster.
The size of each circle represents the frequency of a particular sleep-

FIGURE 6
Polar plots showing sleep onset (filled circles) and wake times (open circles) for individuals across four age groups: (a) 19–30, (b) 51–70, (c) 31–50,
(d) 71–80. The connecting lines represent the duration of individual sleep periods. Circle sizes are proportional to the frequency of occurrence for each
sleep-wake time. Younger age groups (19–30, 31–50) exhibit later sleep onset and wake times, with longer sleep durations, while older age groups
(51–70, 71–80) display earlier sleep onset and wake times, reflecting age-related shifts in sleep timing and duration. The circle sizes are proportional
to the size of the corresponding cluster.
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wake combination within an age group based on the number of
subjects assigned to that cluster. The [19–30] age group
demonstrates a clear preference for later sleep onset and wake
times, with most individuals going to bed close to midnight and
waking up around 7–9 a.m. This group shows longer sleep durations
on average. The [31–50] group follows a similar pattern, with
slightly earlier sleep onset and wake times compared to the
[19–30] group, but still within a later timing preference
compared to older groups. In contrast, the [51–70] and [71–80]
groups exhibit distinctly earlier sleep-wake patterns. The [51–70]
group shows a clustering of sleep onset around 10 p.m. and wake
times close to 5–7 a.m., suggesting a shortened sleep duration
compared to younger groups. The [71–80] group displays an
even more pronounced shift toward early sleep onset (around
9–10 p.m.) and early wake times (4–6 a.m.), with many
individuals showing compressed sleep periods as reported in the
literature (Li et al., 2018). These plots highlight the progressive shift
in sleep timing and duration with increasing age, reflecting well-
documented age-related changes in circadian rhythms. Younger
groups tend to exhibit later sleep-wake preferences and longer sleep
durations, while older groups display a trend toward earlier sleep-
wake cycles and shorter durations. The variation in circle sizes
further emphasizes the higher frequency of early sleep onset and
wake times in older groups, underscoring a consistent pattern of
advancing sleep phase with age.

This study underscores actigraphy’s value in large-scale
research, providing real-world insights into the interaction
between behavior, environment, and biological rhythms. The
findings highlight wearable technology’s potential to advance
personalized healthcare and public health strategies. Addressing
knowledge gaps on irregular routines and circadian variations
can inform policies that support healthy aging. Ultimately,
leveraging activity patterns and circadian rhythms can improve
health outcomes, reduce lifestyle-related disease burdens, and
promote long-term wellbeing across populations.

Our findings suggest that age-related shifts toward earlier phase,
reduced amplitude, and prolonged transition kinetics can be
interpreted as remodeling of the multi-loop sleep–wake control
system. Because the markers are transparent and device-
independent, they can serve as observables for calibrating
multiscale models (e.g., circadian–homeostatic ODEs coupled to
endocrine/inflammatory axes) and for testing how light schedules,
activity prescriptions, or pharmacologic interventions reshape
network parameters in silico before clinical deployment.

In summary, a simple, transparent unsupervised approach
applied to public, device-independent NHANES MIMS data
recovers known age-related phase advance and declining activity
and introduces actionable markers—winding-down time/activity
and time-to-alertness—with age-specific normative distributions.
These interpretable phenotypes complement traditional indices
and can support clinical counseling, population surveillance, and
evaluation of interventions targeting sleep–wake alignment across
the adult lifespan.
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