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either categorical or noncategorical representations of facial expres-
sions. The goal of this study is to test whether STS representations of 
facial expressions are categorical or noncategorical, while subjects 
are performing a categorization task.

Instead of observing the responses of individual neurons or 
individual voxels, we investigate the distributed representations 
of populations of voxels (Haxby et al., 2001; O’Toole et al., 2005; 
Norman et al., 2006; Haushofer et al., 2008; Op de Beeck et al., 
2008). Thus, in this study, neural representation is operationally 
defi ned as a spatial map of parameter estimates on each trial. The 
similarity structure of neural representations is not necessarily the 
same as the similarity structure obtained from fMRI adaptation. 
Indeed, in experiments not related to categorization, it has been 
shown that the distributed representations are more faithful to 
the physical similarity structure of the stimuli in some brain areas, 
whereas the adaptation-based representations are more faithful in 
other areas (Drucker and Aguirre, 2009).

Subjects viewed videos of facial expressions, where each video 
occupied a point along a continuum between fear and anger. 
Subjects were required to indicate whether the expression was 
closer to fear or anger. We enforced the category boundary with 
feedback in order to minimize potential changes in boundary posi-
tions caused by adaptation (Webster et al., 2004).

MATERIALS AND METHODS
SUBJECTS
Seventeen participants (9 females; mean age 20.6 years) with nor-
mal or corrected-to-normal vision participated in the fMRI study. 
No subjects were excluded from the experiment, and all maximal 
head displacements were within 5 mm in any cardinal direction. 
All subjects gave informed consent prior to the experiment and 
were debriefed at its completion in accordance with the policies 
of Princeton University’s Institutional Review Panel.

INTRODUCTION
Perceptual categorization is a fundamental cognitive ability 
because it underlies the recognition of abstract, behaviorally 
relevant classes in an often graded sensory environment. In the 
brain, there is evidence for a frontal-posterior division of labor 
for visual categorization (Freedman et al., 2001, 2003; Op de 
Beeck et al., 2001). Experiments on the inferior temporal cortex 
(ITC) of nonhuman primates have shown that as the shape of 
a stimulus moves parametrically away from the a neuron’s pre-
ferred shape, the neuron’s response decreases in a graded man-
ner (Op de Beeck et al., 2001). In contrast, when primates are 
trained to separate stimuli varying along a morph continuum 
into categories, there is evidence that neurons in prefrontal cortex 
(PFC) tend to represent the categories of the stimuli, instead of 
their position along the continuum (Freedman et al., 2001, 2003). 
Consistent with the evidence from nonhuman primates, fMRI 
adaptation studies on humans have shown mostly noncategorical 
tuning for specifi c shapes in lateral occipital cortex (LOC), but 
tuning for categories in lateral PFC (Jiang et al., 2007). Idealized 
illustrations of categorical and noncategorical representations are 
shown in Figure 1.

In this functional magnetic resonance imaging (fMRI) study, 
we used spatially targeted measurements to study representations 
of facial expressions in the superior temporal sulcus (STS), an area 
that it is poorly understood (Hein and Knight, 2008). While the STS 
is known to respond to facial expressions (Hasselmo et al., 1989; 
Andrews and Ewbank, 2004; Leslie et al., 2004; Engell and Haxby, 
2007; Montgomery and Haxby, 2007; Thielscher and Pessoa, 2007), 
little is known about how facial expressions are represented. In 
particular, the STS is thought to have both “high level” and “low 
level” properties (Binder et al., 1997; Allison et al., 2000; Grossman 
and Blake, 2002; Noguchi et al., 2005; Calder et al., 2007; Hein and 
Knight, 2008), and thus could plausibly be hypothesized to have 
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VIDEO STIMULI
Subjects viewed computer generated videos of emotional expres-
sions. Each video was either anger, fear, or an intermediate expres-
sion taken from a morph continuum between anger and fear. All 
videos started with a neutral expression held for 167 ms, and then 
moved for 767 ms towards an endpoint expression, which was then 
held for an additional 767 ms. The full range of morph levels for the 
endpoint frame was 0%, 10%, 20%, 30%, 40%, 60%, 70%, 80%, 90% 
and 100% anger. For brevity, the phrase “k% anger” here and hence-
forth implicitly designates an expression that is also (100-k)% fear. 
In order to maintain subject engagement in the task, the expressions 
were posed by fi ve different identities. An example of the different 
morphing levels for one identity is shown in Figure 2.

Each video frame was created with the FaceGen program1 and 
custom VBA code. As stated above, endpoint frames were linear 
morphs between the 100% anger setting and the 100% fear setting 
in FaceGen. The remaining frames in each video were linear morphs 
between the neutral setting and the endpoint. Frames were stitched 
together in QuickTime Pro and played at 30 frames per second.

fMRI PARADIGM
Subjects were presented with a Type 1, Index 1 sequence (Finney 
and Outhwaite, 1956), so that each morph level preceded and fol-
lowed every other morph level a balanced number of times. This 
type of sequence allows for the effi cient, rapid presentation fMRI 
designs (Buracas and Boynton, 2002; Aguirre, 2007). A different 

sequence was used for each subject. Pure emotions (0% anger and 
100% anger) appeared three times as often as any other morph 
level in order to increase the classifi er training set. Each of the fi ve 
identities posed each morph level a balanced number of times. The 
sequence of identities was different for each subject. A total of 420 
stimulus trials were shown, along with 30 rest trials during which 
a fi xation cross was shown. Like the stimulus trials, rest trials were 
included in the Type 1, Index 1 order counterbalancing. Subjects 
were free to move their eyes around the stimuli. Each trial was 
preceded by a 3300 ms intertrial interval consisting of a fi xation 
cross (Figure 3).

To allow subjects to take breaks, the sequence was broken up into 
fi ve “runs” of 6:50 min each. Each run began with an additional 10 s 
of fi xation to allow the scanner to stabilize, and ended with another 
10 s of fi xation to allow time to measure the BOLD response from 
the last trial of the run.

Subjects used their right hand to indicate with a button press 
whether each stimulus was closer to fear or closer to anger. One button 
corresponded to fear and the other to anger. To enforce the category 
boundary, a red X was fl ashed after any incorrect response and after 
any miss. These trials were not included in the main fMRI analysis, 
and were analyzed separately. Subjects were trained on the categories 
during the anatomical scan, which preceded the functional scans.

fMRI ACQUISITION
The BOLD signal was used as a measure of neural activation (Ogawa 
et al., 1990; Kwong et al., 1992). EPI images were acquired with a 
Siemens 3.0-T Allegra scanner (Siemens, Erlangen, Germany) and 

FIGURE 2 | Final frames of the movies from all ten different morph levels for one particular identity. From left to right: 0%, 10%, 20%, 30%, 40%, 60%, 70%, 
80%, 90%, and 100% anger.
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FIGURE 1 | Idealized illustrations of two possible ways a brain area could represent stimuli, when categories α and β have been learned. (A) Categorical 
representations. (B) Graded, noncategorical representations. The y-axis could be measured in several ways. Low values indicate the brain is in the “α” state. High 
values indicate the brain is in the “β” state.
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a Nova Medical head transmit coil with receive-only bitemporal 
array coils (Nova Medical, Inc, Wilmington, MA, USA). The receive-
only array coils were positioned directly on the lateral surface of 
the head to achieve high signal-to-noise ratio (SNR) from the STS. 
We acquired 34 interleaved 3.6-mm axial slices with an interslice 
gap of 0.36 mm (TR = 2000 ms, TE = 20 ms, fl ip angle = 90°, 
FoV = 192 mm). Voxel dimensions were 3 × 3 × 3.96 mm3. At 
the beginning of each scan session, a high-resolution anatomical 
image was acquired (T1-MPRAGE, TR = 2500 ms, TE = 4.38 ms, 
fl ip angle = 8°, FoV = 256 mm).

fMRI PREPROCESSING
Image preprocessing was performed in Analysis of Functional 
NeuroImages, commonly known as AFNI (Cox, 1996). After dis-
carding the fi rst fi ve EPI images from each run to allow the MR 
signal to reach steady-state equilibrium, the remaining images were 
despiked using the AFNI program 3dDespike. Images were then 
slice time corrected and motion corrected to the third image of the 

fi rst run using a six-parameter 3-D motion correction algorithm. 
A 3-mm full width at half maximum smoothing kernel was then 
applied to the images before conversion to percent signal change 
from the mean.

Neurons in monkey and human STS are sensitive to both 
facial expression and facial identity (Hasselmo et al., 1989; 
Winston et al., 2004; Calder and Young, 2005). Thus, analysis of 
facial expression is made diffi cult because of extra variance due to 
effects of facial identity. We removed the effects of facial identity 
by modeling the BOLD time series with a General Linear Model 
(GLM) consisting of regressors for each of the six identities, each 
convolved with a gamma function, as well as six regressors for 
motion parameters. The residual time series was then extracted 
for further analysis. We also controlled for the effect of task dif-
fi culty by creating a GLM with regressors for very easy (0% and 
100% anger), easy (10% and 90% anger), moderate (20% and 
80% anger), diffi cult (30% and 70% anger), and very diffi cult 
(40% and 60%) trials.

+

+

+

FIGURE 3 | Example of the sequence subjects observed. Each face was separated by a 3-s intertrial interval, and the sequence was Type 1, Index 1 
counterbalanced (see Materials and Methods). Video play buttons are shown here for illustration, and were not seen by the subjects. From left to right: 20%, 100%, 
and 60% anger from three different identities.
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Next, we modeled the residuals with a GLM consisting of a 
regressor for every stimulus trial, each convolved with a gamma 
function. Thus, each trial became associated with a map of param-
eter estimate values (one parameter estimate for each voxel and 
trial), which could then be submitted to a classifi er. Since we used 
gamma convolved regressors, the parameter estimate for a particu-
lar voxel and a particular trial can be thought of as the weighted sum 
of fMRI signals shortly after trial onset. We operationally defi ne 
the neural representation for each trial as this map of parameter 
estimates.

ANATOMICAL REGIONS OF INTEREST
Anatomical masks were created by bringing the T1-weighted images 
into a standard space using the @auto_tlrc program to match the 
TT_N27 template (Holmes et al., 1998). The left STS and right 
STS were hand drawn on coronal slices (Figure 3) from –64.5 mm 
to –1.5 mm posterior to the anterior commisure. All anatomical 
masks were then brought back into original space, multiplied by 
a separate mask of brain versus non-brain areas, and then applied 
to the functional data (Figure 4).

CLASSIFIER
Classifi cation was performed on the parameter estimates using the 
Princeton Multi-Voxel Pattern Analysis Toolbox for Matlab2. For 
both ROIs, a Sparse Multinomial Logistic Regression (Krishnapuram 
et al., 2005) classifi er was used to measure the neural representa-
tions. SMLR is based on logistic regression, but uses a sparsity-
 promoting Laplacian prior λ to limit the norm of the weight vector 
and therefore selects only a subset of relevant voxels during training. 
Based on our observations of classifi er performance in a previous 
study on the STS, we set λ to 0.01 for this experiment. This reduced 
the number of used voxels by 6% from the total available in the 
anatomical ROI. To avoid circularity, all decisions about classifi er 
parameters were made before training, and all feature weights were 
computed before testing.

The classifi er was trained to distinguish the neural representa-
tions associated with 0% anger from the representations associated 
with 100% anger. The classifi er was then tested on the intermediate 

morph levels, and its logit output was used as a measure of how 
much the neural representation for each morph level was similar 
to the representation of pure anger relative to pure fear. (High logit 
values indicate the neural representation is similar to the pure anger 
representation. Low values indicate it is similar to the pure fear 
representation.) The logit is the weighted sum of the voxel values, 
where the weights are the regression coeffi cients. As such, it provides 
a continuous measure of the classifi er’s belief at each trial. It is more 
appropriate than other measures of a classifi er’s belief – such as 
guess rate – since it is not passed through any nonlinearity, which 
will bias the results towards categorical representations3.

TESTING FOR CATEGORICAL AND NONCATEGORICAL EFFECTS
For each morph level, the classifi er provided a measure of the degree 
to which the brain state was similar to anger relative to fear. Under the 
strictest hypotheses, the function relating this measure and morph 
level could either be either a step function (Figure 1A), implying 
categorical representations, or a linear function (Figure 1B), imply-
ing graded, noncategorical representations. We fi t both of these 
models to the data using a least squares approach. To compare 
the models we computed the likelihood ratio, which is a ratio of 
the probabilities of the data given the two models. The likelihood 
function for a particular model is

p N yn
n

( | , , ) ( | )y x w w xβ β=
=

∏ T , −1

1

8

where x is an eight element vector of morph levels, y is an eight 
element vector of observed brain representation measures, w is an 
eight element weight vector corresponding to the particular model 
(either step or linear), β is the inverse variance of the residuals, N is 

FIGURE 4 | Example of anatomical ROIs from one of the subjects. From left to right: axial, coronal, and sagittal cross sections.

2http://www.pni.princeton.edu/mvpa/.

3To measure the similarity of neural representations, one of the alternatives to the 
logit is the fraction of times the classifi er guesses anger at each morph level, where 
on each trial the classifi er guesses anger if the logit is greater than zero, and fear if 
the logit is less than zero. This measure is biased towards categorical representa-
tions: Consider a brain with representations that move linearly (and reliably) from 
fear to an anger as the morph level moves from fear to anger. In this case, the logit 
will also increase linearly, providing a good measure of the neural representations. 
However, if these brain states are reliable, the fraction of anger guesses will be a 
highly nonlinear function of morph level, with a sharp uptick at the threshold, and 
would artifactually imply categorical representations when none exist.

http://www.pni.princeton.edu/mvpa/.
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the normal distribution with a mean of zero and a variance of β−1, 
and T is the transpose operator (Bishop, 2006). The likelihood ratio 
is the likelihood for the linear function divided by the likelihood 
for the step function. Since the functions were not nested, we could 
not perform the likelihood ratio signifi cance test.

Finally, to ensure that our results were not caused by idiosyn-
cratic properties of our SMLR classifi er, we repeated the analysis 
with a two-layer (no hidden layer) neural network classifi er trained 
with backpropagation (Rumelhart et al., 1986). The average net 
input to the anger output unit was used as the measure of neural 
representation. Higher input values indicated the brain was closer to 
the pure anger representation. Lower values indicated the brain was 
closer to the pure fear representation. Unlike output unit activation 
values, which are passed through a nonlinear activation function, 
input values provide a measure of neural representations that are 
unbiased towards categorical representations. In order to minimize 
the noise effects caused by the random initial weight assignments, 
we ran the classifi er 20 times and averaged the net input values 
across those 20 iterations.

RESULTS
BEHAVIORAL RESULTS
Subjects correctly categorized faces (mean d’ = 2.75) signifi -
cantly better than chance, t(16) = 23.7, p < 0.05. Discrimination 
was impaired near the category boundary on the 40% anger and 
60% anger faces, but was still well above chance (mean d’ = 1.29, 
t(16) = 12.58, p < 0.05). Responses are plotted in Figure 5.

Reaction times increased as morph levels became more diffi cult, 
t(16) = 11.7, p < 0.05, and are reported in Table 1.

fMRI RESULTS
We trained a SMLR classifi er to distinguish the neural represen-
tation associated with 0% anger from the neural representation 
associated with 100% anger. We then tested the classifi er on inter-
mediate morphs. In this analysis we only considered trials on which 
the subject made the correct response. Compared to chance clas-
sifi cation accuracy (0.500, determined by separately shuffl ing the 
labels of the training data and the labels of the testing data 1000 
times per subject), overall classifi cation accuracy of intermediate 
morphs in the bilateral STS was low but signifi cant (M = 0.527, 
t(16) = 2.57, p < 0.05). This was the case in both the left STS 
(M = 0.521, t(16) = 2.48, p < 0.05) and the right STS (M = 0.523, 
t(16) = 2.56, p < 0.05). Finer grained information contained in 
the logits provided enough signal to test for categorical versus 
noncategorical representations. Logits are the weighted sums of 
the features in logistic regression and, unlike classifi er guess rates, 
provide a measure of neural representations that is not biased 
towards the categorical hypothesis (see Materials and Methods).

In the left STS, there was a signifi cant linear fi t relating morph 
level to neural representation (Figure 6A; t(16) = 2.67, p < 0.05) as 
well as a signifi cant step function fi t [t(16) = 2.39….]. However, 
the fact that the step function fi t was signifi cant does not imply 
that it is the best model for the data. To compare the linear func-
tion to the step function, we computed a likelihood ratio of 303.7, 
which means that the observed data was 303.7 times more likely 
under the linear model than under the step model, thus providing 
strong evidence for the linear model in this ROI. To confi rm that 

our results were not due to idiosyncratic properties of SMLR, we 
repeated the analysis using a two-layer (no hidden layer) neural 
network classifi er instead. During testing, the net input of the out-
put unit was used as a measure of the classifi er’s belief, with higher 
values indicating neural representations closer to anger. Again, a 
high likelihood ratio of approximately 141.7 provided strong evi-
dence for the linear function (Figure 7A).

In the right STS the SMLR analysis revealed a signifi cant linear 
fi t [t(16) = 2.22, p < 0.05] and a marginally signifi cant step function 
fi t [t(16) = 2.00, p < 0.10]. However, the likelihood ratio computed 
on the group average data was 0.34, which is weak evidence for the 
step function (Figure 6B). In contrast, the neural network analysis 
showed a weak preference for the linear function, with a likelihood 
ratio of 2.44 (Figure 7B). Collectively, the evidence is inconclusive 
as to whether a step function or linear function best fi ts the data 
in the right STS. In both cases, the relationship between neural 
representation and morph level appeared to show stimulus-related 
gradations as well as a category boundary.

ERROR TRIALS
It is also important to ask whether the representations in the STS 
track the actual stimulus or the perceived stimulus, as refl ected in 
task responses. To try to answer this, we measured the neural rep-
resentations during trials in which subjects made an error. Hardly 
any errors were made for most morph levels, although somewhat 
more were made near the category boundary at 40% anger and 60% 
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FIGURE 5 | Fraction of anger decisions (red) and fear decisions (blue) at 

each morph level. The vertical dotted line is the category boundary. Error bars 
are the standard error of the mean over subjects. Throughout this report, k% 
anger implicitly means (100-k)% fear.

Table 1 | Reaction times for each morph level.

 Reaction times

Percent  0% 10% 20% 30% 40% 60% 70% 80% 90% 100%

anger

Reaction  1.28 1.28 1.30 1.35 1.40 1.41 1.36 1.32 1.29 1.27

time (s)
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anger (see Figure 5). We restricted our analyses to these morph 
levels but, perhaps in part due to the small number of samples, 
none of these analyses yielded signifi cant results. Using the results 
from SMLR we found that in the left STS, logits for error trials at 
40% anger and 60% anger were both not signifi cantly different from 
zero (M = −.49, SD = 2.29, t(16) = −.88, p > 0.05 for 40% anger; 
M = −0.24, SD = 4.21, t(16) = −0.24, p > 0.05 for 60% anger.) The 
logits for errors at these two morph levels were not signifi cantly 
different from each other either (dependent t = −0.19, p > 0.05). 
Similarly for the right STS, neither of the two boundary morph level 
logits were signifi cantly different from zero (M = −0.52, SD = 3.8, 
t(16) = −0.56, p > 0.05 for 40% anger; M = −0.52, SD = 3.14, 
t(16) = −0.69, p > 0.05 for 60% anger.) Again, the logits for errors 
at these two morph levels were not signifi cantly different from each 
other either (dependent t = 0.004, p > 0.05). Therefore, due to the 

relatively small number of error trials, the data may be underpow-
ered to answer whether the STS tracks the actual stimulus or the 
perceived stimulus.

UNIVARIATE ANALYSIS
It is also possible to compare linear and step function fi ts using 
a univariate approach. Unlike multivoxel pattern analysis, this 
approach determines the effect of stimulus level on each voxel indi-
vidually. For each subject, we used the general linear model to deter-
mine the effect of each stimulus level on every voxel. Then, after 
spatially registering each map of parameter estimates to Talairach 
space, we tested for linear and step function fi ts to each voxel’s set of 
parameter estimates. At a voxelwise cutoff of p < 0.001, no clusters 
were large enough to pass correction for multiple comparisons 
for either the linear fi t or step function fi t. (The largest cluster of 
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which is used as a measure of neural representation against morph 
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fear. (A) Left STS. (B) Right STS.
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address this issue. Finally, it is possible that some types of stimuli 
with natural categories, such as bird species, are represented cat-
egorically in the STS, while other types of stimuli that are often 
found along a continuum in nature, such as facial expressions, are 
represented less categorically (Susskind et al., 2007).

In this study, subjects were not required to fi xate while viewing 
the stimuli. While this provides a more ecologically valid setting to 
study facial expression perception, it opens up the possibility that 
differential responses to different stimuli were driven in part by the 
location at which subjects fi xated. However, this concern is tempered 
to some extent by the fact that visual scanning of fearful faces is very 
similar to visual scanning of angry faces (Wong et al., 2005). Another 
potential explanation for our fi ndings is that differences in arousal 
levels between fear and anger could have driven the differential 
responses in the STS. In general, fear and anger are associated with 
similarly high levels of arousal (Russell, 1980), and so any differences 
in arousal levels in this experiment are likely to be small. Nevertheless, 
it is possible, in principle, that this explanation could still explain the 
data. If so, our main fi nding of noncategorical representations would 
remain valid, but the interpretation would shift from one about visual 
representations to one about arousal levels.

MOTION OR BIOLOGICAL MOTION?
Our study showed mostly linear functions between morph level and 
distributed representations in the STS. In principle, the population 
responses could refl ect distinctions among facial expressions as well 
as lower-level aspects of visual motion. Previous fMRI studies have 
shown STS sensitivity both to motion coherence (Braddick et al., 
2000), and to static facial expressions as compared to neutral expres-
sions (Engell and Haxby, 2007). The population responses for vari-
ations of facial expression may show gradations that refl ect subtle 
variations within coarsely-defi ned categories, such as anger or fear.

CATEGORICAL REPRESENTATIONS
If the STS contains mostly noncategorical representations of facial 
expressions, the question arises of where they are represented cat-
egorically, if anywhere. Our targeted surface coil measurements 
prevented us from obtaining good SNR in brain areas beyond the 
STS, and so the investigation of other brain areas remains a topic 
for future research. However, if the results of previous studies on 
other types of stimuli can generalize to emotional expressions, 
then it is likely that categorical representations will be found in 
the PFC (Freedman et al., 2001, 2003; Jiang et al., 2007). At least in 
the macaque, there are known projections from the STS to frontal 
cortex (Luppino et al., 2001).
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6 voxels was lower than the 16 required for a corrected alpha of 0.05, 
as determined by Monte Carlo simulations of null hypothesis data 
with the AFNI program AlphaSim.) Thus, differential responses to 
stimulus level was best detected with the multivariate approach, 
and not the univariate approach.

DISCUSSION
In this study we showed that the multivoxel representations of facial 
expressions in the left STS are graded and noncategorical. In the right 
STS, we found evidence for both stimulus-related gradations and 
a category boundary. We obtained these results in an experiment 
in which subjects viewed videos of facial expressions, ranging on 
a continuum from pure fear to pure anger. Subjects were asked to 
categorize each expression as either fear or anger. A classifi er was 
fi rst trained to distinguish the fMRI patterns of activation for pure 
fear from the patterns for pure anger, and was then tested on the 
intermediate morphs. In the left STS, both a SMLR classifi er and 
a neural network classifi er showed a linear relationship between 
morph level and neural representation. In the right STS, the fi ts 
were generally more intermediate between a linear function and 
step function, suggesting both stimulus-related gradations and a 
category boundary. To the extent that there are differences in later-
ality, they are similar to recent work on the fusiform gyrus, which 
shows categorical representations for faces in the right, but not left 
hemisphere (Meng et al., 2008). It is unlikely that the emergence of 
some category information in the right STS was driven by motor 
responses, since all subjects used their right hand (and therefore 
their left motor cortex) to control the button box.

The fi nding that representations in the left STS are noncategori-
cal is similar to fi ndings from research on other posteriors areas 
(Freedman et al., 2003; Jiang et al., 2007) including a multivariate 
pattern analysis study on moving dots stimuli (Li et al., 2007). This 
is also consistent with multivariate work on nonhuman primates 
showing mostly graded responses in IT cortex to high level stimuli 
(Meyers et al., 2008). Here, for the fi rst time, we have demonstrated 
this multivariate effect in humans using high level stimuli.

One recent paper using fMRI adaptation and bird stimuli has 
found clusters in the left STS that appear to show stronger categori-
cal representations than we have shown here (van der Linden et al., 
2009). The differences between the results in that study and present 
study could be due to a number of causes, which are not mutually 
exclusive. First, the categorical clusters reported in that study were 
relatively small, with a total volume of 2262 mm3, which is about 
7% of the volume of our average anatomical ROI. It is possible 
that an analysis of that data in the entire left STS would show 
representations that are less categorical, as we have found here. 
Indeed, different regions of the STS may include more categorical 
or less categorical representations than others. Second, subjects in 
that study received longer training periods than in ours. Perhaps 
the neural representations in our study would become increasingly 
categorical with longer training. Future studies could attempt to 
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