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for the precise composition of multiple reconstructions would be 
an atlas of the whole brain that contains a large number of land-
marks for warping different brains into one reference (e.g., Toga 
and Mazziotta, 2002). We developed and tested the suitability of 
this approach by creating a standard atlas of the bee brain (the 
honeybee standard brain: HSB, Brandt et al., 2005). The HSB atlas 
can be used to successfully reconstruct components of a neural 
network from separately acquired neurons and to visualize their 
spatial relations.

To create digital standard insect brains, two standardization meth-
ods have been employed: (1) The iterative shape method (ISA), which 
eliminates individual shape variability (Rohlfing et al., 2001; Brandt 
et al., 2005; Kvello et al., 2009). (2) The virtual insect brain (VIB) pro-
tocol, which allows a comparative volume analysis of brain neuropils, 
developmental studies, and studies on neuronal plasticity and genetic 
differences (Rein et al., 2002; Kurylas et al., 2008; el Jundi et al., 2009). 
We favored the ISA standard, which is derived by averaging across 
multiple individual brains. Analyses of other procedures, for exam-
ple, selecting an individual representative brain, have shown that 
the averaging procedure is best suited to the registration of neurons 
collected from different brains (Kurylas et al., 2008).

IntroductIon
Analysis of the structure of neural networks requires the selective 
staining of the participating neurons, their three-dimensional (3D) 
reconstruction, and the integration of these reconstructions into a 
common reference frame, an anatomical atlas. Insects have rather 
small brains that can be captured in full using confocal microscope 
imaging. Unsurprisingly, significant advances have been made in 
attempts to create digital atlases of whole insect brains (see the 
other contributions to this special issue).

Neurons that participate in neural networks are normally stained 
in separate preparations. Even if double or triple staining is per-
formed in one brain, a whole network can only be reconstructed 
using data collected from multiple preparations. An ideal frame 
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The averaging method applied in the HSB is based on ideas 
of Ashburner (2000) and Guimond et al. (2000), who derive an 
 average-shape image through an iteration of one affine registra-
tion, followed by multiple elastic registrations (Rohlfing et al., 2001, 
2004). To create an initial average image, the method first registers 
all images to an (arbitrarily chosen) initial reference using affine 
registration. The method then registers all images non-rigidly to 
this average, generating a new average, and so forth. The underlying 
idea is that after several such iterations the average converges to the 
shape centroid of the population, which is, up to affine components 
(position, orientation, scaling, and shearing), independent of the 
choice of the initial reference image (Guimond et al., 2000, for 
more details on applying these methods for creating the honeybee 
standard brain: see Brandt et al., 2005).

The first step towards filling the atlas with structural information 
about neurons requires the semi-automatic segmentation of the 
neurons of interest and their related neuropils. The neuropil seg-
mentations are spatially registered onto structures of the atlas. Then, 
the transformation coordinates produced by registration are used to 
fit neurons from different experiments into the atlas. Protocols for 
integrating genetically labeled neuron populations and single cell 
reconstructions into brain atlases have been described (e.g., Jenett 
et al., 2006; Kuß et al., 2007; Rybak et al., 2009). These protocols 
provide the electronic resources and tools for reconstructing neu-
rons (Schmitt et al., 2004; Evers et al., 2005) as well as registration 
techniques that enable spatial normalization of structures using 
geometric warping algorithms (Rohlfing et al., 2001; Toga and 
Mazziotta, 2002; Westerhoff, 2003; Maye et al., 2006).

To facilitate the segmentation process, a statistical shape model 
(SSM) was developed. In order to develop the SSM a method was 
used that is based on successful procedures for automatic segmen-
tation of medical imaging data (Lamecker et al., 2004; Kainmüller 
et al., 2007, 2009; Seim et al., 2008). The method integrates a priori 
information about variable neuropil shapes as imaged from confo-
cal microscope imaging data (Neubert, 2007; Singer et al., 2008). 
Features in the imaging data are compared to intensity profiles of 
the confocal gray-value data, which have been learned by the model 
from a training data set. These comparisons are used to adapt all 
neuropil boundaries contained in the SSM to individual neuropil 
boundaries in the present imaging data.

In this study, emphasis was placed on the strategy of standard-
izing and optimizing the registration process and the subsequent 
fitting procedures of neuronal data. These issues are important to 
make the HSB usable for researchers at other labs. The applicabil-
ity of statistical shape atlases that contain information about brain 
structures and their variability are discussed.

Furthermore, we introduce an ontology-based approach inte-
grates vast amounts of data from various experimental sources in 
a structured way into a single coherent database.

The HSB atlas and examples of registered neurons can be down-
loaded and visualized at http://www.neurobiologie.fu-berlin.de/
beebrain/

Materials and Methods
All animals (workerbee foragers, Apis mellifera carnica) were taken 
from the hives at the Institute for Neurobiology, Free University, 
Berlin, Germany.

histology
Synaptic neuropil background staining
Neuropil background staining used for the HSB is described in detail 
in (Brandt et al., 2005). In brief, brains were dissected in phosphate 
buffered saline (PBS) and fixed in 4% para-formaldehyde (PFA) 
for 2 h. After blocking in 10% normal goat serum (NGS; Jackson 
ImmunoResearch, Westgrove, PA, USA) in PBS-Triton X-100 (Sigma)), 
they were incubated for 5 days in synaptic antibodies (primary antis-
era NC46 and SYNORF1 each diluted 1:30 in NGS-PBS-TritonX-100 
(SYNORF1, Klagges et al., 1996, and NC46 were kindly provided by 
Dr. E. Buchner, Würzburg). Afterwards, the brains were incubated for 
3–5 days with Cy3 conjugated mouse anti-rabbit secondary antibody 
(Jackson ImmunoResearch; dilution 1:200 in NGS-PBS-TritonX-
100). Brains were dehydrated and cleared in methylsalicylate.

Lucifer yellow histology
For preparations that were utilized for construction of the SSM 
Lucifer yellow was used as a neuropil background stain. Brains 
were fixed in 4% para-formaldehyde (pFA) (Sigma) for either 2 h 
at room temperature or overnight at 4ºC. After washing, brains 
were dehydrated in ascending ethanol series, and cleared in meth-
ylsalicylate. 4% Lucifer yellow was added either to the fixative at a 
dilution of 1:500 or to PBS-TritonX treated overnight.

Ethyl gallate histology (Wigglesworth, 1957)
Brains were fixed for 4 h in 2.5% glutaraldehyde in cacodylate 
buffer. After several washes in buffer, brains were osmicated in 2% 
OsO

4
 in cacodylate buffer for 1 h in the dark. Tissue was then trans-

ferred to 0.5% ethyl gallate (Merck) in distilled water for 1–4 h. The 
solution was changed until the blue-gray color disappeared. After 
thorough washing in distilled water, the specimens were dehydrated 
and embedded in Durcupan (Fluca). Ethyl gallate preparations were 
sectioned at 10–25 μm.

Confocal microscopy
Whole-mount brains used for creating the SSM were counter-
stained with Lucifer yellow and imaged sequentially with the Leica 
TCS-SP2 confocal microscope using a 10× dry or 10× oil Leica 
objective (HC PL APO 10 × /0.4, Leica, Bensheim, Germany). For 
Lucifer yellow-stained tissue, the Ar-Kr 488-nm laser line was used 
at a voxel resolution of approximately 1.5 × 1.5 × 3 μm. The dye-
filled neurons were excited using the 543-nm line (detected with an 
emission spectrum of 550–620 nm) or the 633-nm line (detected 
with an emission spectrum of 650–750 nm) of the HeNe laser. For 
high-resolution scans of intracellularly stained neurons, we used 
the 20× oil (HC PL APO 20 × /0.70) 40× oil HCX PL APO CS 
40.0×/1.25) and 63× oil objectives (HCX PL APO 63×/1.32–0.60) 
(Leica, Bensheim, Germany). Depending on the zoom factor (1–4) 
the voxel resolution was approximately 0.1–0.4 × 0.1–0.4 × 1 μm. 
In all confocal scans we used a pixel resolution of 1024 × 1024 in 
xy axes and an 8 bit intensity resolution. Because of the refractive 
index mismatch in the optical path, dry lenses usually introduce 
a shortening of distances in the z axis. According to Bucher et al. 
(2000), shortening can be considered as a linear scaling in the z 
direction. Therefore, the scaling factor from preparations that were 
scanned with dry lenses is estimated to be 1.6. (refraction index: 
methylsalicylate = 1.51, oil = 1.54, air = 1).
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A description of the registration process and parameter settings 
can be found in the Amira User Guide (Visage Imaging, Berlin; 
San Diego, CA, USA). A detailed protocol is found in the section 
“Registration protocol” of supplementary material (see also Kuß 
et al., 2007).

Registration using landmarks
Histological sections stained with ethyl gallate were registered into the 
HSB using the LandmarkWarp module of Amira. The corresponding 
anatomical locations in the histological sections and the gray-value 
dataset of the HSB were defined by two sets of landmarks.

the statIstIcal shape Model
A SSM captures the mean shape and the geometric variability of a 
given set of input geometries by a limited number of parameters and 
can therefore be used for automated and robust image segmenta-
tion. The SSM of the bee brain applied in this work was presented 
in Lienhard (2008). A detailed description of the procedure and 
references to other approaches can be found in Lamecker (2008). 
Our strategy for the creation of an SSM from three-dimensional 
image data includes several steps: (1) Triangular surfaces were recon-
structed from 16 manually labeled image stacks of central neuropils 
of the worker bee. In contrast to the previously presented HSB, the 
neuropil counter stain was achieved using 5% Lucifer yellow. Most 
labels for neuropils were chosen as defined in the HSB (Brandt 
et al., 2005). The median and lateral calyces of each mushroom 
body were segmented without subdivisions. The optic and antennal 
lobes were not included in this model. A subdivision of the calyces 
into lip, collar, and basal ring was not performed. (2) Point-to-point 
correspondences were established between all training surfaces, i.e., 
vertices with the same index share the same anatomical position 
on each training surface. To achieve this, all surfaces were equally 
partitioned into regions (patches), which represent homologous 
biological compartments. A reference surface triangulation was then 
mapped onto each training shape using surface parameterization 
techniques (Lamecker et al., 2003). (3) After alignment of all training 
shapes to one reference, principal component analysis was applied 
on the set of shape vectors representing the surfaces’ vertex coordi-
nates. This process generated the SSM representing the average shape 
plus a linear combination of the most characteristic modes of shape 
variation (shape modes) contained in the training set.

The SSM allows a highly compact representation of shape vari-
ations among a large number of individuals. The most challenging 
step in the SSM generation is the identification of corresponding 
points (step 2). Our approach is interactive as it involves manual 
specification of patch boundaries. Yet, this allows the production of 
accurate SSMs even for very complex geometries with large defor-
mations and arbitrary topologies, as in the case of the bee brain.

SSM-based automated image segmentation
Image segmentation can be automated by using a priori knowl-
edge, particularly about geometrical shapes and intensity profiles. 
The general idea is to roughly position an SSM in the imaging data 
and subsequently vary the shape parameters (weights of the shape 
modes) and the spatial location until the SSM matches the object in 
the imaging data as closely as possible (Lamecker, 2008). The intensity 
 distributions of the underlying imaging data are evaluated around 

tracIng of neurons
All confocal scans were digitized as double channels after which each 
channel was analyzed separately using the three-dimensional visu-
alization and segmentation modules in Amira (version 4.1; Visage 
Imaging, Berlin; San Diego, CA, USA). Tracing and reconstruction 
of the neurons, including topology, lengths, and diameters, were per-
formed using a module that integrates methods presented in (Schmitt 
et al., 2004; Evers et al., 2005). Traced single neurons, which were Amira 
data SkeletonTree format, were converted to the LineSet format and 
then triangulated to meshed surfaces. These surface files were exported 
as wavefront (obj) files. Wavefront files of neurons and neuropil sur-
faces were imported with the Adobe 3D Reviewer to Adobe Acrobat 
Pro Extended (Adobe Systems, Inc.). The images in the PDF version 
of this manuscript can be viewed by using the 3D viewer mode of 
the Acrobat Reader (version 9 and higher, which is freely available at 

http://get.adobe.com/de/reader/.

segMentatIon of neuropIls
Semi-automatic segmentation
Image segmentation was performed semi-automatically using 
Amira 4.1. The segmentation results were image stacks of type 
LabelField. LabelFields assign a label, which represents a distinct 
(brain) structure, to each voxel.

In most cases, no image preprocessing on the raw images was 
necessary, except for an adjustment of the gray-scale window. In 
some cases, Gaussian smoothing and unsharp masking from Amira’s 
DigitalFilters tool were applied to enhance faint contours. Image 
stacks were then loaded into the interactive segmentation editor. 
Using the segmentation editor’s BrushTool, the neuropil areas of 
interest were traced manually, slice by slice. To facilitate and speed 
up this manual segmentation process, a method that automatically 
interpolates segmentations between image slices was applied. In a 
post-processing step, connected areas of voxels containing only a 
small number of voxels were eliminated with the RemoveIslands 
tool. Finally, the LabelFields were smoothed (SmoothLabels).

An image series showing the brain neuropils of the HSB with 
superimposed LabelFields using the ColorWash module is provided 
in the Movie 1 in supplementary material. The final segmentations 
were supervised by a segmentation expert (curator of the HSB, JR). 
Depending on the staining quality of the tissue, an experienced user 
needs a minimum of 8–10 h to reconstruct all neuropils defined 
for the HSB.

regIstratIon Into the hsB
Registration and transformation of neurons into the HSB
To fit a neuron into the HSB, two steps are applied. First, the neu-
ron’s related neuropils are registered to corresponding parts of the 
HSB. This requires an affine and a subsequent elastic registration, 
which respectively result in a 9-degree of freedom transformation 
matrix and a deformation field (VectorField). Second, the registra-
tion resulted are used to transform the neuron’s geometric repre-
sentation (SkeletonTree or LineSet).

The affine and the elastic registration procedures use a met-
ric that takes the spatial correspondence of two label fields into 
account. Similarity measures were used as label consistency. The 
affine registration procedure further uses a hierarchical optimiza-
tion algorithm going from coarser to finer resolution.
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such as Lucifer yellow. Lucifer yellow staining, though reduced in 
contrast compared to the synapsin antibody staining, allows more 
rapid and easier histological processing. It further detects neuronal 
structures in much more detail than autofluorescence, and results 
in homogenous staining throughout the brain.

The challenge for transforming neurons into the common 
frame of the HSB (Figure 1) is to segment the complete Gestalt of 
each neuron at low resolution together with its spatial relations to 
adjacent structures (often gained by high-resolution microscopy) 
such that a warping algorithm allows for precise matching between 
samples from different individual brains.

In Figure 2 several examples of neurons are shown, each stem-
ming from a different preparation, and each having been separately 
transformed into the HSB. To capture all parts of a neuron at dif-
ferent resolutions, several confocal scans were necessary. This poses 
the problem of registering several label fields leading to subsequent 
errors during realignment of all parts of the neuron that accumulate 
during the registration processes, which may induce artifacts at the 
edges of the label fields (Maye et al., 2006). The strategy used for each 
of the examples of Figure 2 was to first scan an overview of the brain 
containing the whole neuron, and then reconstruct the main parts of 
the neuron. Afterwards, the neuron’s regions of interest, for example, 
the dendritic tree of the L3 neuron, were reconstructed from high-
resolution scans (Figure 2B), downscaled, aligned, and merged to the 
main neuron reconstructed from low resolution scans. Deviations 
that are caused by using several independent regions of the same 
neuron in several steps of registration are kept to a minimum. As a 
result, the spatial accuracy of the warping process is enhanced. This 
iterative procedure allows us to compose compounds of registra-
tions at different levels of resolution, for example, the target areas 
of olfactory and mechanosensory interneurons (Ai et al., 2009) in 
subregions of the protocerebral lobe (arrows in Figure 2A) together 
with registrations at high resolution of their fine structures for the 
analysis of their local topological features (Figures 2C,D). The movie 

the current SSM, and the surface of the SSM is displaced according 
to a set of given rules leading to the displacement model, which will 
be discussed in the next section. From the computed displacement, 
new shape weights or new locations are computed. This procedure 
guarantees that the segmentation indeed represents a plausible shape 
(robustness). In order to overcome possible mismatches due to indi-
vidual variations not captured by the SSM, a post-processing step 
usually provides some fine tuning for accuracy (Kainmüller et al., 
2007, 2009; Seim et al., 2008). Apart from the SSM itself, the main 
ingredient is a rule for displacing the SSM according to the underlying 
imaging data to be segmented. This is provided by the displacement 
model.

The displacement model
A simple method for computing displacements of the surface model 
in the imaging data is to determine a normal displacement for each 
vertex of the model such that the new vertex position coincides with 
a strong gradient in the imaging data. Here, the only assumption 
made is that object boundaries in the imaging data are reflected 
by significant local variations in the image intensity. In the case 
of confocal imaging of bee brains more information about the 
imaging process can be included in order to refine this model. 
Such extensions have been proposed by Neubert (2007) and Singer 
(2008) for different imaging protocols.

Segmentation performance
Accuracy. Cross-validation tests are used to estimate how reliably 
the SSM-based segmentation of the bee brain performs in practice. 
In the leave-one-out test one image is removed from the training 
set, and a calculation is performed to determine how accurately a 
reduced SSM, which is constructed from the remaining images, 
can be adapted to that removed image. The ability of the model to 
describe arbitrary shapes is described as completeness or generality. 
In order to estimate the quality of the displacement models (inten-
sity profile analysis) leave-all-in tests were performed. In contrast 
to the leave-one-out test, the known image is not removed from the 
SSM. This way the performance of the displacement strategy can 
be measured, separated from the quality of the SSM itself.

Performance measures. Measures for the mean and maximal 
surface distance were calculated using the Amira SurfaceDistance 
module. This module computes several different distance measures 
between two surfaces. The following measures were computed from 
the histogram of these values: mean distance and standard devia-
tion; root mean square distance; maximum distance (Hausdorff 
distance); medial distance; area deviation (percentage of area that 
deviates more than a given threshold).

Results
ConfoCal miCRosCopy
Because the registration process is based on label fields, the neuropils 
have to be stained in such a way that neuropil borders can be identi-
fied and segmented. We first applied an antibody against synapsin 
which nicely stains neuropils dense in synapses, and thus contrasts its 
border to surrounding tissue (Brandt et al., 2005). A simpler method 
involves imaging the autofluorescence of the tissue induced by glu-
taraldehyde. One could also enhance the autofluorescence using dyes 

Figure 1 | Surface reconstruction of the honeybee standard brain (HSB). 
Neuropil areas defined in the HSB are shown in different colors. Components of 
the midbrain area (protocerebral lobes, PL, and subesophageal ganglion, SOG) 
are fused and shown in transparency. Subcompartments of the protocerebral 
lobe and mushroom bodies are indicated in lower case letters. Scale: 300 μm. 
PL: protocerebral lobe; ppl: posterior protocerebral lobe, Lo: lobula; Me: medulla, 
li: lip, co: collar, br: basal ring, lh: lateral horn, ot: optic tubercle, lac: lateral 
accessory lobe, mc: median calyx, lc: lateral calyx, pe: peduncle, α: alpha-lobe,  
β: beta-lobe, SOG: suboesophageal ganglion.
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Figure 2 | Olfactory (L3: blue) mechanosensory (dorsal lobe interneuron 
1 and 2: DL_int1, green, DL_int2, red) and central interneurons (Pe1, yellow) 
registered into HSB. A mirror image is exhibited for the L3. (A) frontal view 
(B) caudal view. The projection areas in the lateral protocerebral lobe are compared 
(arrows). They occupy either separate neuropil areas: L3 and DL_Int2, or L3 and 
Pe1 overlap. (A) The L3 neuron projects to the lateral horn (arrows) and mushroom 

body calyces (MC, LC). The axonal terminals of the L3 neuron form microdomains 
in the lip region of the calyces and overlap with the dendritic fields of Kenyon cells 
(K, in B). Scale: 50 μm. (C, D) Neuron reconstruction and dendrogram of the 
respective neurons derived from high-resolution confocal scans. In (C) the 
neuronal distance is indicated in color. See false-color coded bar. (see also movies 
of supplementary material S3).

of supplementary material S3 and the interactive viewing mode in 
the PDF file (Figure 2A) allows visualization of the neurons’ spatial 
relationships.

Estimating the accuracy of the registration process is a dif-
ficult task. Certainly, the process involves numerous steps, which 
are prone to induce inaccuracies (see above). For example, the 
histological procedure may induce variable distortions due to 
local shrinkage differences that are not fully compensated by the 
affine and elastic registration. The experimenter may not seg-
ment correctly; the number of label fields (and, thus, the number 
of registrations steps) and thus distortions of the reconstructed 
surfaces of neuropils and neurons will lead to incorrect locations 
of the transformed neuron in the HSB. In addition, the neuropils 
and neurons themselves will differ from animal to animal, and it 
is this variability that determines the fundamental limit regard-
ing the reliability of any brain atlas – besides the methodological 
problems. Therefore, it is not possible to derive a measure of reli-
ability in the composition of neurons registered sequentially into 
the brain atlas. The best way of checking the spatial accuracy of 
such neurons is by comparing the relative positions of the neuron 
to the neuropil border lines in the original preparation to the 
situation after the registration process. We provide circumstantial 
evidence for the reliability of the segmentation and  registration 

process by  describing an example in which we compared the 
locations of intracellularly stained neurons with cross sections in 
high- resolution ethyl gallate-stained paraffin sections using two 
different registration methods.

IntegratIng data collected by dIfferent  
hIstologIcal methods
In Figure 3 a registered olfactory projection neuron (L5) is visual-
ized together with a registered ethyl gallate section showing mid-
brain regions (mushroom bodies, central body, and protocerebral 
lobe). The ethyl gallate method (Wigglesworth, 1957) provides 
detailed information about the neural architecture revealing the 
composition of neuropils, somata, and tracts, thus capturing the 
spatial context information. A whole series of ethyl gallate-stained 
sections was first used to identify the median and lateral antenno-
cerebralis tracts (ACTs) in a correlative light and electron micros-
copy study (Rybak, 1994). Our future goal is to integrate data from 
these histological procedures into the HSB. Here, we demonstrate 
the spatial accuracy of the registration process. A horizontal ethyl 
gallate section was warped into the HSB using a landmark-based 
registration by finding corresponding points or landmarks in 
the HSB and the histology section (Figure 3). Separately, a sin-
gle stained L3 axon, which was transformed to the HSB using a 
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To achieve the accuracy required for neuronal  connectivity 
 estimates, the development of higher resolution atlases that define 
subregions of the brain and allow their integration into a com-
mon coordinate system is needed. An example is given in this 
special issue of Frontiers in Neuroscience by el Jundi et al. (2010) 
who constructed a high-resolution atlas of the central complex of 
Locusta and determined the spatial relations of two central com-
plex neurons.

the statIstIcal shape Model (ssM)
Advantage of the SSM
The accurate and reliable localization of region boundaries during 
the registration process is a prerequisite for fitting neurons into any 
Standard Atlas. This is true for manual (or semi-automatic) and 
fully automatic segmentation techniques, though the advantage of 
the latter is that the level of human expert interaction is reduced. 
Labeling performed by different individuals often leads to variable 
results. A model-based auto-segmentation of neuropil boundaries 
utilizes a priori knowledge about the 3D shape of an object, in our 
case the bee brain, and characteristic features of the imaging data. 
Such a model provides a measure of the variability of the object set 
and can therefore be used to analyze and quantify morphological 
volumetric changes in neuropiles of the adult animal.

An SSM of the central bee brain (excluding the antennal and 
optic lobes) was calculated from 16 training shapes, resulting in 
17 shape modes. These were extended to 32 shapes (31 shape 
modes) by mirroring the right and left brain hemisphere along 
the neuraxis in each preparation. Each training shape was manu-
ally segmented by labeling the neuropil boundaries of the confocal 
imaging data stained with Lucifer yellow. Triangulated polygonal 
surfaces were reconstructed from the labeled images and simplified 
to 150000 triangles. The surfaces were then affinely aligned using 

label field registration, runs through the  corresponding ascending 
and descending parts of the median ACT (m-ACT) as seen in the 
ethyl gallate section (Figures 3A–C). The spatial accuracy of the 
registration process is indeed very high, and allows identification 
of m-ACT neurons in the median and lateral antenno-cerebralis 
tract (l-ACT) even at the single neuron level (see black arrows 
in Figure 3B).

analyzIng putatIve synaptIc connectIons
Fitting neurons into the HSB can be achieved with a certain degree 
of accuracy with regard to spatial relationships, but thus far cannot 
replace studies on synaptic connectivity. This must be achieved 
by electron microscopy (e.g., Ganeshina and Menzel, 2001) or by 
some approximation in confocal co-localization studies on the 
light microscopy level. Combining high-resolution confocal laser 
scanning microscopy with precise three-dimensional dendritic 
surface reconstruction (Schmitt et al., 2004) allows for automated 
co-localization analysis in order to map the distribution of poten-
tial synaptic contacts onto dendritic trees or axon terminals (Evers 
et al., 2005; Meseke et al., 2009).

This technique was used to estimate the distribution of putative 
GABAergic synaptic contacts on the dendrites of the Pe1 neuron, a 
single identified mushroom body extrinsic neuron (Mauelshagen, 
1993; Rybak and Menzel, 1998, Figure 4). GABA-like immuno-
reactivity has been shown for the A3 feedback neurons (Schäfer 
and Bicker, 1986; Grünewald, 1999). These neurons also innervate 
the mushroom body lobes and peduncle and may provide local 
inhibitory input to the Pe1 neuron (Figure 4B, green label). In 
Figure 4D the distribution of putative inhibitory input synapses 
onto the Pe1 dendritic tree is highlighted by red dots, indicating a 
distance of GABA-like immunoreactivity profiles of up to about 
300 nm (Okada et al., 2007).

Figure 3 | Visualization of the neural architecture of the midbrain from two 
different preparations using landmark and label field registration techniques. 
(A) The L5 projection neuron (in blue) of the median antenno-cerebralis tract 
(m-ACT) connects the antennal lobe with the mushroom body calyx (MC, LC) and 
lateral horn (LH), L5 axon (black arrow). (B) The m-ACT can be identified in a cross 

section as the ascending and descending protocerebral part (m-ACT, black arrows). 
The spatial locations of the two registrations demonstrate the spatial accuracy of 
fitting neuronal data into the HSB. (C) The histological ethyl gallate section is 
located at around 300 μm from the calycal surface (horizontal plane). Scale: 
200 μm, CB: central body, MB: mushroom body, PL: protocerebral lobe.
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The SSM-based segmentation algorithm, as described in the 
section “Methods”, was applied until no further improvement could 
be achieved, meaning that the change of the shape between con-
secutive iterations fell under a defined threshold. The displacement 
vectors were computed via analyzing 1D profiles of image intensi-
ties along surface normals at each vertex (Figure 5D). Based on 
these displacements the SSM was iteratively adapted (see Figures 
5C,D and the movie in section “Automatic segmentation” of sup-
plementary material). The process of initial positioning and the 
adjustment of the model in an exemplary training dataset image 
(LY12) are shown in Figure 6.

Application of the segmentation algorithm on the training set 
images results in an average surface distance of 4.06 ± 0.95 μm of the 
fitted model to the manual segmented shapes. A leave-one-out test 
simulating new image data yields to a distance of 8.82 ± 1.02 μm. 
In comparison, two manual segmentations of the same imaging 
data lead to a mean surface distance of 4.79 μm.

The SSM and displacement algorithm was also tested with confo-
cal data not contained in the training set that was used for creation 
of the shape model. We used extracted parts of the SSM in com-
bination with the displacement model in order to automatically 
segment the mushroom body neuropil in high-resolution confocal 
scans (Figure 7A). Figure 7B shows the results for a single section 
using either the whole mushroom body calyces (red intersects) or the 
calyces (yellow intersects) to auto-segment the structures. Slightly 
better results were achieved using the reduced model of the calyx 
(arrows in Figure 7B). Figures 7C,D shows manually segmented 
neuropil borders in comparison to the automatic segmentation. 
Figure 8 provides a direct comparison of the HSB and SSM. The 
mean surface distance between HSB and SSM amounts to 8.5 μm. 
Particularly large distances were found at the median calyx (MC) 
and subesophageal ganglion (SOG), possibly indicating stronger 
shrinkage dependencies induced by the different histological pro-
cedures. It takes an experienced segmentor around 8 h to manually 
segment those central brain structures used for the SSM.

In contrast, a further evaluation of the quality of automatic seg-
mented bee brains and the estimated post-processing times amounts 
currently to approximately 3–4 h by an experienced segmenter.

HierarcHical structure labeling and browsing
The HSB created so far contains only geometric and topological 
information about neurons and neuropils. For many applications, 
semantic information also needs to be integrated. This semantic 
information includes information about the hierarchical organiza-
tion of brain structures and information about relations between 
structures. An example would be the description of the anatomical 
proximity of neuron A and neuron B and the possible communica-
tion between them. Often neurobiologists have this knowledge, but 
the information needs to be made explicit.

In recent years, the development of ontologies has been an appro-
priate choice for capturing and representing semantic information 
in many fields, including biology. In the information sciences, an 
ontology is a formal representation of concepts or structures and 
relations among those structures in a defined application domain. 
Visually, ontologies can be described as graphs in which structures 
are represented by nodes and relationships between structures by 
edges. In ontology modeling, there are two different types of nodes: 

the  geometrical center as a reference point, and then transferred 
to a common coordinate system. In order to map the surfaces of 
the training shape in a proper way, certain conditions are required 
for creating the surfaces (for details see Lienhard, 2008). In order 
to achieve a correct model of a biological structure, one needs to 
find the corresponding anatomical points on all training shapes. 
To determine correspondences, surfaces were divided into 89 
regions according to shape features and anatomical landmarks 
(Figure 5A). A principal component analysis provided a linear 
model of the shape variability of the training set (Figure 5B, see 
also the Movie in section “The statistical shape model” of sup-
plementary material).

In order to place the SSM of the central bee brain roughly into 
the confocal images an affine registration was used applying a non-
deformable model that contained only brain regions that represent 
borders to exterior structures. A positioning algorithm recomputed 
rotation, scaling, and translation parameters using characteristic 
image features of brain tissues. In order to reduce noise in the low-
contrast Lucifer yellow stain a non-linear isotropic filter was applied 
to the data (Weickert, 1997; Lamecker et al., 2004).

Figure 4 | (A) The Pe1 neuron fitted into the HSB (skeleton view). Different 
parts of the neuron are colored according to their innervation of subneuropils 
in the central bee brain. (B) GABA-IR in the bee brain. Double labeling of 
GABA-IR-like (green) and synapsin staining (synorf1, red). The optical section 
cuts the mushroom body at the transition zone between the α-lobe and 
peduncle (pe), lh: lateral horn of the protocerebral lobe. (C) A histological 
section of the central bee brain stained with ethyl gallate reveals the neural 
architecture of the mushroom bodies at the transition from the α-lobe to the 
peduncle. The large axon diameter of the Pe1 is identified as a single unique 
neuron. A7: type 7 α-lobe extrinsic neuron, K2: strand of Kenyon cells type 2, 
PE: peduncle. (D) The finger-like dendritic protrusions of an intracellularly 
marked and reconstructed PE1 neuron branch all over the cross section of the 
mushroom body at the border line between the β-lobe and the peduncle. 
These branches are organized in two regions (the proximal domain 1 and the 
distal domain 2) where the Pe1 is postsynaptic. Red dots indicate close 
appositions of GABA-IR profiles (arrows), which are more numerous in domain 
1. Scale bars: (A) 200 μm.
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classes and instances. Classes describe common concepts, such as 
brain. An instance of such a class could be, for example, the brain 
of animal A. Relations appear among classes, among instances, and 
among classes and instances. Relations can have different types, as 
for example the type isA. With these basic tools we can create the 
statement brain of animal A isA brain.

To support the understanding and analysis of structural and 
functional characteristics of brain structures, ontologies need to 
fulfill several requirements. An ideal brain ontology would include 
a complete set of structural parts and neuron types. It would also 
contain axonal projections between regions and neuron types, and 
it would include morphological, connectional, and functional prop-
erties of these particular neurons. According to Bota and Swanson 
(2008), an ideal ontology would be species specific. These authors 
also state that the development of such an ontology is a long-term 
goal for a community project. Indeed, we consider our attempts 
as an early step only.

Our ontology uses predefined classes of the foundational model 
of anatomy (FMA) (Rosse and Mejino, 2003). The most important 
of these are Cell, Cell_Part, Organ, and Organ_Part where Cell and 

Figure 5 | (A) The surface of the statistical shape model (SSM) of the central 
honeybee brain (with exception of the antennal and optic lobes) derived from 16 
segmented worker bee brains. The calyx regions of the mushroom bodies are 
not subdivided. (B) Patch decomposition: in order to find correspondence among 
the set of training data the surface of each segmented brain is subdivided into 89 
patches (colored regions). (C) Position of the displacement of the bee brain 
model in the imaging data. Displacement vectors are shown as yellow arrows, 

blue color indicates the displacement vectors point outwards, red means they 
point inwards. The white arrow indicates one orthogonal slice of the 3D confocal 
image stack to which the model adapts. (D) A protocerebral region close to the 
esophagus is shown to demonstrate matching of the SSM (in transparency) to 
the corresponding gray-value confocal image. The red line marks the intensity 
profile (length 100 μm) along the vertex normals (adapted from Lienhard, 2008; 
Singer, 2008) for (A): see also S4 movie in supplementary material.

Table 1 |  The most important relations used in our bee brain ontology 

to describe spatial, morphological and, connectional properties.

relation inverse relation Description

hasPart isPart Model hierarchical 

  organization of 

  brain structures.

isInstanceOf – Models class 

  membership.

adjacentTo – Models spatial 

  adjacency.

hasSomaLocation isSomaLocation Model locations 

  of neuron

hasAxonTerminals isAxonTerminals parts soma, axon, 

Location Locations and their

hasAxonPrimary isAxonPrimary terminals, and 

Location Location dendrites.

hasDendritesLocation isDendritesLocation 

hasTract isTract Assign tracts.
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selection, the algorithm then looks within the ontology for other 
structures in the vicinity of the selection that may be of interest for 
the desired visualization. Only structures connected via a relation 
type relevant to the query are of interest.

dIscussIon
The motivation for creating a digital atlas of the bee brain origi-
nated from the experience that a large amount of information is 
lost when single, intracellularly marked neurons are drawn on 
paper traced in camera lucida projections or just photographed. 
Neurons are three-dimensional entities embedded in a network 
of other neurons, and it is this information that is required in the 
future to interpret functional properties of neurons and neural 
networks in relation to their structure and connectivity (Abel et al., 
2001; Müller et al., 2002; Krofczik et al., 2008). Insect brains are 
small enough to be scanned fully with confocal microscopy at a 
reasonable resolution. Therefore, no border problem appears, or 
at least it is reduced to the spatially limited connections with the 
ventral chord. Furthermore, many neurons in the insect brain are 
individually identifiable, and quite a number of them have already 
been identified (e.g. Hammer, 1993; Mauelshagen, 1993; Menzel, 
2001; Heinze and Homberg, 2008; Homberg, 2008; see also this 
issue). Often neural tracts or compositions of local neurons consist 
of a few hundred neurons allowing for the possibility that in the 
not too distant future all neurons of a particular neuropil or part 
of the brain will be described in their morphology. In that case one 
would need this “description” in a digital 3D format so that the full 
power of mass data computation can be applied to visualize zoom 

Cell_Part only consider neurons and Organ and Organ_Part only 
consider neuropils of the bee brain. We further restrict our relations 
to describe spatial, morphological and, if available, connectional 
properties. Table 1 lists the most important relations used in our bee 
brain ontology. Figure 9 shows a scheme of how classes, instances 
and relations are connected using the Pe1 neuron as an example 
(see also Figures 2 and 4). The editor Protégé was used to create the 
ontology. Currently, the ontology contains 100 classes attached to 
600 instances, and 1300 relations of 17 types. Integrated are several 
neuron types including the location representation of their somata, 
axons, and dendrites. This ontology has been linked to the recon-
structions of the HSB by assigning the reconstructions’ ID and file 
name to appropriate instances of the ontology. This step enables 
ontology-based browsing of the atlas (Kuß et al., 2008, 2009).

In a first usage approach of the ontology-linked HSB, we 
addressed the automatic creation of meaningful visualizations. 
Good visualizations transport a large amount of information and 
form an important communication medium. This information can 
be used to present research results, to communicate with research 
partners or to teach neurobiology. Often the process of creating 
such meaningful and expressive visualizations is time-consuming 
and requires sound knowledge of the visualization software used. 
In our approach, the user only selects a structure to be visualized 
and a predefined query, such as “Show overview”. Then, an algo-
rithm automatically creates a visualization that contains the selected 
structure highlighted as a focus object and further structures form-
ing the context. This works as follows: Each predefined query owns 
a set of relation types considered to be relevant. Starting at the 

Figure 6 | evaluation of the statistical shape model (SSM) and the 
displacement algorithm. The auto-segmentation process illustrated by a 
leave-all-in segmentation of preparation LY-12 (Lucifer yellow background 
stain) with the SSM. (A) Initial position of the average shape of the lateral 
mushroom body. (B, C) Result of the initial global positioning of a simplified 

SSM (which consists of just one individual surface). (D–F) Result of the 
optimization of the position and shape parameters in red. The result of the 
original manual segmentation is shown in blue. The result of the automatic 
segmentation process using a leave-one-out test is shown in green. (From 
Singer, 2008). See also S5 movie in supplementary material.
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from creating the brain atlas and filling it with useful information 
is limited to understanding the spatial  relationship. But this will 
soon change, because the information stored in the framework 
of the atlas will allow us to pose new questions, to discover novel 
patterns of neural connections, to assemble and organize large 
amounts of information, and to relate function to structure as 
proposed by us as well as other authors (e.g. Namiki and Kanzaki, 
2008; Staudacher et al., 2009).

We began our project by creating an average atlas from 20 bee 
brains whose 22 neuropils were segmented manually and then 
used for the averaging process. The composition of these neuropils 
made it possible to calculate rigid and elastic transformations that 
provided enough information for faithful registration of neurons. 
The average-shape property ensures that the deformation applied 

determine potential connectivity patterns, to derive quantitative 
measures of distances, diameters, branching patterns, potential 
synaptic sites, and relate structures to functional components such 
as distribution of transmitters, receptors, channels, and intracel-
lular molecules. At the moment we are far from getting even close 
to these goals, but important groundwork has been done, and one 
can hope that the time- consuming (and tedious) steps towards 
reaching these goals, such as manual segmentation, correction 
of errors, complicated procedures during registration, neuron 
tracing, (see Maye et al., 2006) will soon be overcome or become 
less cumbersome (for an review on automated registration and 
neuron tracing methods, see Peng, 2008). Apart from the aesthetic 
pleasure one experiences in visualizing single neurons and their 
compositions within the 3D atlas, right now the reward gained 

Figure 7 | evaluation of the auto-segmentation process using a  
reduced shape model for confocal imaging data. (A) Confocal Lucifer  
yellow image of the median and left brain hemisphere scanned with a 20× oil 
objective. (B) Result of the automatic segmentation process. Arrows indicate 
refinement of automatic segmentation using isolated neuropils: yellow lines 
when only the calyx was used, red line when the whole mushroom bodies  

were used. (C, D) Surface representations of shape differences between 
manually (transparent) and automatically segmented (solid) labels. The  
mean surface distance of the manually segmented and the automatically 
segmented surface is 11 μm using the mushroom body model of the SSM  
as compared to 10.5 μm using the calyx model. Scale bar in (C): surface  
distance in μm.



Frontiers in Systems Neuroscience www.frontiersin.org July 2010 | Volume 4 | Article 30 | 11

Rybak et al. Honeybee standard brain

inaccuracies are due to surface reconstruction (smoothing) from 
segmented label fields, and to cropping of areas of interest. For the 
latter the edges of cut regions are not well defined for the individual 
brain and the standard reference and are therefore difficult to oper-
ate for the registration algorithm (Maye et al., 2006).

The question of whether two close neurons are potentially in 
synaptic contact is much more difficult to answer and may well be 
beyond the scope of the registration process. Double markings in 
the same brain combined with electron microscopy will also be 
necessary in the future to prove such contacts, but the registration 
process already provides conclusive evidence that will either pro-
vide the motivation to start such a demanding project or forsake 
it altogether (e.g., Hohensee et al., 2008; Meseke et al., 2009). We 
provided one example to document that registered neurons are 
so precisely embedded in the histology of high-resolution light 
microscopy cross sections (Figure 3) that one may well conclude 
that their location relative to surrounding neurons is down to the 
precision of a few microns. In a similar approach single-cell labeling 
was used in combination with non-rigid registration techniques to 
estimate the synaptic density and spatial relationship of Drosophila 
olfactory interneurons (projection neurons) in central brain areas 
(Jefferis, 2007). Using intensity-based image registration for aver-
aging the brains, they estimated the accuracy of registration up 
to a few microns. Greater accuracy might not be possible because 
the protocols always depend on neurons from different brains, 
and the variance of neuron Gestalt from brain to brain will limit 
the resolution.

A general problem with neuron reconstructions relates to the 
fact that high-resolution imaging microscopy requires lenses whose 
working distance is often not large enough to cover the whole den-
dritic tree of the respective neuron, whereas low resolution images 
are necessary to connect parts of the same neuron or different 
neurons. Physical sections, e.g., vibrotome offer a solution to this 
problem, but consecutive sections need to be aligned such that the 
neuron can be fully reconstructed and registered into the atlas (el 
Jundi et al., 2009, 2010).

So far we have registered 50 neurons into the HSB, a small pro-
portion indeed of the approximately 950000 neurons of the bee 
brain (Witthöft, 1967). However, even this small number calls for 
more sophisticated means of visualization, selection of combina-
tions of neurons and ways of highlighting particular properties of 
the network arising from these neurons (potential contacts, esti-
mated information flow, combination with data from, for example, 
immunocytochemistry and electron microscopy, electrophysiology, 
and Ca-imaging).

the statIstIcal shape atlas
An atlas derived from an averaging process (as the HSB, Figure 1) 
contains a large amount of information about spatial relations 
of structures. It is highly suggestive to use this information for 
one of the most time-consuming, difficult and tedious steps, 
the segmentation process of the structures (neuropils) neces-
sary for the registration of any individual brain. We took up 
this argument and implemented a procedure, a model-based 
 auto-segmentation, originally developed for the analysis of 
shape variability and modeling of structures in medical imag-
ing (Lamecker, 2008). This method was adapted and applied to 

to the individuals remains small. Furthermore, manual segmen-
tation as applied in our first approach is subject to noise, i.e., 
contouring between slices varies according to criterion  variability 
of the experimenter. Averaging several such noisy label images 
reduces random parts of the contours, thus increasing the reliabil-
ity of the standard. We have shown (Rohlfing et al., 2001; Brandt 
et al., 2005) that the non-rigid registration is able to increase the 
distinctness of inner structures such as tracts and strata even 
though the algorithm does not “know” about those structures, 
because it is applied on the label images without interior struc-
tures. We deduced from our observations that registration fidelity 
is sufficient for the spatial scale level of the standard brain. This 
result also makes us optimistic that a non-rigid registration of 
neuropil boundaries to the standard yields a reliable and rea-
sonably accurate estimate of the “true” position of a co-stained 
neuron within the standard.

As pointed out above, it is not easy to evaluate how accurate the 
registrations of neurons are using the average neuropil borders as 
guiding posts. When a neuron runs close to the border of a neuropil 
used for registration a small deviation from its relative position 
becomes very important, that is the neuron lies either inside or 
outside the particular neuropil. We have observed these inaccura-
cies, and they can be corrected by repeating the segmentation and 
registration processes (see section “Registration protocol” of sup-
plementary material). Preparation artifacts due to dissecting of the 
specimen and histological processing can lead to distortion effects 
that are only partly corrected by the registration algorithm. Further 

Figure 8 | A comparison of the iterative average shape brain (HSB) and 
the statistical shape model (SSM). The mean surface distance measured 
after rigid registration of HSB onto the SSM amounts to 8.5 μm. Only the 
surface model of the HSB is shown here, and the surface distances between 
HSB and SSM are indicated by colored vectors (arrow and false-color scale 
bar). Note the particularly large distance at the median calyx (MC) and 
subesophageal ganglion (SOG), which might be due to the stronger shrinkage 
process caused by the different histological procedures employed for the two 
models (see section “Methods” and text).
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Figure 9 | Schematic description of bee brain ontology (with the Pe1 
neuron as an example). Orange circles symbolize classes which represent 
summarizing concepts of structures with similar properties. Green rounded 

squares symbolize instances of classes which are connected by green edges 
(relations) to each other. Gray structures indicate that only a small selection 
is presented.

the central bee brain to generate a SSM (Figure 5) that reflects 
the shape variability of a restricted set of 16 bee brains. In com-
bination with a displacement model (Kainmüller et al., 2007, 
2009; Lamecker, 2008), based on evaluation of intensity gradients 
within the confocal images, the SSM allows automatic neuropil 
segmentation (Figures 5–7). Our approach was combined with 
alterations in the histological procedure. Lucifer yellow was used 
instead of synaptic antibodies as a neuropil background stain. 
Furthermore, only a selected part of the brain was used (the 
central brain excluding the antennal lobes). Lucifer yellow treat-
ment during the histological procedure provides us with the same 
information as the antibody, but is faster and the results in more 
homogenously stained neuropils. The focus on the central brain 
allowed us to test the power of the approach for the most impor-
tant and most complex structures of the bee brain, the mushroom 
bodies (Figures 4 and 7). An automatic procedure for segment-
ing neuropils provides the following additional advantages: (1). 
A priori knowledge about the 3D shape of the objects in question, 
in our case, the bee brain with its characteristic features of the 
image data. (2). Measures about the variability of the object set, 
and thus provides us with information which can be used to 
analyze and quantify any changes induced during development 
or on the basis of different genetic backgrounds (as described 
by Kurylas et al.,, 2008; el Jundi et al., 2010 for the VIB). (3). 
Information useful for across-species investigations in order to 
analyze evolutionary changes by comparative analysis of brain 
structures at least in closely related groups (e.g., hymenoptera, 
Gronenberg, 2001; beewolf, Rybak et al., 2003).

We found that SSM can well be used to detect neuropil bor-
ders in these preparations. Nevertheless there are deviations in 
the automatic segmentation process (see Figure 7). An  analysis 
of the post-processing time by a segmentation expert shows 
that one still saves considerable time and gains accuracy (Rybak, 
personal observation).

A quantitative comparison of HSB and SSM (Figure 8) reveals 
that the volume of the HSB is smaller relative to the SSM. Stronger 
shrinkage of the HSB might be due to the prolonged incubation 
time required for the synaptic antibody procedure (1 week). 
Nevertheless, since shape differences in segmented brains by either 
the synaptic antibodies or the Lucifer yellow method seem to be 
small, it is reasonable to take segmented data used for the HSB and 
include it into the enlarged model of the SSM. Moreover, all imaging 
data used for the HSB were segmented by experts, thus providing 
very reliable definitions of the neuropil boundaries, and the quality 
of the SSM will be enhanced by adding the HSB dataset, since shape 
variability represented by the enlarged SSM will capture a higher 
number of histological procedures used for insect preparations (i.e., 
fixation, incubation of antibodies, use of fluorescent dyes).

One disadvantage of the current HSB is that it is closed to 
improvements and adaptations, which will certainly result from 
more appropriate histological procedures such as the shift from 
antibody staining of neuropil borders to easy-to-use fluorescent 
dyes. Working with the SSM will allow us to create a novel form 
of HSB that grows with each brain, and which adapts stepwise 
any morphological changes with histological procedures. Thus, 
enlarging the set of brains included in the SSM by already seg-
mented brains used for the HSB and by developing more elaborated 
displacement algorithms based on intensity profile analysis will 
allow us to create such a new atlas based on many more brains, 
particularly in the context of different experiments (electrophysiol-
ogy, immunocytochemistry, etc). Additionally, combining a shape 
atlas with proper registration techniques will allow us to use such 
an atlas, initially created to replace manual segmentation (for the 
label field registration of neurons). Once the deformation field 
that fits the SSM model to a confocal image is calculated it can be 
used to integrate the neuron into the average-shape atlas. Such an 
approach can forego and eventually replace the label field registra-
tion as in the current HSB.
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http://life.bio.sunysb.edu/morph/glossary/gloss1.html.
http://life.bio.sunysb.edu/morph/glossary/gloss2.html.

Supplementary material
The Supplementary Material for this article can be found online 
at http://www.frontiersin.org/systemsneuroscience/paper/10.3389/
fnsys.2010.00030/

Supplement 1: ColorwaSh hSB movies in wmv format
These movies show confocal images of the honeybee brain in fron-
tal, horizontal and sagittal directions. Neuropils were stained with 
synaptic antibodies. The colored label fields of brain neuropils as 
defined for the Honey Bee Standard Brain (HSB, Brandt et al., 
2005) are superimposed. Note that some neuropil areas that are not 
defined in the HSB are labeled. Abbreviations: AL: antennal lobe, 
a: alpha-lobe, b: beta-lobe, CB: central body, li: lip, co: collar, br: 
basal ring, Me: medulla, Lo: lobula, PL: protocerebral lobe, SOG: 
subesophageal ganglion. MC: median calyx, LC: lateral calyx. ot: 
optic tubercle,, pb: protocerebral bridge, DL: dorsal lobe, lac: lateral 
accessory lobe, pe: peduncle, lh: lateral horn.

Supplement 2 pdf
Registration Protocol that describes the incorporation of neuronal 
morphologies into the Honeybee Standard brain (HSB).

Supplement 3 movies in mpg format
a The spatial relationship of olfactory L3 neuron (blue), mecha-

nosensory (DL and 2: green and red, respectively) and central 
interneuron Pe1 (yellow) after transformation to the Honeybee 
Standard Brain (HSB). 

b the same movie in stereo mode

Supplement 4 movie in wmv format
The Statistical Shape Model: Visualization of the central brain 
and morphological variations of the mushroom bodies and pro-
tocerebral neuropils (for more details: see text and Lienhard, 
2008).

Supplement 5 movie in wmv format
Displacement model: Positioning and Displacement of the central 
brain model in the image data. Reddish-white flickering indicates 
the deformation of the model during the adjustment of the SSM 
to the image data.
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note
An Interactive three-dimensional view of the Honeybee Standard 
Brain and integrated neurons for Figures 1,2A and 4A can be found 
in the 3D PDF file in the supplementary section. In order to utilises the 
3D tools requires viewing with Adobe Acrobat Reader 8.0 or greater.

gloSSary
Labelfield There are two ways to represent segmentations of images: 
either boundaries are added to an image that enclose sets of pixels 
that are considered to belong together, or to pixels/voxels a label (a 
specific ID) is assigned that represents a particular object. In Amira 
the label field representation is used.
Ontology In the information sciences, an ontology is a formal rep-
resentation of concepts or structures and relations among those 
structures in a defined application domain. They represent semantic 
information using a controlled vocabulary. Visually, ontologies can 
be described as graphs in which structures are presented by nodes 
and relationships between structures are represented by edges.
Registration The process of computing a coordinate transforma-
tion that maps the coordinates of one image onto the anatomically 
equivalent point in another image.
Segmentation Classification of regions (intensity values) within 
the image data and partition of homogenous regions. The use of a 
single threshold means binarization of the image, i.e., separation 
of background and structure of interest. Segmentation may sepa-
rate many structures within the image (connected components or 
segments of the image).
Transformation Mathematical operation that moves, rotates, 
scales, and/or even deforms an object in such a way, that it will be 
aligned to another similar one.
Warping Reformatting of an image under a deformation given by 
a non-rigid coordinate transformation. This is also known as also 
elastic or free-form deformation.
Glossary on the Internet: http://en.wikipedia.org/wiki/ Image_ 
registration.
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