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Prioritizing actionable drug targets is a critical challenge in cancer research,
where high-dimensional genomic data and the complexity of tumor biology
often hinder effective prioritization. To address this, we developed GETgene-Al, a
novel computational framework that integrates network-based prioritization,
machine learning, and automated literature analysis to prioritize and rank
potential therapeutic targets. Central to GETgene-Al is the G.E.T. strategy,
which combines three data streams: mutational frequency (G List), differential
expression (E List), and known drug targets (T List). These components are
iteratively refined and ranked using the Biological Entity Expansion and
Ranking Engine (BEERE), leveraging protein-protein interaction networks,
functional annotations, and experimental evidence. Additionally, GETgene-Al
incorporates GPT-40, an advanced large language model, to automate
literature-based ranking, reducing manual curation and increasing efficiency.
In this study, we applied GETgene-Al to pancreatic cancer as a case study. The
framework successfully prioritized high-priority targets such as PIK3CA and
PRKCA, validated through experimental evidence and clinical relevance.
Benchmarking against GEO2R and STRING demonstrated GETgene-Al's
superior performance, achieving higher precision, recall, and efficiency in
prioritizing actionable targets. Moreover, the framework mitigated false
positives by deprioritizing genes lacking functional or clinical significance.
While demonstrated on pancreatic cancer, the modular design of GETgene-Al
enables scalability across diverse cancers and diseases. By integrating multi-
omics datasets with advanced computational and Al-driven approaches,
GETgene-Al provides a versatile and robust platform for accelerating cancer
drug discovery. This framework bridges computational innovations with
translational research to improve patient outcomes.
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1 Introduction

Traditional chemotherapeutic agents, which non-specifically target rapidly dividing
cells (Gu et al,, 2023; Sun et al,, 2021), are contested with the promise of targeted therapies
that disrupt specific molecular pathways governing cell survival and apoptosis (Sellers and
Fisher, 1999; Lim et al, 2019). Drug target discovery is pivotal for advancing cancer
therapies, yet traditional approaches face three critical limitations. First, manual curation of
literature and static biomedical databases struggles to scale with the complexity of modern
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multi-omics data (genomic, transcriptomic, proteomic), leading to
incomplete or outdated target identification (Paananen and Fortino,
2020; Zhou et al., 2022; Trajanoska et al., 2023; Lindsay, 2003; Zhou
and Zhong, 2017). Second, traditional network-based prioritization,
which prioritize genes based on protein-protein interaction (PPI)
network centrality, oversimplify biological context by ignoring
tissue-specific genomic features such as mutation frequencies and
differential expression profiles (Petti et al., 2020). These limitations
contribute to high failure rates in translating preclinical discoveries
to clinical therapies, particularly in genetically heterogeneous
cancers like pancreatic cancer. Third, reliance on single-metric
approaches like fold change or mutational frequency introduces
variability due to arbitrary thresholds and sample bias (McCarthy
and Smyth, 2009; Dinstag and Shamir, 2020; Lopez-Cortés et al.,
2018). These gaps contribute to high failure rates in translating
preclinical discoveries to clinical therapies, particularly in genetically
heterogeneous cancers like pancreatic cancer (Singh et al., 2023; Sun
et al., 2022; Zhu et al., 2021; Somarelli et al., 2019).
Computational advances address these challenges by integrating
multi-omics data, network-based prioritization and AI-driven
literature review, driving down costs, increasing precision, and
expediting the development of effective therapies through in
silico assessments (Sadybekov and Katritch, 2023; Sliwoski et al.,
2014; Huan et al,, 2010; Chen et al., 2006). The integration of multi-
data
expression patterns, while network-based prioritization refines

omics contextualizes mutations within tissue-specific
prioritization by mapping genes to functionally relevant pathways
(Shim et al., 2015). Network-based prioritization enables researchers
to analyze genomic datasets and identify critical regulatory genes
implicated in cancer development (Chang et al., 2021; Sonehara and
Okada, 2021). These methods prioritize disease-related genes by
integrating data from PPI networks and known gene-drug
(Mohsen et al, 2021; 2021).

Furthermore, network-based prioritization approaches provide

associations Zhang et al,
the ability to efficiently process genomic information and derive
meaningful insights is pivotal for identifying and visualizing relevant
drug targets (Chen et al., 2013; Chen et al., 2009; Huan et al., 2010;
Shim et al,, 2015; Huang et al., 2012).

Differential gene expression is a critical method for
identifying genes significantly altered between conditions, such
as cancerous versus normal tissues (Bai et al., 2013; Van de Sande
et al, 2023). A common approach involves calculating “fold
change,” which quantifies the ratio of gene expression levels
between these states (Love et al., 2014; Mutch et al., 2002).
GEO2R, a tool to determine differentially expressed genes,
utilizes fold change to rank genes under experimental
conditions (ie. tumor versus healthy tissue comparisons)
(Barrett et al., 2013). However, the arbitrary selection of fold
change thresholds can introduce variability into prioritization,
compromising the reliability of target identification (McCarthy
and Smyth, 2009). Separately, frequency-based prioritization
methods focus on genes with elevated mutational rates in
disease contexts, hypothesizing these as common therapeutic
targets (Dinstag and Shamir, 2020; Lépez-Cortés et al., 2018).
Frequency-based prioritization methods for gene prioritization
can be prone to bias, especially due to sample selection, which can
skew results (Lazzeroni et al., 2014). To address these limitations,
network centrality-based prioritization has emerged as a
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complementary strategy. This approach leverages gene
connectivity within biological networks, offering a holistic
framework for target selection by expanding gene lists and
strengthening disease association metrics (Janyasupab et al.,
2021; Magger et al., 2012).

Al-driven GPT-4)

automates the synthesis of preclinical and clinical evidence,

Concurrently, literature review (e.g.,
identifying targets with mechanistic and translational relevance
(Liu et al., 2021; Oniani et al., 2024; Sallam, 2023; Tripathi et al,,
2024). By combining these approaches, biases inherent to single-
metric or fragmented datasets can be mitigated, yielding prioritized
targets with mechanistic, functional, and translational relevance.
(Somarelli et al., 2019; Zhu et al., 2021; Sadybekov and Katritch,
2023). LLMs can predict essential information about gene targets,
including structural domains of proteins, protein structure, toxicity
and adverse effects, functional significance, clinical and preclinical
relevance, and treatment efficacy (Sallam, 2023; Tripathi et al,
2024). Furthermore, GPT-4 has demonstrated the ability to rival
human performance in conducting literature reviews, thus
streamlining the drug target prioritization process (Khraisha
et al., 2024; Li et al., 2010).

In this study, we hypothesize that the utilization of network-
based analysis, artificial intelligence, and biologically significant
data will enable systemic prioritization of actionable therapeutic
targets. Thus, we propose GETgene-Al, a framework which
annotates network-based analysis with LLM enabled literature
review, and biologically significant data. Central to GETgene-Al
is the G.E.T. strategy, which integrates three key data streams: the
G List (genes with genetic mutations, variations functionally
implicated in genotype-to-phenotype association studies of the
disease), the E List (disease target tissue-specific expressions of
the candidate gene), and the T List (established drug targets based
on reports from literature, patents, clinical trials, or existing
approved drugs). Initial gene candidates are derived from
heterogeneous biological datasets, including fold change, copy
number alterations, and mutational frequency metrics. To
mitigate biases inherent to fragmented or incomplete data,
GETgene-Al employs a multi-dataset integration approach.
The framework iteratively refines candidate lists through the
network-based tool BEERE, which annotates and prioritizes
genes with network-based centrality methods to create a high-
quality, prioritized gene list. This iterative process expands and
ranks candidates by evaluating their biological relevance,
with
aberrations, thereby improving target identification accuracy.

network  centrality, and concordance genomic
GPT-40 is integrated into the process to improve literature
review efficiency and further annotate the target list,
enhancing the overall workflow. By combining traditional and
in silico methods, GETgene-Al bridges gaps in drug discovery
and facilitates the development of personalized cancer therapies.

The novel drug targets prioritized through our case study in
pancreatic cancer not only offer insights into the unique
molecular mechanisms driving this aggressive cancer but also
present promising avenues for therapeutic intervention. While
pancreatic cancer serves as a case study in this paper, the
underlying methodology is adaptable to a wide range of
cancers and diseases, thereby accelerating the discovery of

therapeutic options.
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Step 4: GET List
prioritization and
genomic annotation

General overview of the GET list compilation and ranking process. Initial gene lists from each of the three subsets are compiled. 2,493 genes are

compiled in the initial G list, 2000 genes are compiled in the initial E list, and

131 genes are compiled in the initial T list. Each list is iteratively prioritized

using the BEERE network ranking and expansion tool, taking the top 500 genes each time and re expanding and ranking. The lists were then merged and
annotated with biologically significant features. Separately, genes implicated in clinical trials related to treatment of pancreatic cancer were
benchmarked to set the weights utilized for RP score ranking. Genes in the GET list were then ranked utilizing these weights.

Methods

In Figure 1, we show a general overview of the GETgene-
Al framework.

The initial gene list is generated by employing a three-tiered
strategy—comprising the Gene list (G list), Expression list (E list),
and Target list (T list)—to integrate biological context into gene
prioritization. The G list identifies genes with high mutational
frequency, functional significance (e.g., pathway enrichment via
the Kyoto Encyclopedia of Genes and Genomes (KEGG)), and
genotype-phenotype associations. The E list focuses on genes
exhibiting significant differential expression in pancreatic
ductal adenocarcinoma (PDAC) compared to normal tissues,
while the T list incorporates genes annotated as drug targets in
clinical trials, patents, or approved therapies. To construct these
lists, disease-specific genomic data were aggregated from public
databases (e.g., TCGA, COSMIC, PAGER) and processed using
GRIPPs (Gong and Chen, 2023), an iterative network-based
approach that applies modality-specific thresholds to ensure
robust inclusion criteria.

Frontiers in Systems Biology 03

Following the initial gene list generation, the second step
involves prioritizing and expanding these lists using the BEERE
network-ranking tool. BEERE was selected for its demonstrated
efficacy data and
prioritization accuracy (Yue et al., 2019), ensuring comprehensive

in filtering low-confidence enhancing
and reliable gene sets.

A benchmark set of genes implicated in pancreatic cancer
clinical trials (i.e., genes appearing as targets or biomarkers in
registered interventional studies) was analyzed to evaluate which
genomic and network features are most characteristic of clinically
successful drug targets. This benchmark set is distinct from the T list,
which consists only of genes targeted by FDA-approved drugs
already indicated for pancreatic cancer. Genomic features
considered included differential expression, mutation frequency,
and copy number alterations, while network-based features
included the BEERE scores of Gene, Expression, and Target lists.
The benchmarking analysis did not alter the composition or scoring
of the T list but instead provided interpretive context by identifying
which factors were enriched among clinically validated targets. This
analysis was further supplemented by a GPT-4-enabled literature
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review, which added biological and clinical insights to the
interpretation of results.

Finally, the GETgene-Al ranking is generated by integrating
BEERE network rankings, annotated gene information, and insights
derived from GPT-4. This multi-layered approach ensures a robust
and contextually informed prioritization of potential drug targets.

Using PDAC as a case study—selected due to its poor prognosis
and limited therapeutic options (Hu et al., 2021) —our framework
produced quantitative data and novel insights into potential
therapeutic targets,

demonstrating its utility in advancing

precision oncology.

2.1 Initial gene list generation

2.1.1 Compiling the gene list from
genetic mutations

For the “GENE” component of our “GET” framework, we
compiled three gene subsets: PAGER-NC, COSMIC-MUT, and
CBP-CNA-MUT. The initial “GENE” list was compiled from the
PAGER (Huang et al., 2012; Yue et al., 2018; 2022), cBioPortal (de
Bruijn et al., 2023), and COSMIC (Tate et al., 2019) databases. To
address potential sample biases and data incompleteness (e.g.,
studies failing to detect specific genes), we incorporated multiple
datasets from these repositories when available. Genes associated
with the term “Pancreatic Cancer” were manually curated from
these databases. Empirical cutoffs were applied to prioritize genes
with relevance to pancreatic cancer.

To integrate biological pathway context into gene prioritization,
we utilized PAGER (Chowbina et al, 2009), which quantifies
functional significance through pathway-based metrics. From
PAGER, 844 candidate genes were selected heuristically using an
nCoCo score threshold between 5 and 100. The nCoCo score, which
measures gene set coherence by integrating co-citation and pathway
data, with higher scores indicating stronger biological cohesion was
constrained with a minimum of 5 (minimal coherence) and
maximum of 100 (ubiquitous processes) (Huang et al., 2012; Yue
et al., 2018; Yue et al., 2022).

For the cBioPortal and COSMIC databases, thresholds were defined
by identifying points where mutational frequency no longer
demonstrated cancer-specific significance in prior studies. From
cBioPortal, 1,000 genes were selected using cutoffs of 8.2% for copy
number alterations (CNA) and 2.8% for mutational frequency. The
threshold for copy number alterations is significantly higher due to only
21 sets of copy number signitures being represented in 97% of tumor
samples on The Cancer Genome Atlas (Steele et al.,, 2022). The 2.8%
cutoff for mutational frequency is due to the fact that a limited amount
of genes were found to be mutated in more than 5% of tumors (Sinkala,
2023). Most biologically relevant genes were found to be mutated at
frequencies between 2%-20% (Lawrence et al., 2014). From COSMIC,
649 genes were compiled using a 20% mutational frequency cutoff
according to the previously mentioned frequency range. Finally,
candidate genes from PAGER, cBioPortal, and COSMIC were
aggregated to form the “G list”, comprising 2,493 genes in total.

Sensitivity analysis was performed by testing lower and higher
cutoffs for both CNA and mutational frequency. For CNA, a lower
threshold of 7.3% and a higher threshold of 9.2% were applied, while
for mutational frequency, thresholds of 2.2% (lower) and 3.4%
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(higher) were used. For the COSMIC cancer database, a lower
cutoff of 15% and a higher cutoff of 25% were applied. Genes
within the top 250 of GETgene-Al were manually examined to
identify those included or functionally related to genes falling within
the lower and higher thresholds. The lower threshold did not
identify any genes beyond those already present in the G list,
whereas the higher threshold excluded the following genes:
P3H2, PAHTM, PLOD3, PLOD2, P4HA1, PLODI, PAM, PSMB5,
C1QC, C1QA, and CIQB. All of these genes rank outside
the top 150.

2.1.2 Compiling candidate genes for the
“expression” subset

Candidate genes were prioritized by analyzing the GEO dataset
GSE29735, titled “Pancreatic ductal adenocarcinoma tumor and
adjacent non-tumor tissue” (Zhang et al., 2012; Zhang et al., 2013),
using the GEO2R tool. Samples were categorized into tumor and
non-tumor groups via the “Define groups” feature, with the tumor
group defined as “human pancreatic tumor tissue patient samples”
and the non-tumor group as “human pancreatic non-tumor patient
samples”. The dataset comprised of 90 patient samples, evenly
distributed between 45 tumor and 45 non-tumor samples.
Differentially gene expression analysis was performed using
GEO2R’s “analyze” function. The top 2,504 genes exhibiting logfc
values over 0.25 were compiled into an initial “E list”. A cutoff of
0.25 was determined based on the “FindAllMarker” function
provided by the R package Seurat (Wang et al.,, 2024). The list
was subsequently processed iteratively using the BEERE software in
accordance with the GRIPPs method.

2.1.3 Compiling candidate genes for the
“Target” subset

Incorporating with  network-based
prioritization is a well established approach (Huang et al, 2015;
Huang et al, 2012b). Building on this methodolody, a set of

131 genes were identified using DrugBank (Wishart et al,, 2018), a

pharmacology ~ data

comprehensive drug and drug-target database. To extract relevant
genes, the database was queried using the search terms “Pancreatic
Cancer,” “Pancreatic Ductal Adenocarcinoma,” and “Neuroendocrine
Pancreatic Cancer” within its drug repository. Drugs explicitly indicated
for Pancreatic Cancer treatment were identified by reviewing their
associated metadata, including summaries, background descriptions,
indications, clinical trial references, and listed “Associated Conditions.”
Each drug’s mechanism of action, therapeutic summary, and clinical
trial references were manually evaluated to distinguish agents directly
treating pancreatic cancer from those used for supportive care (e.g.,
chemotherapy relief, pain management, or sedation). For all drugs
meeting the inclusion criteria, gene targets listed under their respective
“Targets” section in DrugBank were compiled, resulting in 131 unique
genes associated with pancreatic cancer therapeutics.

2.2 Prioritization and expansion of GET lists

To improve the specificity and biological relevance of our
candidate gene lists, we implemented an iterative refinement
process using the BEERE tool for prioritization and network-
based expansion. The BEERE tool employs an initial ranking
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algorithm and two iterative ranking algorithms—PageRank and an
ant-colony algorithm—both of which have demonstrated success
across diverse knowledge domains (Yue et al., 2019). Although both
ranking algorithms use an iterative ranking process, they differ in
how node importance weights are calculated. The PageRank
algorithm assigns node importance directly from neighboring
nodes. In the ant-colony algorithm nodes lose score when
disseminating information and gain score upon receiving it.
BEERE expands the gene list using the nearest-neighbor network
constructed from protein-protein interactions in the HAPPI
2.0 database (Chen et al., 2009; 2017; Wu et al.,, 2012).

This workflow addresses the inherent limitations of single-
(e.g.
expression data) by integrating complementary biological
evidence. Building on the GRIPPS framework (Gong and Chen,
2023), we developed a customized pipeline to systematically

dimensional analyses relying solely on mutation or

prioritize genes from three distinct categories: the combined GET
list (genes ranked by aggregated mutational frequency, differential
expression, and known drug-target status), the GT list (genes co-
occurring in mutation and drug-target databases to highlight
functionally relevant drivers), and a prioritized Expression (E) list
(genes ranked exclusively by differential expression in
pancreatic cancer).

The GET, GT, and E lists are expanded independently to
preserve modality-specific signal during the BEERE prioritization
phase. Combining them before expansion would dilute distinct
biological features (e.g, mutation-specific drivers in G vs.
expression-based biomarkers in E) and bias the expansion toward
with
overshadowing rare but high-impact genes. For example, MYC
and TNF, identified through differential expression and drug-

categories larger initial representation, potentially

target overlap but not mutational frequency, would have been
deprioritized if lists were merged prior to expansion. This
systematic, modality-preserving  approach  enhanced the
identification of potential therapeutic targets by ensuring that
candidates from each evidence stream were equally represented
in the final prioritization.

Each list underwent the same refinement workflow to balance
comprehensiveness with specificity. First, BEERE expanded the
initial gene sets by incorporating proximal interactors from
HAPPI

2.0 database, thereby capturing functionally related genes beyond

protein-protein interaction (PPI) networks in the
those directly identified in our initial screens. Next, BEERE’s

network propagation and statistical ranking algorithms

prioritized genes based on their network centrality and
significance scores. To prevent overexpansion and maintain focus
on high-confidence candidates, we empirically filtered each list to
retain the top 500 genes after each prioritization cycle. This iterative
process was repeated three times, as preliminary testing revealed that
additional iterations caused excessive convergence of the lists,
reducing their distinct biological relevance. Three iterations
optimally preserved the unique profiles of each list while still
enabling meaningful integration.

The independently expanded GET, GT, and E lists (each refined
through three iterations of BEERE network expansion) were
consolidated into an Initial GET List, which then underwent a
final BEERE-based prioritization to generate the Final GET List.

For comparative analysis, we also retained the previously defined
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Expression List (top differentially expressed genes) and the GT List
(prioritized genes from mutation-drug target overlaps). These lists
were not re-derived here but carried forward for side-by-side
evaluation. This tiered approach ensured that our final candidate
pool retained both mechanistic diversity (genes linked to distinct
biological processes) and clinical relevance (genes with actionable
potential as drug targets).

The refinement process was critical to address three key
challenges: (1) mitigating the high false-positive rate inherent to
mutational and expression screens in heterogeneous cancers like
pancreatic adenocarcinoma, (2) reconciling discrepancies between
genes prioritized by individual data types (e.g., highly mutated genes
often lack expression changes, and vice versa), and (3) ensuring
functional coherence by embedding candidates within PPI networks
reflective of disease biology. By iteratively refining lists through
network propagation and multi-evidence integration, we enhanced
the biological plausibility of candidates while preserving distinct
mechanistic hypotheses for downstream validation.

2.3 GPT-40 aided literature assessment

Recent research has demonstrated that GPT-40 performs
“human-like” literature reviews, particularly in screening and
analyzing scientific literature (Khraisha et al., 2024). For this
study, abstracts related to pancreatic cancer genes and treatments
were downloaded using PubMed’s “save” feature. A total of
5,091 abstracts were collected and uploaded for analysis by GPT-
40 through a custom GPTo interface. Due to the data processing
limitations of GPT-4o, abstracts were filtered to include only meta-
analyses, clinical trials, and systematic reviews on PubMed to ensure
high-quality input data.

The custom GPTo model was configured with specific
instructions to rank genes based on a scoring system with a
maximum score of 400 points, distributed across four categories:
functional significance in pancreatic cancer, research popularity,
treatment effectiveness when targeting or inhibiting the gene, and
protein structure. Each category was allocated 100 points, and the
resulting metric was termed the GPT-4 score. To mitigate GPT-40's
known issue of “hallucination” or the generation of inaccurate or
nonexistent information, the model was explicitly instructed to base
its rankings solely on the uploaded research database. Additionally,
the model was required to cite articles referenced during the ranking
process and provide explanations for the scores assigned to each
gene in every category. GPT-4 outputs were manually verified
against curated datasets to ensure biological relevance and
mitigate hallucinations. Citations provided by GPT-4 were cross-
referenced with PubMed to confirm validity. All cited articles were
manually verified, and any errors or hallucinations were addressed
by instructing the model to re-search the uploaded literature
database for accurate mentions of the gene. Analyses involving
database-derived information was performed on static datasets
downloaded, ensuring that any subsequent database changes
would not affect our reported results. Where possible, we provide
accession numbers and dataset DOIs. This approach guarantees that
the gene rankings and annotations presented here can be
reproduced independently of future GPT-4 updates or changes to
online resources.
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2.4 Incorporation of clinically implicated
genes and annotation of genes with factors
relevant to drug target prioritization

Clinical trials are critical for evaluating the efficacy of
therapeutic agents targeting specific genes. To assess the clinical
relevance of prioritized genes, we quantified clinical trial activity by
compiling the frequency of trials associated with each gene. Genes
targeted by drugs investigated in pancreatic cancer treatment trials
systemically identified through the following process: A search for
the term “pancreatic cancer” was conducted on Clinicaltrials.gov,
and all drugs listed in active or completed interventional trials for
pancreatic cancer were extracted. Corresponding target genes for
these drugs were then identified using DrugBank’s “Targets” section,
which provides genes targeted by the drug for pancreatic cancer
treatment. This process yielded 357 drugs targeting 253 unique
genes. These genes were annotated with BEERE scores derived from
the previously described GET lists. To enhance biological validity,
the analysis integrated quantitative genomic datasets. Mutation
frequency data was obtained from cBioPortal (de Bruijn et al,
2023), while protein expression profiles across tissues relevant to
therapeutic safety (e.g., brain, gastrointestinal tract, liver, and
kidney) were sourced from the ProteinAtlas (Uhlén et al., 2015).

Following the prioritization of the GET list and identification of
clinically trialed genes, we annotated these genes with functional
genomic data. Mutational frequency—a key determinant in gene
ontology ranking (Timar and Kashofer, 2020)—and Copy Number
Alterations (CNA), a critical marker of genomic instability (Beroukhim
et al., 2010), were evaluated. Mutation and CNA data were sourced
from CBioPortal (de Bruijn et al, 2023) using two cohorts: the
“Pancreatic Cancer (UTSW, Nat Commun 2015)” and “Pancreatic
Adenocarcinoma (TCGA, PanCancer Atlas)” studies, both of which
employed whole-exome sequencing for all samples. Network-based
metric was also added through BEERE scores, namely the G-list score,
GT-list score, E-list score, GET-list score, and the T-list score. The G, E,
and T list scores are the BEERE prioritization scores derived from
network-based expansion of the lists prioritized in step 2 of the
methods. The GET list score is similarly from the merged GET-list
detailed in step 2 of the methods. The GT-list score is a combination of
the prioritized G and T scores, which aims to bring genes of higher
mutational frequency into the network of the T list.

Tissue-specific expression is a vital factor in gene prioritization
(Beroukhim et al,, 2010). Genes with high expression in essential
tissues—such as the heart, liver, gastrointestinal system, brain, and
kidneys—pose a higher risk of adverse effects when targeted,
necessitating their de-prioritization.
expression was performed using the “RNA expression score”

Annotation of tissue
provided by ProteinAtlas (Uhlén et al, 2015), a comprehensive
database mapping protein expression in various organs. This RNA
expression

score, manually calculated, measures the RNA

expression levels of genes across different tissues.

2.5 GETgene-Al ranking

To unify these criteria, we developed a weighted RP score that
integrates mutation frequency, copy number alterations (CNA), tissue
expression, GET list scores (BEERE prioritization scores derived from

Frontiers in Systems Biology

10.3389/fsysb.2025.1649758

network-based expansion), E list scores, GT list scores, and clinical trial
activity. Clinical trial popularity was quantified as the number of
registered interventional trials testing drugs targeting a given gene
for cancer therapy. Modality weights were calibrated by Spearman
rank correlation between each modality-specific ranking and two
independent benchmarks of therapeutic relevance: (i) the number of
associated clinical trials and (ii) the frequency of reported adverse
events. The benchmark set used for this analysis consisted of genes
implicated in pancreatic cancer clinical trials, independent of the GET
and GT lists. Correlations with clinical trial count were used to assess
genomic and network features (e.g, mutation frequency, CNA
frequency, GET BEERE scores), while correlations with adverse
event frequency were used to assess tissue expression features (e.g.,
expression in brain, liver, lung, and digestive system). Modalities
showing stronger monotonic associations contributed proportionally
more to the final RP score, while weaker associations retained smaller
weights to preserve the potential for novel candidate discovery. Table 1
summarizes the relative weights of each factor in the RP score, ranked in
descending order of contribution.

2.6 Mitigation of bias and false positives

To address potential sample biases and data incompleteness—such
as studies failing to detect specific genes—multiple datasets from the
same databases were utilized wherever possible. This redundancy
ensured a more comprehensive analysis and minimized the impact
of dataset-specific variability. For example, multiple studies within
CBioPortal, such as “Pancreatic Cancer (UTSW, Nat Commun
2015)” (TCGA, PanCancer
Atlas),” were analyzed concurrently to increase the reliability of

and “Pancreatic Adenocarcinoma

mutational frequency and CNA data.

Bias from literature frequency was mitigated by not using
citation counts, publication frequency, or other literature-derived
popularity metrics as a direct modality in the RP score. Instead,
GETgene-Al rankings are based on cancer-type-specific genomic,
transcriptomic, and drug-target evidence (mutation frequency,
CNA, expression, and network centrality). While genes such as
PIK3CA, EGFR, PRKCA, and TNF are indeed well known, their
high ranks in our framework derive from pancreatic cancer-specific
data rather than their prevalence in the broader cancer literature.

Sensitivity analysis was performed by testing lower and higher
cutoffs for both CNA and Mutational Frequency. A lower threshold
0f 7.3% and a higher threshold of 9.2% was utilized for CNA, while a
lower cutoff of 2.2% and a higher cutoff of 3.4% was utilized for
mutational frequency. A lower cutoff of 15% and a higher cutoff of
25% was utilized for COSMIC cancer database. Manually searching
for genes within the top 250 of GETgene-ai that were included or
had functionally related genes within the lower and higher
thresholds. A lower threshold did not yield any genes previously
not found in the G list, while the higher threshold found P3H2,
P4HTM, PLOD3, PLOD2, P4HA1, PLODI1, PAM, PSMBS5, C1QC,
C1QA, C1QB, to be genes excluded due to higher thresholding.
These genes all rank outside of the top 150.

To further enhance the accuracy of the prioritization process,
each gene within the top 250 ranked by RP score was manually
verified through a literature review to confirm its role in cancer
biology. This step was critical in identifying and eliminating false
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TABLE 1 Weights each modality was assigned for calculation of the RP score
in GETGENE-AL

Modality of ranking

Weighted
score

GT list score 0.329
CNA(CBIOPORTAL UTSW NAT COMMUN 2015) 0.201
Expression list score 0.088
GET list score 0.085
Mutation frequency (cBioporta ITCGA PanCancerAtlas) 0.079
CNA(CBIOPORTAL TCGA PANCANCERATLAS) 0.048
Mutation frequency (Cbioportal UTSW Nat Commun -0.023
2015)

Brain expression score -0.054
Kidney expression score -0.081
Gastrointestinal expression score -0.095
Liver expression score -0.101

positives. Notably, no genes within the top 250 were found to be false
positives, validating the robustness of the RP scoring methodology.

Additionally, hallucination errors from GPT-40 were mitigated
through a structured training approach. The model was instructed to
explicitly cite a source used in the calculation of each gene’s ranking
score. These citations were manually evaluated for accuracy and
relevance, ensuring that the ranking process was grounded in
verifiable scientific evidence. This dual-layered validation—automated
scoring combined with manual review—was integral to maintaining the
integrity and reliability of the gene prioritization framework.

2.7 Statistical methods

Spearman correlation coefficients were computed to assess the
alignment of GPT-40 rankings with network-derived rankings. The
Spearman correlation between the GPT-4 score and the Weighted
Score was 0.291, indicating some significance. Interestingly, GPT-4
score is more strongly correlated with all BEERE list ranking scores,
with 0.478 between GPT-4 score and Expression list score,
0.457 between GPT-4 score and Combined weighted score of all
BEERE lists, 0.454 correlations between GPT-4 score and GET list
score, and 0.444 between GPT-4 score and GT list score. These
results indicate that the GPT-4 score is more similar to that of
standard network prioritization techniques, which may be a result of
the training data utilized.

2.8 Comparing research relevance to rank
on GETgene-Al

To compare the popularity to the rankings of each gene in both
the GPT-4 Score and the RP scores, the amount of results contained
on PubMed when searching “Gene name Pancreatic Cancer” were
compiled and used for the GPT-LIT score, and the RP-LIT score.
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The GPT-LIT score is the GPT4-score divided by the amount of
publications on PubMed, while the RP-lit score is the RP-score
divided by the amount of publications on PubMed. Genes with no
functional relationship to cancer in any way were excluded from the
rankings to remove false positives.

3 Results
3.1 GETgene-Al rankings and validations

We observe the highest ranked genes according to GETgene-Al
in Table 2.

During the iterative ranking process, genes lacking functional
relevance to cancer were systematically deprioritized. For instance,
genes that ranked highly due to algorithmic artifacts but lacked
experimental validation or literature support were ranked lower
than genes with experimental validation or literature support. The
final candidate set was defined as the top 250 genes ranked by RP
score. This threshold was selected to enable manual literature
verification for each gene, ensuring that all final candidates could
be cross-checked for pancreatic cancer-specific evidence and
therapeutic relevance. Expanding the list beyond this size would
have substantially increased the manual verification burden without
proportionally improving the quality of candidates for downstream
analysis. This approach allowed us to maintain both methodological
rigor and practical feasibility while focusing on the most highly
ranked genes.

PIK3CA emerged as the highest-ranked gene on our list. It
encodes the enzyme PI3K, which regulates critical cellular processes
such as growth, metabolism, proliferation, and apoptosis (Conway
et al, 2019). PIK3CA also modulates downstream effectors,
including AKT and mTOR (Ala, 2022), and preclinical studies
demonstrate that mutations in this gene sensitize cancers to dual
PI3K/mTOR inhibitors (Zhang et al, 2021), underscoring its
therapeutic potential. Notably, PIK3CA-null tumors exhibit
heightened susceptibility to T-cell surveillance in vitro (Sivaram
etal,, 2019), while its inhibition in pancreatic cancer models initiates
tumorigenesis (Payne et al, 2015), highlighting its dual role in
progression and therapy.

MYC, the second highest-ranked gene, achieved its position due
to its top GET list score, reflecting its network centrality among the
500 most expressed, clinically relevant, and frequently mutated
genes. Overexpression of ¢-MYC is a hallmark of aggressive
pancreatic cancer, where it binds promoter regions of oncogenic
targets (Hayashi et al., 2021). Despite its pivotal regulatory role,
MYC’s complex protein structure poses therapeutic challenges,
resulting in a lower GT list score. Recent advances in small-
molecule inhibitors, however, show preclinical promise.

SRC ranks as the third-highest gene on our list, driven by its high
scores in both the GET list and Expression list modalities. Inhibition
of SRC in pancreatic cancer has been shown to reverse
chemoresistance to pyroptosis in both in vitro and in vivo studies
(Su et al,, 2023). Aberrant SRC activity promotes tumorigenesis and
is frequently associated with poor prognosis in pancreatic ductal
adenocarcinoma (PDAC) (Poh and Ernst, 2023). Several SRC-
targeting therapies are currently under clinical investigation
(Hilbig, 2008).
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TABLE 2 Highest 20 genes ranked on GETGENE-AI. Weighted score is RP score, CHAT GPT score is GPT4 score.

Gene RP CHATGPT GT list Mutation frequency RP-LIT GPT-LIT GET list Expression list
score score score (cBioportal TCGA score score score score
PanCancer Atlas)
PIK3CA | 348 310 58.7 2.8 0.199 1771 96 97
MYC 30.1 330 95 0.0 0.032 0.349 214 210
SRC 20.0 320 0.0 1.1 0.044 0.711 143 144
EGFR 18.2 320 24 0.6 0.010 0.171 134 133
CDK1 15.9 305 153 65.4 0.134 2563 30 7
PRKCA | 153 305 3.0 0.0 1.702 25.556 101 102
TNF 121 270 24 0.0 0.013 0.292 83 86
LCK 115 220 1.7 0.0 1.274 24.444 62 60
JAK2 10.6 285 1.0 0.6 0.082 2.192 67 67
MAPK1 | 103 305 116 3.4 0.139 4122 7 7
AURKB | 9.1 295 0.0 0.6 0.008 0.246 70 70
KRAS 8.7 220 1.7 17 0335 8.462 48 47
MAPKS | 7.8 295 0.0 0.0 0.002 0.068 121 117
MTOR | 7.1 220 17 0.0 0.588 18333 52 52
ITGA4 69 220 43 0.6 2.298 73.333 40 37
TOP2A | 69 310 10.2 11 0215 9.688 0 0
CHEK1 6.7 220 17 0.0 0.128 4231 46 45
BCL2 62 220 17 0.6 0.012 0.418 41 41
PRKCB 6.0 250 1.4 0.6 1.004 41.667 60 58
ERBB4 55 220 34 0.6 0.184 7333 81 83

EGEFR is the fourth highest-ranked gene, attributed to its high
GET list and Expression list scores. EGFR is also implicated in
tumorigenesis, particularly in lung and breast cancer (Sigismund
et al, 2018). Anti-EGFR agents have shown significant clinical
promise, despite associated adverse effects (Verma et al., 2020).

KRAS ranks 12th on our list, despite its prominence in
pancreatic cancer research, with over 4,545 PubMed articles on
KRAS mutations in pancreatic cancer. Its lower ranking is primarily
due to a low expression score. The KRAS oncogene plays a critical
role in the initiation and maintenance of pancreatic tumors (Luo,
2021). KRAS mutations are present in over 90% of PDAC cases, but
therapeutic inhibition remains highly challenging, with effective
inhibitors only recently being discovered (Bannoura et al., 2021).

CDKI ranks fifth on our list, largely due to its high scores in both
the GET and Expression lists. CDKI is strongly correlated with
prognosis and is highly expressed in pancreatic cancer tissue, as well
as in response to gemcitabine, an approved pancreatic cancer drug
(Xu et al., 2023). Additionally, inhibition of CDKI, along with CDK2
and CDK5, has been shown to overcome IFN-y-triggered acquired
resistance in pancreatic tumor immunity (Huang et al., 2021).

PRKCA ranks seventh on our list. It encodes protein kinase C
and is mutated in various cancers. PRKCA’s high ranking is
attributed to its strong GET and Expression list scores, as well as
its extremely low organ expression score. It is strongly associated

Frontiers in Systems Biology

with the activation of the protein translation initiation pathway
(Rosenberg et al.,, 2018) and is a hallmark mutation in chordoid
gliomas (Jiang et al., 2019). PRKCA also contributes to susceptibility
to pancreatic cancer through the peroxisome proliferator-activated
receptor (PPAR) signaling pathway, which plays a key role in
pancreatic cancer development and progression (Liu et al., 2020).
Inhibition of PRKCA has demonstrated antitumor activity in
patients with advanced non-small cell lung cancer (NSCLC)
(Villalona-Calero et al., 2004).

TNF is the eighth highest-ranked gene on our list. Tumor
Necrosis Factor (TNF) upregulation is associated with invasion
and immunomodulation in pancreatic cancer (Wiedmann et al.,
2023). TNF-mutated macrophages have also been shown to promote
aggressive cancer behaviors through lineage reprogramming (Tu
et al.,, 2021).

LCK ranks ninth on our list. This gene is expressed in tumor cells
and plays a key role in T-cell development (Bommbhardt et al., 2019).
High LCK protein expression has been associated with improved
patient survival in cancer (Cancer Genome Atlas Network, 2015).
Despite its biological relevance, LCK has only four PubMed
publications discussing its role in pancreatic cancer as of May
2024. Tts identification as a high-priority target demonstrates
GETgene-AT's ability to prioritize genes with strong biological
relevance but limited literature prominence.
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ITGA4 ranks 15th on our list. It has an extremely low organ
expression score and only four PubMed articles discussing its role in
pancreatic cancer. ITGA4 has potential as an independent
prognostic indicator for patient survival and has been linked to
the PI3K/AKT pathway (Faleiro et al., 2021). Its identification as a
high-priority target further highlights GETgene-AI’s capability to
prioritize genes with strong biological relevance despite limited
literature attention.

KCNA ranks 34th on our list. Notably, there are no PubMed
publications describing its relation to pancreatic cancer, and only
three publications mention its role in cancer in general. The
identification of KCNA as a high-priority target underscores
GETgene-AT’s ability to prioritize genes with strong biological
relevance but minimal literature prominence. KCNA exhibits
differentially high expression in stomach and lung cancers and is
positively correlated with infiltrated immune cells and survival rates
(Angi et al.,, 2023).

3.2 Comparing GETgene-Al to other
frameworks

We benchmarked GETgene-Al against two other frameworks:
one focused on differential expression analysis and the other on
network-based gene prioritization. For the differential expression
comparison, we selected GEO2R, utilizing the GSE28735 dataset,
which was integrated into the ’Expression list’ component of our
GET lists. Genes were ranked based on their log-fold change (log-fc),
representing the difference in gene expression between tumor and
non-tumor groups. In the GEO2R list, the top-ranked genes were
PNLIPRPI and PNLIPRP2, both of which encode pancreatic lipase-
related proteins critical for digestion and fat absorption (Zhu et al.,
2021). However, these genes are not considered viable targets for
pancreatic cancer. The third-ranked gene, JAPP (Islet Amyloid
Polypeptide), has been shown to lack tumor suppressor
functionality, and loss of IAPP signaling is not associated with
pancreatic cancer (Taylor et al., 2023). Among the top 50 genes
identified by GEO2R, 30 were experimentally validated as relevant to
GETgene-Al
49 experimentally validated targets within its top 50, representing

a 38% improvement over GEO2R. GEO2R’s limitations, including

pancreatic  cancer. In  contrast, prioritized

the absence of mutational frequency analysis, functional impact
assessment, network-based analysis, and adverse effect evaluation,
hinder its utility in drug target discovery. In comparison, GETgene-
Al leverages statistical filtering and incorporates genomic
information, significantly enhancing both the efficiency and
quality of gene prioritization. Figure 2 presents a volcano plot
illustrating the log2 (fold change) distributions for the
analyzed genes.

For the network-based comparison, we employed STRING, a
database that integrates protein-protein interaction data (Szklarczyk
et al,, 2023), focusing specifically on the KEGG pathway hsa0512
(Kanehisa and Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2025).
Genes were ranked based on node degree, a measure of the number
of interactions a protein has within the network (Bozhilova et al.,
2019). The highest-ranked gene in the STRING list was AKTI, a
protein kinase known to stimulate cell growth and proliferation

(Grassilli et al., 2020). However, AKTI has been shown to resist
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FIGURE 2

Volcano plot GSE28735: Microarray gene-expression profiles of
45 matching pairs of tumor vs. nontumor, Padj<0.05. Blue indicates
downregulated while red indicates upregulated.

inhibition by shifting its metabolic activity from glycolysis to
mitochondrial respiration (Arasanz et al, 2019). Additionally, it
exhibits a low mutational frequency of only 1% in a cohort of
19,784 patients with various tumors (Millis et al., 2016). Due to its
low mutational frequency and the challenges associated with its
inhibition, AKTI was ranked 33rd by GETgene-AI. Among the top
50 genes prioritized by STRING, 46 were experimentally validated
for relevance to pancreatic cancer, whereas GETgene-Al identified
49 experimentally validated genes within its top 50, demonstrating a
6% improvement over STRING. STRING’s limitations, such as its
inability to account for mutational frequency and other critical
factors in drug target identification, result in a narrower focus,
targets
comprehensive analysis provided by GETgene-Al Figure 3

with only 81 prioritized compared to the more
illustrates the network constructed using STRING.

Comparing GETgene-Al to GEO2R and STRING, our
framework demonstrates a 38% improvement over GEO2R and a
6% improvement over STRING in the rate of experimental
validation of the top 50 genes on each list. In Figure 4, we
observe the differences in the percentage of experimentally
validated targets out of the top 50.

GETgene-Al was also compared to OpenTarget, an integrative
Al-based prioritization platform (Koscielny et al, 2017). We
compared GETgene-Al's rankings to those generated by
OpenTargets for pancreatic cancer, focusing on the top 15genes
from each tool. While there was overlap in high-confidence drivers
(e.g, KRAS, TP53, SMAD4, BRCA2), several key differences
emerged that highlight the value of GETgene-AI's multi-modal
integration.

OpenTargets ranked genes such as POLE and POLD1 highly
despite their low mutation frequency in pancreatic cancer datasets
(POLE absent in one TCGA cohort; POLD1 <1% in UTSW CNA
and mutation frequency). GETgene-Al deprioritized these genes due
to the lack of mutational enrichment and limited pancreatic-specific
evidence, avoiding inflation from literature-based or pathway-only
associations.
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Network constructed by STRING utilizing the KEGG pathway HG0512. Content inside each node is known or predicted 3days structure of protein.
Turquoise edges mean Protein-protein interactions from curated databases, purple means experimentally determined. Green, red, and dark blue edges
indicate predicted Protein-protein interactions. Light green edges represent text mining, black represents co-expression, and light purple represents

protein homology.

Conversely, GETgene-Al prioritized genes such as MYC, SRC,
EGEFR, and CDKI, which have strong differential expression and
drug-target relevance in pancreatic cancer but were absent from
OpenTargets’ top list.

These differences indicate that OpenTargets may overweight
generalized associations, whereas GETgene-Al incorporates cancer-
type-specific genomic, transcriptomic, and therapeutic data, leading
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to rankings more aligned with the biological and clinical context of
pancreatic cancer.

In Table 3, we observe the ranking overlap for the top 15 genes
for all three frameworks. The top 15 highest ranked targets in both
GETgene-Al and STRING have all been experimentally validated
within pancreatic cancer, but 8 of the highest ranking targets in the
GEO2R approach have not.
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FIGURE 4
Bar graph displaying the percent of experimentally validated

targets out of the top 50 genes with each framework.

3.3 Enhancement provided by Al

GPT-40 was utilized to conduct a comprehensive literature
assessment for our gene list. Although its output was not
incorporated into the final weighted score, the GPT-40 scores
demonstrated strong correlations with both the weighted score and
all three GET list scores. Notably, GPT-40 prioritized genes such as
MYC and SRC, reflecting their well-documented prominence in the
scientific literature. This complemented GETgene-AI’s approach, which
relies on network mutational analysis for gene prioritization. To
minimize the inclusion of false positives in the GPT-40 scoring
process, we instructed GPT-40 to directly cite articles from its
internal database. While GPT-40 did not exhibit a higher rate
of experimental validation compared to manual methods, it

10.3389/fsysb.2025.1649758

significantly reduced the time required for literature review by 80%.
All cited articles were subsequently manually verified to ensure accuracy.

The RP-LIT score and GPT-40 score showed a high degree of
correlation, with extremely similar rankings for each gene. Based on
Spearman correlation analysis, the GPT-4o0 score (out of 400) exhibited
a correlation coefficient of +0.457 with the weighted score, indicating a
statistically significant relationship. Table 4 provides a detailed
comparison of the ranking differences between the GPT-40 score
and the GET ranking score, highlighting the alignment and
discrepancies between the two approaches.

3.4 False positives and limitations

False positives are an inherent risk in large-scale computational
analyses. The GETgene-AI framework addresses this challenge through
iterative refinement and the systematic exclusion of genes lacking
functional or experimental support. Future validation efforts will
on further refining these rankings through targeted
experimental studies. Additionally, the literature assessment provided
by generative Al is expected to improve as Al technology advances and

focus

our model is trained on more experimental data, thereby minimizing
inaccuracies or “hallucinations” in the generated outputs.

To mitigate false positives, genes without functional relevance to
cancer were systematically excluded. For instance, genes that ranked
highly due to algorithmic artifacts but lacked experimental
validation or literature support were deprioritized. Examples
include ITGA4 and PRKCB, both of which have fewer than
10 PubMed articles discussing their role in pancreatic cancer.
These genes were ranked lower than many well-established
targets due to their low scores in the GET, GT, and Expression

TABLE 3 Top 15 genes from GETGENE-AI, STRING, and GEO2R and their status as experimentally validated drug targets.

GETGENE-Al top  Experimentally STRING top Experimentally GEORZR top Experimentally
genes validated? genes validated? genes validated?
PIK3CA Yes AKT1 Yes PNLIPRP1 No

MYC Yes TP53 Yes PNLIPRP2 No

SRC Yes KRAS Yes IAPP No

EGFR Yes PTEN Yes CTRC No

CDK1 Yes SRC Yes GP2 Yes

PRKCA Yes STAT3 Yes CEL No

TNF Yes EGFR Yes CPA2 Yes

LCK Yes MTOR Yes ALB Yes

JAK2 Yes BCL2 Yes CUZD1 Yes

MAPK1 Yes PIK3CA Yes ERP27 No

MTOR Yes CDKN2A Yes CLPS Yes

AURKB Yes HRAS Yes SERPINI2 Yes

KRAS Yes CCND1 Yes PLA2G1B Yes

MAPKS8 Yes NFKB1 Yes CELA2A No

TOP2A Yes CDKN1A Yes CELA2B No
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TABLE 4 Top 20 highest ranked genes based off of GPT4 score compared to their ranks in GET and their status as experimentally validated drug targets.

GPT4-score ranking GET ranking Experimental validation? Citation
MYC 1 2 Yes Zhang et al. (2024)
SRC 2 3 Yes Su et al. (2023)
EGFR 3 4 Yes Wu et al. (2023)
TERT 4 27 Yes Campa et al. (2015)
RRM2 5 21 Yes Li et al. (2022)
PIK3CA 6 1 Yes Payne et al. (2015)
TOP2A 7 16 Yes Pei et al. (2018)
NTRK1 8 22 Yes Cheng et al. (2013)
PTGS2 9 25 Yes Hingorani et al. (2003)
EGF 10 30 Yes Sheng et al. (2020)
CDK1 11 5 Yes Huang et al. (2021)
MAPK1 12 10 Yes Si et al. (2023)
KRAS 13 13 Yes Timar and Kashofer (2020)
MTOR 14 11 Yes Stanciu et al. (2022)
MSLN 15 37 Yes Hu et al. (2024)
RET 16 28 Yes Bhamidipati et al. (2023)
AKT1 17 31 Yes Arasanz et al. (2019)
JAK2 18 9 Yes Huang et al. (2022)
MET 19 34 Yes Pothula et al. (2020)
PDCD1 20 38 Yes Marabelle et al. (2020)

lists, which prioritize targets with robust experimental or literature
support during the RP score calculation process.

This study has several limitations. First, the top-ranked targets
identified by GETgene-Al require further experimental validation,
which is a critical next step to confirm their biological and
therapeutic relevance. Second, the reliance on publicly available
datasets may introduce biases due to incomplete or inconsistent
annotations. These limitations highlight the need for further
experimental validation and the incorporation of more comprehensive
datasets to enhance the accuracy and reliability of the framework.

3.5 Broader implications and generalizability

While the current study focuses on pancreatic cancer, the
GETgene-Al framework can be readily adapted to other cancers
or diseases with access to similar genomic and clinical data
resources. Future studies will explore its application to breast and
lung cancers by employing the same systematic process described in
this work. The GETgene-AI framework integrates literature review,
large-scale sequencing data, and network centrality scores,
providing a comprehensive approach to drug target prioritization.
Additionally, computational
prioritization and the elimination of statistically insignificant data

its reliance on methods for

ensures that the framework is both scalable and efficient, making it
suitable for broader applications in biomedical research.
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4 Discussion

Through the application of GETgene-AlI to pancreatic cancer,
we have identified several promising drug targets, including
PIK3CA, PRKCA, LCK, MAPKS, ITGA4, PRKCB, and KCNA1,
warranting further investigation. These targets display strong
pancreatic cancer-specific genomic and transcriptomic evidence,
high network centrality in PPI analyses, and have not been
extensively reported in the pancreatic cancer literature despite
their biological relevance in our analysis.

GETgene-AT’s approach to drug target prioritization integrates
literature review, large-scale sequencing data, network-based
centrality scoring, and assessment of potential adverse effects
This
implementation offers a scalable and comprehensive framework

through  organ  expression  scores. multifaceted
for drug target prioritization, which can be readily adapted to other
cancers with similar data availability. Furthermore, GETgene-ATI’s
ability to systematically deprioritize genes with low mutational
relevance underscores its superiority in efficiently narrowing
Slight

and

down actionable and biologically relevant
of utilized for the

prioritization of the GET lists did not result in significant

targets.

variations cutoffs compilation
variations of the final rankings or scores of the final GETgene-
Al gene list.

In contrast to recent methods that rely largely on Al-driven

network analysis alone (e.g., an AI-Driven Network Biology pipeline
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TABLE 5 genes highlighted in the discussion section labeled by significance.

Gene Significance

PIK3CA Investigated in PDAC clinical trials

PRKCA Investigated in PDAC preclinical models (in vitro or in vivo)
LCK Investigated in PDAC preclinical models (in vitro or in vivo)
MAPKS Investigated in PDAC preclinical models (in vitro or in vivo)
ITGA4 Novel and unstudied in PDAC

PRKCB Novel and unstudied in PDAC

KCNA1 Novel and unstudied in PDAC

identifying SRC as a therapeutic target in pancreatic cancer) (Zhang
and Chen, 2025), GETgene-Al offers a more automated and
modular framework. Our approach not only evaluates
protein—protein interaction networks but also incorporates tissue-
specific gene expression and mutation frequency analyses, and
integrates these modalities through distinct G, E, and T lists
before merging. This enables multi-dimensional prioritization
grounded in genomic, transcriptomic, and therapeutic evidence.
In future extensions, the modular nature of GETgene-AI allows easy
incorporation of additional evaluation modules—such as differential
tissue analysis, motif-based mutation enrichment, or epigenetic
regulation scores—each processed independently in their own list
and then integrated via our weighted RP score. This design ensures
adaptability and enables seamless expansion of the framework to

accommodate new modalities as the data landscape evolves.

4.1 Contributions and limitations provided
by GPT40

GPT-4o0 significantly enhanced the efficiency of literature-based
ranking by automating the review and prioritization of scientific
abstracts. This approach increased the efficiency of literature review
by over 80%. However, inherent challenges, such as the risk of
hallucination, necessitated manual verification to ensure the accuracy
of the results. While GPT-40 provides substantial value, its integration
into research workflows should be approached cautiously, with
safeguards implemented to mitigate potential errors. Additionally,
training GPT-40 on more experimental data in the future will
further improve its accuracy and reliability in prioritization tasks.

4.2 Future directions

While the current study focuses on cancer applications, future
research will expand the scope of the GETgene-AI framework. We
plan to validate its utility in additional cancer types, such as breast
and lung cancer, and explore its applicability to non-cancerous
disease contexts, including neurodegenerative disorders like
Alzheimer’s and Parkinson’s. By integrating computational
with the GETgene-Al
framework addresses critical gaps in drug discovery, accelerating

methods large-scale genomic data,

the identification of actionable targets and advancing the
development of personalized therapeutic strategies.
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Future work will prioritize experimental validation of top-
ranked targets, such as PIK3CA and PRKCA, using CRISPR-
mediated knockouts in pancreatic cancer cell lines. Subsequent
in vitro drug response assays will evaluate the therapeutic
potential of these targets. Additionally, we aim to refine the
(e.g.
proteomics, metabolomics) and enhancing its ability to predict

framework by incorporating multi-omics datasets
adverse effects through improved organ expression profiling. ce

of these targets.

5 Conclusion

The GET framework represents a significant advancement in
computational drug discovery, integrating network-based
prioritization with machine learning to prioritize actionable
therapeutic targets efficiently. Genes highlighted through our case
study in pancreatic cancer such as PRKCA, LCK, ITGA4, and
PRKCB are novel targets that require further exploration. While
this study focuses on pancreatic cancer, the GETGENE-AI
framework is adaptable to other cancers and diseases, offering a
modular and versatile approach for target discovery. GPT4o
enhanced the efficiency and accuracy of literature-based ranking,
reducing manual workload and aligning well with network-based
rankings. However, its reliance on manual verification underscores
the need for cautious integration into automated pipelines. By
refining target discovery methods, the GETGENE-AI framework
paves the way for personalized therapeutic strategies and accelerates
the translational research in oncology. Future work will focus on
expanding the framework to other cancers, improving ranking
metrics, and integrating multi-omics datasets to enhance its
predictive power. Future iterations of GETgene-Al aim to
integrate multi-omics datasets, such as single-cell RNA-seq and
metabolomics, to capture greater biological complexity. Table 5
indicates the significance of each gene labeled as novel.
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