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2008; Cao et al., 2006; Fox and Raichle, 2007; Zang et al., 2007; 
Biswal et al., 2010), analysis of these spontaneous fluctuations 
usually involves the identification of correlations between remote 
brain areas, commonly referred to as functional connectivity. The 
term “functional connectivity” has been used in both resting-state 
and task-state studies and can refer to correlations across subjects, 
runs, blocks, trials, or individual BOLD time points, an ambiguity 
which can become confusing (Friston et al., 1993; Horwitz, 2003; 
Fox and Raichle, 2007; Rogers et al., 2007). We will therefore use the 
term resting state functional connectivity MRI (fcMRI) for added 
specificity, and this will be the focus of the present article. The 
two most popular techniques for performing resting state fcMRI 
are seed-based correlations and independent components analy-
sis (ICA). In the seed-based technique signal is extracted from a 
specific region of interest, and a map is created by computing the 
correlation between this extracted signal and all other brain voxels 
(Biswal et al., 1995; Fox and Raichle, 2007). In contrast, ICA consid-
ers all voxels at once and uses a mathematical algorithm to separate 
a dataset into distinct systems or networks that are correlated in 
their spontaneous fluctuations but also maximally independent, 
usually in the spatial domain (Kiviniemi et al., 2003; Bartels and 
Zeki, 2004; Beckmann et al., 2005).

Regardless of the technique, a consistent observation is that 
regions with similar functional properties, such as the left and 
right somatomotor cortices, exhibit coherent BOLD fluctuations 
even in the absence of movement under resting conditions (Biswal 
et al., 1995; Lowe et al., 1998; Cordes et al., 2000; De Luca et al., 
2005; Fox et al., 2006b). Similar results have been found in multiple 
other networks including visual (Lowe et al., 1998; Cordes et al., 
2000), auditory (Cordes et al., 2000), language (Cordes et al., 2000; 
Hampson et al., 2002), dorsal and ventral attention systems (Fox 
et al., 2006a), corticothalamic circuits (Zhang et al., 2008), and a 
frontal opercular network that has been related to stimulus salience 

IntroductIon
Functional magnetic resonance imaging (fMRI) is a non-invasive 
technique for examining brain function that utilizes changes in 
blood oxygen level-dependent (BOLD) signal to identify areas of 
increased or decreased neuronal activity (Logothetis, 2003; Raichle 
and Mintun, 2006). This technique has proven extremely valuable 
in the laboratory environment, allowing researchers to identify 
brain areas associated with the processing of different stimuli or 
the performance of various cognitive tasks (Raichle, 2000). Further, 
fMRI has been used extensively to identify abnormalities in these 
activation patterns in populations of patients with neurological 
or psychiatric disease.

Despite its success and popularity as a research tool, fMRI has 
seen relatively little translation into the clinical realm. In gen-
eral, the fMRI abnormalities seen in clinical research populations 
have not translated into the ability to obtain useful diagnostic or 
prognostic information in individual patients (Matthews et al., 
2006). While pre-operative fMRI is being used in individual 
patients to guide neurosurgical intervention, its use has not yet 
been shown to improve patient outcomes. Although progress is 
certainly being made, the clinical utility of fMRI has yet to be 
firmly established.

A recent advance that offers tremendous promise for improving 
the clinical applicability of fMRI involves focusing on spontaneous 
modulations in the BOLD signal that occur during resting condi-
tions (for recent review see Fox and Raichle, 2007). In contrast to 
the traditional task-based approach, resting state studies observe 
the brain in the absence of overt task performance or stimula-
tion. In these studies, subjects are generally asked to lie quietly 
under “resting” conditions such as eyes closed or while fixating 
on a crosshair. Spontaneous modulations in the BOLD signal in 
the absence of any explicit input or output are then recorded and 
analyzed. Although alternative approaches exist (Zhu et al., 2005, 
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(Seeley et al., 2007b). One of the most robustly identified and exten-
sively investigated resting state networks involves a set of regions 
that routinely decrease their activity during attention demand-
ing tasks, often referred to as the default mode network (Raichle 
et al., 2001; Greicius et al., 2003; Fox et al., 2005; Fransson, 2005) 
(Figure 1). Interestingly, this network has also been found to be 
negatively or anti-correlated with regions that tend to increase their 
activity during attention demanding tasks (Greicius et al., 2003; 
Fox et al., 2005, 2009; Fransson, 2005; Chang and Glover, 2010). 
Resting state correlation patterns across various networks have been 
shown to predict the task-response properties of brain regions (De 
Luca et al., 2005; Vincent et al., 2006), identify subjects’ aptitude 
for different cognitive tasks (Hampson et al., 2006; Seeley et al., 
2007b), and help constrain and refine neuro-anatomical models 
developed on the basis of task-activation studies (Fox et al., 2006a; 
Dosenbach et al., 2007).

Given the success of resting state functional connectivity for 
probing the brain’s functional architecture in normal subjects, it is 
only natural to apply the technique towards understanding brain 
disease. Two recent reviews detail the large number of studies that 
have utilized resting state fcMRI to study various neurological and 
psychiatric conditions (Greicius, 2008; Zhang and Raichle, 2010). 
Although this list continues to grow on a daily basis, the goal of the 
present article is not to review the findings from each individual 
study and the insight each provides towards understanding spe-
cific diseases. The field has expanded to the point that resting state 
reviews focused on each specific disease are rapidly becoming appro-
priate. Instead, we take a more global perspective on the application 
of resting state fcMRI in the clinical realm. We detail the theoretical 
and practical motivations for using resting state fcMRI for clinical 
applications, describe the different types of clinical applications to 

which resting state may be applied, provide guidelines for using 
resting state fcMRI as a clinical tool, and identify barriers to full 
translation of resting state fcMRI into the clinical realm.

Why use restIng state fcMrI for clInIcal 
applIcatIons?
cerebral energetIcs
There are several motivations, both theoretical and practical for 
using resting state fcMRI for clinical applications. The first of these 
motivations comes from an understanding of brain energy metabo-
lism. The resting human brain represents only 2% of total body 
mass but consumes 20% of the body’s energy, most of which is used 
to support of ongoing neuronal signaling (Ames, 2000; Attwell and 
Laughlin, 2001; Lennie, 2003; Shulman et al., 2004; Raichle and 
Mintun, 2006). Task-related increases in neuronal metabolism are 
usually small (<5%) when compared to this large resting energy 
consumption (Raichle and Mintun, 2006). Differences in these task-
related changes between normal and pathological populations are 
smaller still, often less than 1%. When attempting to study disease 
or diagnose patients based on task-related changes, one is therefore 
focusing on only a very small fraction of the brain’s overall activ-
ity. Ongoing spontaneous activity may provide a window onto the 
neural processing that appears to consume the vast majority of 
the brain’s resources and so may prove a richer source of disease-
related signal changes.

sIgnal to noIse
Resting state studies may offer a better signal to noise ratio than 
conventional task-based approaches. To demonstrate this princi-
ple, BOLD modulations recorded from the somatomotor cortex 
are shown during a simple task in which subjects were asked to 
press a button with their right hand (Figure 2) (Fox et al., 2006b). 
In this case, the subject pressed the button only once during the 
scanning session. Examining the tracing from the left somatomotor 
cortex alone (Figure 2A), it is impossible to identify when during 
the session that button press occurred. The signal, or task-related 
modulation, is very small relative to the tremendous amount of 
ongoing noise. Even if one focuses only on the time of the but-
ton press itself, when task-related BOLD modulation is maximal, 
the task-related modulation accounts for only 20% of the total 
BOLD variance (Fox et al., 2006b, 2007b). This means that during 
a standard fMRI task session over 80% of the BOLD modulation 
may be discarded as noise. This is why task-related BOLD studies 
require a large number of trials and extensive averaging to obtain 
a signal or activation map, and this may be part of the reason 
why task-based fMRI has found only limited application in the 
clinical realm.

A critical observation that forms the basis of resting state 
fcMRI was the finding that much of this “noise” that is so prob-
lematic for task-based studies is actually ongoing spontaneous 
fluctuations that are correlated within distinct cortical networks. 
This becomes apparent in our button press example when one 
adds the tracing from the right somatomotor cortex, which is 
only minimally involved in the right-handed task, to the tracing 
already shown for the left somatomotor cortex (Figure 2B). Much 
of the “noise” in the left somatomotor cortex is also present on the 
right. It is important to note that this shared variance is specific 

FIguRe 1 | Resting state functional connectivity reveals correlations and 
anticorrelations with the default mode network. Correlations between a 
seed region in the posterior cingulate/precuneus (PCC) and all other voxels in 
the brain for a single subject during resting fixation. Both correlations (positive 
values) and anticorrelations (negative values) are shown, thresholded at 
R = 0.3. The time course for a single run is shown for the seed region (PCC, 
yellow), a region positively correlated with this seed region in the medial 
prefrontal cortex (MPF, orange), and a region negatively correlated with the 
seed region in the intraparietal sulcus (IPS, blue). Reproduced with permission 
from (Fox et al., 2005).
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Task-activation studies have a poor signal to noise ratio because 
the signal (task-related modulation) is often small relative to the 
sea of ongoing noise (including spontaneous activity). In contrast, 
resting state fcMRI focuses on this ongoing spontaneous activity 
and uses it as the signal rather than discarding it as noise. System-
specific correlation values can be as high as 0.7–0.9 (accounting for 
50–80% of the variance) (Fox et al., 2006b, 2007b) (see Figure 1). 
Compared to the 20% signal to noise ratio seen in task-based activa-
tion studies, resting state fcMRI studies may enjoy approximately 
three times the signal to noise ratio. Although additional signal 
to noise considerations exist (see final section), a 3 to 1 improve-
ment in signal to noise has obvious advantages when attempting 
to identify imaging abnormalities in individual patients.

MultI-purpose data sets
In addition to the above signal to noise considerations, resting state 
fcMRI data sets can be used to study multiple cortical systems. This 
is in contrast to task-activation analyses which require dedicated 
data acquisitions for each function one is attempting to localize. 
For example, if one wants to identify both motor and language 
systems for pre-operative mapping one would need to perform one 
acquisition of a motor task and another acquisition of a language 
task. In fcMRI the same data can be used to examine both systems, 
effectively doubling the amount of data (or alternatively reducing 
the acquisition time by half).

expanded patIent populatIons
One of the most frequently cited motivations for using resting state 
fcMRI in clinical studies is that it allows for a broader sampling 
of patient populations. Due to cognitive dysfunction or physical 
impairment many patients are simply not capable of performing 
tasks accurately in the fMRI scanner. When studying disease, this 
often means that we are sampling the least impaired subjects in a 
patient group as opposed to the most impaired subjects likely to 
show the largest signal abnormalities. In addition to limiting our 
sensitivity for detecting disease related changes, this introduces 
the problem of whether observed abnormalities can be general-
ized to the average (and often sicker) disease population. Resting 
state fcMRI requires no task and places only minimal demands 
on the patient. Further, spontaneous activity continues when 
subjects are asleep (Fukunaga et al., 2006; Horovitz et al., 2006) 
and sedated (Kiviniemi et al., 2003; Peltier et al., 2005; Vincent 
et al., 2007; Greicius et al., 2008b) opening up the possibility of 
obtaining resting state activity in any patient population. Of note, 
it remains unclear if individual differences observed during the 
awake state persist during sleep or sedation and is an important 
area for future research.

cIrcuMventIng task-related confounds
One important advantage of resting state fcMRI is that it may 
circumvent confounds that can complicate interpretation of task-
based studies. For example, working memory tasks have been 
used extensively to study patients with schizophrenia. However, 
a difference in activation between patients and control subjects 
observed during the task could represent differences in task per-
formance, effort, task strategy, or an underlying disease-specific 
brain abnormality. A second example involves longitudinal studies 

to the somatomotor system and can be directly tied to variability 
in motor function (Fox et al., 2006b, 2007b). Even if one focuses 
only on the button press epoch, spontaneous ongoing activity can 
account for around 60% of the BOLD “noise” (Fox et al., 2006b, 
2007b). In fact, one can subtract the ongoing spontaneous activ-
ity from the left somatomotor cortex and the single button press 
response becomes evident (Figure 2C).

FIguRe 2 | Signal to noise features of spontaneous and task evoked 
activity. (A) fMRI time course from the left somatomotor cortex (LMC) during 
a single run when the subject pressed the button once with his right hand. 
Due to poor signal to noise, it is impossible to identify the task-related activity. 
(B) Comparison of the LMC with the right somatomotor cortex (RMC) shows 
that much of the noise is ongoing spontaneous activity correlated within the 
somatomotor system. (C) After subtracting the RMC from the LMC, the 
task-related modulation from the individual button press is evident (orange 
arrow). The LMC and RMC regions of interest are displayed for convenience 
on the inset map. Data taken from (Fox et al., 2006b).
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abnormalities to a relevant clinical variable speaks directly to 
the potential clinical relevance of a given finding and greatly 
increases confidence that the reported resting state abnormality 
will be reproducible.

Another important advance towards identifying prognostic or 
diagnostic markers on individual patients is to calculate the ability 
of observed resting state abnormalities to segregate healthy from 
disease states. Not surprisingly, the vast majority of this work has 
focused on the disease state with the most reproducible resting state 
abnormalities, Alzheimers, (Li et al., 2002; Greicius et al., 2004; 
Wang et al., 2006a; Supekar et al., 2008) (Figure 3) and the poten-
tially associated condition of PIB positivity (Hedden et al., 2009; 
Sheline et al., 2010). By looking at different resting state fcMRI 
measures and setting a threshold, one can calculate the sensitivity 
and specificity of that marker for segregating healthy and disease 
states (Figure 3A). In Alzheimers, sensitivity ranges from 72–85% 
and specificity from 77–80% (Li et al., 2002; Greicius et al., 2004; 
Wang et al., 2006a; Supekar et al., 2008). Instead of picking just one 
threshold, receiver operating characteristic (ROC) curves can show 
the sensitivity and specificity at several different thresholds and 
have been usefully applied in Alzheimers (Li et al., 2002; Supekar 
et al., 2008) (Figures 3B,C). Although not yet applied to Alzheimers, 
techniques such as machine vector learning and advanced pat-
tern recognition may further improve the utility of resting state 
fcMRI abnormalities as brain disease biomarkers (Haynes and 
Rees, 2006; Norman et al., 2006). Thus far, these segregation stud-
ies have been retrospective and the criteria for identifying a disease 
has been optimized for a specific data set. Future work applying 
these criteria prospectively towards new datasets will serve as an 
important test of their potential clinical relevance as a diagnostic 
or prognostic marker.

longItudInal studIes and treatMent effects
One area for which resting state fcMRI is extremely well suited is 
longitudinal studies and monitoring treatment effects. For exam-
ple, much may be learned by following disease progression in 
neuro-degenerative disorders such as Alzheimer’s or amyotrophic 
lateral sclerosis (ALS). Similarly, one can examine the effect of 
clinical intervention by studying subjects before and after treat-
ment. Normalization of resting state brain abnormalities with drug 
therapy may prove to be a useful surrogate outcome in clinical trials 
or help pharmaceutical companies decide which drugs to bring to 
large-scale clinical trials in the first place. Along these lines, rest-
ing state fcMRI abnormalities in depression have been shown to 
dissipate with drug treatment (Anand et al., 2005b), and improve-
ment in regional correlations has been shown to match functional 
recovery in spatial neglect following stroke (He et al., 2007).

clusterIng In heterogeneous dIsease states
To date segregation has focused largely on differentiating healthy 
from disease states. However one important role for resting state 
connectivity analyses may be segregating patients within a dis-
ease category. For example, schizophrenia is widely regarded as 
a very heterogeneous disorder, and this heterogeneity can greatly 
hinder the sensitivity of clinical trials. One could imagine placing 
the resting state patterns of hundreds of patients with schizophre-
nia into an algorithm that would cluster the patients into groups 

which utilize repeated task-based scanning sessions to examine 
drug effects or disease progression. These repeated task sessions 
can be confounded by practice effects or adaptation to the task. By 
eliminating the task, resting state fcMRI can circumvent some of 
these interpretative ambiguities and may allow for identification 
of more fundamental abnormalities underlying disease.

types of clInIcal applIcatIons
IdentIfyIng group dIfferences In braIn dIsease
Although there are several ways in which resting state fcMRI may 
be applied to clinical populations, by far the largest application has 
been comparing resting state correlation patterns between groups 
of normal subjects and those with neurological or psychiatric dis-
ease (for recent reviews see Fox and Raichle, 2007; Greicius, 2008; 
Zhang and Raichle, 2010). The goal is that through identifica-
tion of group differences one may begin to better understand the 
functional abnormalities underlying different disease states leading 
ultimately to a reliable resting state fcMRI marker that can be inter-
preted at the single subject level. This knowledge could in turn lead 
to identification of new treatments or drug targets. Disturbances 
in the correlation structure of spontaneous activity have now been 
reported for a significant number of disease states (see Table 1).

The goal of the current review is not to detail the individual 
findings of over 60 publications across 20 disease states. As men-
tioned in the introduction, we are rapidly approaching the point 
where reviews of resting state abnormalities for each particular 
disease state are becoming appropriate. However, tabulating the 
studies in this manner does lead to a few important observations. 
First, resting state fcMRI studies have been published on almost 
all major neurological and psychiatric diseases as well as a number 
of related conditions. While replication plays a role, the novelty 
of simply comparing correlation patterns between two groups is 
subsiding, and the route is paved for more advanced analyses (see 
next section). Second, the consistency of resting state abnormalities 
various greatly by disease state, from excellent consistency across 
Alzheimer’s, MCI, and PIB-positive patients to inconsistent and 
occasionally opposing findings in schizophrenia. There may be 
several reasons for this heterogeneity, and some mechanism to 
reconcile disparate findings is needed. Third, a seemingly dispro-
portionate number of studies seem to focus on the default mode 
network as opposed to other resting state networks. While this 
may be appropriate in diseases like Alzheimer’s with known or 
theoretical pathology in these regions, some of this focus may stem 
from a misconception that the default mode network is somehow 
special in showing large-amplitude coherent BOLD fluctuations 
at rest (for additional discussion see Fox and Raichle, 2007; Zhang 
and Raichle, 2010).

obtaInIng dIagnostIc and prognostIc InforMatIon
Given the substantial group comparison literature now avail-
able (Table 1), the route is paved for more advanced analyses of 
resting state abnormalities. One important advance is to relate 
the resting state differences seen between two groups to a rel-
evant clinical variable. For example, pathological disturbances 
in intrinsic activity have been correlated with the severity of dis-
ease in depression (Greicius et al., 2007), schizophrenia (Bluhm 
et al., 2007), and neglect (He et al., 2007). Relating resting state 
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pre-operatIve MappIng and targetIng InterventIon
The area in which traditional task-based fMRI has shown the great-
est promise for clinical translation is in pre-operative functional 

with similar resting state abnormalities. Similarly, retrospective 
 analysis of drug effects could identify subgroups that benefited 
from a particular therapy.

Table 1 | group differences in resting state fcMRI patterns observed in various brain diseases or conditions.

Disease/condition References Findings

Alzheimer’s (Li et al., 2002; Greicius et al., 2004;  Decreased correlations within the DMN including hippocampi,  

 Wang et al., 2006a,b, 2007; Allen et al.,  decreased anticorrelations with the DMN, and reduced local 

 2007; Supekar et al., 2008) connectivity as reflected in clustering coefficients

PIB positive (Hedden et al., 2009; Sheline et al., 2010) Decreased correlations within the DMN

Mild cognitive impairment (Li et al., 2002; Sorg et al., 2007) Decreased correlations within the DMN and decreased  

  anticorrelations with the DMN.

Fronto-temporal dementia (Seeley et al., 2007a, 2008) Decreased correlations within the salience network 

Healthy aging (Andrews-Hanna et al., 2007;  Decreased correlations within the DMN 

 Damoiseaux et al., 2008)

Multiple sclerosis (Lowe et al., 2002; De Luca et al., 2005) Decreased correlations within the somatomotor network

ALS (Mohammadi et al., 2009) Decreased connectivity within the DMN and within the  

  somatomotor network (esp. premotor cortex)

Depression (Anand et al., 2005a,b, 2009;  Variable: Decreased corticolimbic connectivity (esp. with dorsal 

 Greicius et al., 2007; Bluhm et al., 2009a) anterior cingulate), increased connectivity within the DMN (esp.  

  subgenual prefrontal cortex), decreased connectivity between  

  DMN and caudate

Bipolar (Anand et al., 2009) Decreased corticolimbic connectivity

PTSD (Bluhm et al., 2009c) Decreased connectivity within the DMN

Schizophrenia (Liang et al., 2006; Liu et al., 2006, 2008;  Variable: Decreased or increased correlations within the DMN.  

` Bluhm et al., 2007, 2009b; Salvador et al.,  Decreased, increased or unchanged correlations and 

 2007; Zhou et al., 2007; Jafri et al., 2008;  anticorrelations between the DMN and other systems. 

 Whitfield-Gabrieli et al., 2009)

Schizophrenia 1° relatives (Whitfield-Gabrieli et al., 2009) Increased connectivity within the DMN

ADHD (Zhu et al., 2005, 2008; Cao et al., 2006;  Variable: reduced connectivity within the DMN, reduced 

 Tian et al., 2006; Zang et al., 2007;  anticorrelations with the DMN, increased connectivity in the 

 Castellanos et al., 2008; Wang et al., 2009) salience network

Autism (Cherkassky et al., 2006; Kennedy and Decreased connectivity within the DMN (although hippocampus 

 Courchesne, 2008; Monk et al., 2009;  is variable and connectivity may be increased in younger patients) 

 Weng et al., 2010)

Tourette syndrome (Church et al., 2009) Delayed maturation of task-control and cingulo-opercular networks

Epilepsy (Waites et al., 2006; Lui et al., 2008;  Variable: decreased connectivity in multiple networks including 

 Bettus et al., 2009; Zhang et al., 2009b,c) the medial temporal lobe, decreased connectivity within the 

  DMN (esp. in patients with generalized seizures)

Blindness (Liu et al., 2007; Yu et al., 2008) Decreased connectivity within the visual cortices and between 

  visual cortices and other sensory and multimodal regions

Chronic pain (Greicius et al., 2008a; Cauda et al.,  Variable: Increased/decreased connectivity within the salience 

 2009a,c,d) network, decreased connectivity in attention networks

Neglect (He et al., 2007) Decreased connectivity within the dorsal and ventral  

  attention networks

Coma/vegetative state (Boly et al., 2009; Cauda et al., 2009b;  Progressively decreased DMN connectivity with progressive 

 Vanhaudenhuyse et al., 2010) states of impaired consciousness

Generalized anxiety disorder (Etkin et al., 2009) increased connectivity between amygdala and frontoparietal  

  control network and decreased connectivity between amygdala  

  and salience network

DMN = default mode network including regions in the posterior cingulate/precuneus, lateral parietal cortex, medial temporal lobes, and medial prefrontal cortex 
(see Figure 1). Salience network: includes regions in the dorsal anterior cingulate and bilateral fronto/insular cortices; dACC = dorsal anterior cingulated cortex; 
PIB = Pittsburg compound B, a marker of amyloid plaque accumulation in the brain. PTSD = post-traumatic stress disorder; ALS = amyotrophic lateral sclerosis; 
ADHD = attention deficit hyperactivity disorder. Note: some references (Greicius et al., 2004; He et al., 2007) reflect “near-rest” conditions in which task-related 
variance has been minimized and other references (Zhu et al., 2005, 2008; Cao et al., 2006; Zang et al., 2007) reflect local changes in spontaneous BOLD fluctuations 
as opposed to correlations in these fluctuations between separate regions.
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results across studies. When studies are relatively consistent, as in 
Alzheimers, it is easy to build on these results and move towards 
using resting state fcMRI for diagnostic and prognostic purposes. 
However, when studies are inconsistent as in schizophrenia, one is 
left wondering which result, if any, is most likely to be reproducible 
and therefore clinically relevant. Different study designs, processing 
techniques, analysis approaches, and regions or systems of interest 
make comparing studies very difficult.

One of the first steps towards improving translation is to 
begin to improve our ability to replicate and compare results 
from different resting state studies. While individual labs will 
always differ in their analytical approach (and this is a good 
thing) there are certain standards or guidelines that may help 
improve reproducibility and strengthen the conclusions that can 
be made (Table 2). Some of these guidelines may appear generic 
and obvious, however resting state fcMRI presents a unique set 
of challenges in study design and analysis that may benefit from 
explicit delineation.

brain mapping to help guide neurosurgical planning (Haberg et al., 
2004; Vlieger et al., 2004; Matthews et al., 2006). This is used most 
often to identify brain areas used in movement and language so 
that these areas can be avoided during surgical resection, but it has 
also been combined with EEG to identify foci of epileptic activity 
(Lemieux, 2004). fMRI defined brain regions correlate with intra-
 operative electrophysiology (Vlieger et al., 2004), Wada testing 
(Binder et al., 1996; Adcock et al., 2003), loss-of-function post-
operatively (Haberg et al., 2004), and are frequently mentioned 
in neurosurgery notes (Haberg et al., 2004). However, patients 
frequently lack the ability to perform tasks well (Pujol et al., 1998) 
and patient movement during tasks can be a significant problem 
(Lee et al., 1999).

As mentioned earlier, the advantages of resting state fMRI may 
circumvent many of the current limitations hindering task-based 
pre-operative mapping. Indeed several articles have recently been 
published showing strong proof of concept for resting state fcMRI 
as a pre-operative mapping tool in patients with neurosurgical con-
ditions (Kokkonen et al., 2009; Liu et al., 2009; Shimony et al., 2009; 
Zhang et al., 2009a). These articles have shown good correlation 
between resting state fcMRI results, task-based mapping, and intra-
operative cortical stimulation in these patients (Figure 4).

Just as resting state fcMRI may guide surgeons in their opera-
tive approach, it may also be used to guide several other clinical 
interventions where localization of a functional region is critical. 
Examples include placement of EEG recording grids, deep brain 
stimulators, and transcranial magnetic stimulation (TMS).

barrIers to clInIcal applIcabIlIty/future Work
guIdelInes for studyIng clInIcal populatIons WIth fcMrI
Despite the promise of resting state fcMRI for improving the 
translation of functional imaging into the clinical realm, sev-
eral challenges remain. One of the largest barriers is inconsistent 

FIguRe 3 | Moving towards resting state abnormalities as a diagnostic 
marker in Alzheimers: using parameters derived from resting state 
functional connectivity and choosing an appropriate threshold one can 
show good segregation between patients with Alzheimers disease 
(AD) and healthy elderly (A). Instead of picking just one threshold, receiver 

operating characteristic (ROC) curves can show the sensitivity and specificity at 
several different thresholds (B,C). Below each figure are the sensitivity and 
specificity values obtained by choosing the ideal threshold to segregate the 
populations in each study. Adapted with permission from (Li et al., 2002; 
Greicius et al., 2004; Supekar et al., 2008).

Table 2 | guidelines for studies of clinical populations with resting state 

fcMRI.

(1)  A priori hypotheses regarding a region or network with abnormal fcMRI 

  and clear criteria for selecting this region or network

(2)  A priori hypothesis and demonstration of a region or network with 

  normal fcMRI to serve as a control

(3)  Correlation with clinical variables whenever possible

(4)  Stringent correction for multiple comparisons

(5)  An analysis of movement in patients and control subjects

(6)  An analysis of the differential impact of pre-processing in patients and 

  control subjects

(7)  A discussion of how current findings relate to prior fcMRI findings
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FIguRe 4 | Resting state fcMRI in pre-operative brain mapping: 
(A) Structural MRI scan showing a mass in the right frontal cortex. Green circle 
represents the location of ipsilateral hand response to intra-operative cortical 
stimulation. (B) Task-related mapping showing activity within the sensorimotor 
network but also small responses in parietal cortex that are seemingly 

unrelated to motor function or sensation. (C) Resting-state correlation 
mapping showing that the sensorimotor network is largely unaffected by the 
tumor anterior to the central sulcus. Seed region is shown (blue circle). All 
images are displayed left-on-left. Adapted with permission from (Zhang 
et al., 2009a).

(1) The first guideline concerns a priori identification of either 
a region (seed-based analysis) or network (ICA) that one 
expects may be abnormal. This hypothesis can be based on 
prior imaging data (either task-based or resting state), patho-
logy, or simply the clinical features of the disease combined 

with theory suggesting localization of the relevant impaired 
functions. If the a priori motivation for the study is clearly 
presented in the introduction, then even a well-powered, 
negative finding can represent an advance. Analyses of a large 
number of seed regions or components can be an effective 
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be an elevated index of suspicion. Note that identification 
of control networks that are not different between the two 
groups will also help in this regard (see point #2).

(6) Similar to the above movement analysis, one should examine 
the impact of pre-processing on the two groups of subjects 
to insure that they do not differ. For example, much has been 
written on the pronounced effect of global signal regression 
on resting state correlations and anticorrelations (Chang 
and Glover, 2009, 2010; Fox et al., 2009; Murphy et al., 2009; 
Weissenbacher et al., 2009). Although there is benefit to this 
pre-processing maneuver including improved correspondence 
with anatomical connectivity (Fox et al., 2009), one must 
ensure that the effect of the pre-processing was not different 
in the two groups. In this example, one could examine the 
variance removed by global regression and show that it is not 
significantly different between patients and controls. If there 
is a group difference then one may want to repeat the analysis 
without removing the global signal and determine if the effect 
of interest remains. Similarly in ICA, there is a large impact 
on results based on the number of components one chooses. 
Due to a difference in variance in a patient population from 
movement or any other confounding factor, a certain compo-
nent could be split at a different point in patients and controls. 
Repeating a finding with a slightly higher or lower number of 
components (such as plus and minus 25% of the initial num-
ber of components) could increase confidence in the result.

(7) The final guideline concerns reconciling findings with previou-
sly published work. Although this point may seem obvious and 
is certainly not specific to resting state fcMRI, its importance 
makes it worth mentioning. If the current resting state fcMRI 
findings conflict with prior fcMRI work, it is crucial to explore 
possible etiologies of the conflict. It should not be sufficient to 
simply mention that other work has been done with differing 
conclusions. Resolving the discrepancy may involve additional 
analyses to directly explore differences in processing methodo-
logy, but such analyses are critical for accelerating consensus in 
the field and clinical applicability.

the case for collaboratIon
Despite the increasing number of papers being published on a 
daily basis by individual labs, clinical applicability of fcMRI is not 
likely to move forward without enhanced collaboration and data 
sharing between labs. Different processing techniques for analyz-
ing resting state data make comparison across studies difficult. 
The majority of resting state articles focus on a few seed regions 
or a single network, leaving unexplored the vast majority of the 
brain’s functional architecture. Finally, almost all studies focus on 
normal subjects or a single disease population making it difficult 
to assess reproducibility or determine the sensitivity or specificity 
of an identified abnormality for a specific disease.

In this review we explored several factors that make resting 
state fcMRI well-suited for translation into the clinical realm. 
However there are also several features that make it well-suited 
for databasing, data sharing, and collaboration. Due to the nature 
of spontaneous BOLD data, a single dataset can be used for multiple 
analyses and can address a wide variety of neuroscience questions. 
Furthermore, the paradigms used to study spontaneous BOLD 

means of generating hypotheses, but such exploratory work 
must be followed by targeted analyses that are powered to 
disconfirm spurious findings. Similar to choosing which 
region or network one is interested in, one must also clearly 
identify a priori how that network will be identified. If one 
is using a seed region, the coordinates for that seed region 
should be justified, for example as a focus of activation from 
a previously published study. Similarly, if one is studying a 
network in the form of an ICA component, one needs to spe-
cify an objective approach for identifying that system such 
as spatial correlation to an a priori template (Greicius et al., 
2004, 2007), however see also (Zuo et al., 2009) for possible 
limitations of this approach.

(2) Perhaps as important as the first guideline, the second gui-
deline involves a priori identification of regions or networks 
that one expects NOT to vary between the disease and heal-
thy state. A good choice for many diseases may be primary 
sensory systems such as visual, somatomotor, or auditory. Of 
course, it is theoretically possible that a disease state exists 
which impacts every brain system and region such that a nor-
mal control is not possible. However in these cases alternative 
control strategies should be pursued to show that the findings 
are not artifactual.

(3) As mentioned in an earlier section, any study which can show 
a relationship between identified resting state fcMRI abnor-
malities and clinical variables such as disease severity incre-
ases the confidence that a finding will be clinically relevant 
and reproducible.

(4) The fourth guideline concerns correction for multiple compa-
risons. This becomes especially pertinent if one is looking for 
differences across a large number of seed regions or compo-
nents or if one is attempting to correlate resting state abnor-
malities with several different clinical variables. The probability 
of finding a significant relationship increases as the number 
of variables one is trying to relate increases. Several methods 
to correct for these multiple comparisons exist, the simplest 
and most stringent being Bonferroni correction (Abdi, 2007). 
Clearly there are cases where one doesn’t know a priori which 
clinical variable or component may be of interest, and an effect 
that does not pass Bonferroni does not mean the effect is not 
interesting, it simply means that the relationship would benefit 
from repeat and targeted testing.

(5) The fifth guideline concerns movement correction and 
comes from the recognition that patient populations are 
often going to be less cooperative lying in the scanner than 
control populations, especially when they are required to 
do nothing but stare at a fixation cross for 10 min. While 
task-based studies can partially compensate for movement 
by averaging across a large number of trials, the nature of the 
signal used in resting state makes it particularly susceptible 
to movement confounds. Movement parameters are often 
used as co-regressors in resting state fMRI to try to minimize 
artificial correlations, however if large group differences in 
movement are present this remains a confounding variable. 
In such instances, one could look to see if movement correla-
ted on a subject to subject basis with the finding of interest. If 
the patients that moved the most also showed the largest dif-
ference in resting state correlation values then there should 
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with the limitation of reduced spatial coverage. Alternatively, 
 physiological parameters can be measured during BOLD acquisi-
tion and removed from the data through linear regression (Glover 
et al., 2000; Rombouts et al., 2003; Birn et al., 2006; Deshpande et al., 
2006; Lund et al., 2006; Chang et al., 2009; Chang and Glover, 2009). 
Finally, noise sources can be isolated from the BOLD data itself 
through techniques such as ICA (Kiviniemi et al., 2003; Bartels and 
Zeki, 2004; Beckmann et al., 2005), regressing out signals common 
to all voxels (the global signal) (Zarahn et al., 1997; Macey et al., 
2004; Fox et al., 2005, 2009), or regressing out signals from regions 
likely to have a relatively high degree of physiological artifact rela-
tive to the amount of neuronal activity such as the ventricles or 
white matter (Rombouts et al., 2003; Fox et al., 2005). By improv-
ing signal to noise, one can begin to reduce scan time and improve 
clinical applicability.

Other technique advances that may be helpful are increasing the 
fMRI data that can be used for resting state analyses. For exam-
ple, research may be expanded by using resting epochs from block 
design task data (Fair et al., 2007) or removing task-related variance 
and performing fcMRI analyses on the residual (Arfanakis et al., 
2000; Fair et al., 2007; He et al., 2007).

Finally, improved clinical applicability will likely come from 
moving beyond the fMRI scanner to multimodal investigations 
of spontaneous activity. Spontaneous fluctuations in the BOLD 
signal have been shown to correlate with EEG (Laufs et al., 2003), 
local field potentials (Shmuel and Leopold, 2008), and slow cortical 
potentials recorded with subdural electrode grids (He et al., 2008). 
Also resting state functional connectivity analyses are now being 
done with spontaneous fluctuations observed with near infrared 
spectroscopy (White et al., 2009). Such techniques raise the poten-
tial for studying continuous resting state correlations in situations 
where an MRI scanner is not practical such as real-time monitoring 
in intensive care units or operating rooms.

conclusIons
Resting state fluctuations in the BOLD signal of fMRI provide 
good signal to noise, require minimal patient compliance, can be 
obtained under anesthesia, and are well suited for translation into 
the clinical realm. Clinical applications include research studies 
focused on group differences, biomarkers for obtaining diagnostic 
and prognostic information in a single subject, and guidance of 
invasive and non-invasive treatments. Several guidelines for rest-
ing state studies of brain disease have been proposed here and 
may improve the reproducibility of findings and facilitate clini-
cal translation. Finally, improvement in processing techniques of 
the fMRI signal as well moving beyond the fMRI signal to other 
modalities that can also assess low-frequency fluctuations are likely 
to be important as we begin to realize the potential of resting state 
fluctuations in the clinical realm.

activity are  relatively simple compared to task-based imaging 
studies with multiple stimuli presented at varying intervals. These 
factors make spontaneous BOLD data ideally suited for reanalysis 
and inclusion in a database.

The above factors have motivated the creation of two online 
databases focused on resting state fcMRI data. The first is both an 
analysis package and database termed BrainSCAPE (Spontaneous 
Correlation Analysis Processing Engine)1 (Fox et al., 2007a). This 
tool allows users to upload, analyze, and share their spontaneous 
BOLD data as well as analyze freely shared data from other labs. 
More recently a second database has been launched termed the 
NITRIC 1000 connectome project2 and includes a large number 
of functional connectivity datasets freely available for download 
(Biswal et al., 2010). By providing access to multiple datasets, effects 
in one study can easily be confirmed and compared with results 
from multiple other datasets. We anticipate that collaborative 
projects such as these will accelerate advances in the field and may 
prove valuable in assessing the sensitivity and specificity of intrinsic 
abnormalities underlying human disease.

technIque developMent
Finally, an improvement in clinical utility is likely to come from fur-
ther technique development. One area that is likely to be essential as 
we move from studies of groups of patients to obtaining prognostic 
and diagnostic information on a single patient is improving signal to 
noise. As mentioned at the beginning of this article, studies of resting 
state fluctuations do enjoy a potential signal to noise advantage over 
task-based studies. However, in task-based studies one can improve 
the signal to noise by simply increasing the number of trials and the 
amount of averaging. The technique for improving signal to noise in 
resting state studies is less straight forward. It is important to recognize 
that not all spontaneous BOLD fluctuations are due to underlying 
neuronal fluctuations in distinct cortical systems but may also come 
from non-neuronal sources. Although the quantitative impact of 
these noise sources is likely small relative to neuronal fluctuations, 
spontaneous BOLD modulation can be measured in a water phantom 
(Zarahn et al., 1997), and physiological fluctuations such as cardiac or 
respiratory activity can account for a significant fraction of spontane-
ous BOLD variance in human data (Glover et al., 2000; Wise et al., 
2004; Birn et al., 2006; Lund et al., 2006; Chang and Glover, 2009). 
Improvements in signal to noise could therefore come from reducing 
the contribution of these non-neuronal fluctuations.

One strategy to account for non-neuronal noise is to employ 
a high sampling rate which prevents aliasing of higher frequency 
cardiac or respiratory activity (Biswal et al., 1995; Lowe et al., 
1998; Cordes et al., 2001; De Luca et al., 2006); however this comes 

1www.brainscape.org
2www.nitrc.org/projects/fcon_1000
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