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the underlying connectivity of the brain (Smith et al., 2009). There 
have been a number of model-free methods suggested for this type 
of fMRI data analysis, where we distinguish between three different 
classes of methods below.

First, independent component analysis (ICA) is commonly 
used in fMRI data analysis and it assumes a predefined number 
of components of the activity patterns to be linearly statistically 
independent (McKeown et al., 1998). Also, to cope with the compu-
tational complexity the dimensionality of the input data is typically 
reduced by PCA (Beckmann et al., 2005). Second, in various partial 
correlation whole-brain analysis methods and seed voxel-based 
methods (Salvador et al., 2005), a number of areas of the brain are 
specified and correlations between these are calculated. Clustering 
can then be performed on the correlation relations between these 
small numbers of areas. Third, in clustering techniques, a prede-
fined number of clusters are adapted to the data according to some 
statistical distance metric (Chuang et al., 1999), either directly on 
the input data (Golland et al., 2008) or on the frequency spectra 
(Mezer et al., 2009).

The method presented here uses a general statistical dependency 
measure, mutual information, to create distance relations between 
voxels. Contrary to a covariance measure it also takes higher-order 
statistics into account, which is important in certain applications 

IntroductIon
Conventional methodology of fMRI analysis has favored  model-based 
approaches, where the fMRI signal is correlated with an estimated 
functional response model or where a statistical comparison between 
the control and activated states is performed (Chuang et al., 1999). 
The prime example is the general linear model used in the popu-
lar software packages SPM (Friston et al., 1995) and FSL (Smith 
et al., 2004). The construction and parametric fitting of a model 
inevitably involves limitations stemming from the adopted assump-
tions. Consequently, the analysis and its outcomes are restricted with 
respect to feasible experimental conditions and the complexity of the 
estimated response signals (Chuang et al., 1999).

On the other hand, the model-free approach provides scope 
for unsupervised, purely data-driven, and bias-free ways of inves-
tigating neuroimaging data. Its potential lies in the concept of 
exploratory multivariate search for specific signal features without 
imposing rigid limitations on their spatio-temporal form. Thus, 
since no assumed model of functional response is needed, more 
complex experimental paradigms and non-standard fMRI activa-
tion patterns can be studied.

One such non-standard fMRI experiment is the study of so-
called resting-state networks. These originate from the fluctuations 
in brain activity when the subject is at rest and are thought to reflect 
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(Hinrichs et al., 2006). Using multidimensional scaling (MDS), the 
voxels can be put in a lower-dimensional space, with their posi-
tions based on the distance relations. Clustering in this space can 
find the strong statistical regularities in the data. As seen in Section 
“Results”, on resting-state data this will turn out to be the resting-
state networks.

We do not assume a predefined number of clusters, or compo-
nents. Similarly to the partial correlation methods, the clustering 
is performed after the statistics have been calculated. But instead of 
reducing the computational complexity by specifying a number of 
areas and thus decreasing the dimensions to perform the correla-
tion analysis over, the whole-brain analysis is over all input voxels. 
This is similar to approaches where graphs are constructed from 
region of interest (ROI)-activities (Salvador et al., 2007). But where 
these are typically built up from a small number of regions, in our 
case each voxel is one region. A reduction of the data dimension is 
done by the MDS step after all statistical dependencies have been 
calculated; when the data clearly shows what statistical relations 
are strong. The resulting reduced matrix allows for rapid decom-
position and exploration of the statistics of the dataset on multiple 
spatial scales.

The computational demands from using all voxels are coped 
with by a parallel implementation, which allows us to handle large 
data sizes and datasets. The parallelization of a run on a database, 
e.g., a collection of datasets, can be viewed on two different lev-
els. Firstly, all parts of the algorithm have been parallelized. In 
this way, to handle a dataset with greater resolution or more time 
steps will only need more memory and compute power, such as a 
larger computer cluster. No additional changes to the underlying 
algorithm are needed. Secondly, the statistics for each individual 
dataset in a database can be run independently and then combined 
with other datasets via the generated distance matrices. Depending 
on the data source and what we are interested in, we may com-
bine them in different ways. Since we for multiple datasets are 

 combining the relations between the voxels, the individual datasets 
can come from different data sources, such as different studies or 
even different domains. This is contrary to methods that work on 
the absolute values.

In this paper, the proposed method is evaluated on a previously 
published functional MRI dataset acquired during rest in 10 sub-
jects (Fransson, 2006). A large number of decompositions are cre-
ated; one is selected, visualized, and compared to other resting-state 
studies. We show how the method also finds other dependencies in 
the data and how it can be applied to study hierarchical topology 
of resting-state networks in the human brain.

Method
AlgorIthM
We start by giving a step-by-step account for the mutual- information 
based clustering algorithm on fMRI data, illustrated in Figure 1. The 
distances between all voxels according to a distance measure deter-
mined by the mutual information is calculated from the input data. 
Multidimensional scaling is used to create a map from the distances, 
reflecting how different voxels are related in a mutual information-
determined space. Clusters in this space correspond to high statisti-
cal regularities. To derive the positions of all voxels in this space is a 
computationally expensive operation, while the exploration of the 
structure of the space is computationally inexpensive. This opens 
up for rapid visualization of the statistics on different spatial scales. 
For multiple datasets from different subjects or/and from different 
domains, the distance matrices can be combined.

Distance matrix
Mutual information is used as a general dependence measure 
between input voxels i and j,

I p
p

p pij kl
l jk i

kl

k l

=
∈∈
∑∑ log . (1)

Figure 1 | illustration of the algorithm for one dataset. In this study (Section “Results”), the total number of voxels in each timestep N = 121247 and M was set 
to 50. The distance matrices from 10 different datasets are combined using an average operation.
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 convergence: The difference in a Euclidean distance measure 
between a pair of voxels in the distance matrix and in their cor-
responding lower-dimensional space, the stress, was used as a 
target function to minimize.

Figure 3 shows the average stress for all voxel pairs after conver-
gence for different selections of dimensions for the 60-bin distance 
matrix from one subject in the previous subsection. A low number 
of dimensions may have difficulties maintaining the distances in the 
new space, resulting in a high final stress. If a high enough dimen-
sionality is selected little is gained by adding an additional dimen-
sion, seen by the low decrease in stress after 20 dimensions.

Clustering
The voxel positions in the M-dimensional space created from mul-
tidimensional scaling reflects the statistical regularities as described 
by the mutual information. Clustering in this space will join the 
voxels showing strong statistical dependency as they will have a 
short distance. We built a parallel implementation of the vector 

The values of the voxels are discretized by an interval code. The 
binning used for the interval code can be determined from a vec-
tor quantization run using the values of the dataset (as in Section 
“Clustering”). This will result in intervals adapted to the data, with 
more intervals where the distribution of values is dense and fewer 
where it is sparse.

The probabilities of certain values for a single voxel are 
estimated from the V image volumes as p Yk v

V
k
V= ∑ =1 1/P  and 

p P Y Ykl v
V

k
V

l
V= ∑ =1 1/ . Y k

V  is set as a binary value in the interval k, 
but it could also have a continuous distribution. For value u

i
 of voxel 

i and value u
j
 of voxel j, p

k
 is the probability of u

i
 in the interval k, 

p
l
 is the probability of u

j 
in the interval l and p

kl
 is the probability 

of u
i
 in interval k and u

j
 in the interval l.

A distance measure in [0,1] is created from the mutual informa-
tion (Kraskov and Grassberger, 2009) as

D I Jij ij ij= −1 / , where the joint entropy is used, 
J p pij k i l j kl kl= − ∑ ∑∈ ∈ log .

The number of bins selected will have an effect on the resolution 
of the final result as visualized in Figure 2. A representative part of 
the distance matrix is shown for four different chosen numbers of 
intervals for the first subject in the dataset described in the Section 
“Experimental”. The values have been thresholded at a distance of 
0.9. A lower number of intervals will result in lower resolution of 
the distance matrix. The voxels with the strongest relations will still 
maintain a low distance between each other. A risk in using many 
bins is that the probabilities in the mutual information calculation 
are not calculated correctly because the sample size is small. The 
adaptive bin sizes used should handle this to some degree since it 
will result in few bins where the sample size is small.

Multidimensional scaling
The high-dimensional space given by the mutual information 
over all voxel values is reduced using metric multidimensional 
scaling (Young, 1985), where the statistical distance relations 
between the voxels from the distance matrix are used to build 
up a new, and lower-dimensional space still preserving the dis-
tance relations. Here, each voxel is represented by a point, ini-
tialized at a random position, and the optimization procedure 
aims to find a suitable set of positions by iteratively adjusting 
according to the distance relations by gradient descent until 

Figure 2 | A region of a distance matrix where 30, 40, 50, and 60 discretization intervals, or bins, in the mutual information calculation have been used. 
The number of bins changes the resolution of the result. A small number of bins still allow the strong relations to be captured.

Figure 3 | The average stress for different number of dimensions. Here a 
selected dimensionality over 20 will only give small differences in how well 
the voxels in the created space are positioned.
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with a FWHM = 12 mm. As a final pre-processing step, a rough 
cropping of the data was performed, for which the non-brain voxels 
were excluded from further analysis, removing 21% of the data and 
resulting in a total of 121247 brain voxels.

Mr dAtA AnAlysIs
For each of the 10 resting-state fMRI datasets the original voxel val-
ues were interval coded using vector quantization into 60 intervals 
based on the 1/3 first time steps. Separate distance matrices were 
calculated for all of the 10 subjects and combined by an average 
operation, where the mean was taken for each matrix element over 
all distance matrices. This resulted in a combined distance matrix 
of dimensions 121247 × 121247. Multidimensional scaling used the 
distance matrix to create a lower-dimensional map reflecting the 
statistical relations. In accordance with the discussion in Section 
“Multidimensional scaling” and Figure 3, the map dimension was 
set to a number that would clearly be able to maintain the distances 
in the new space, 50. This gave a total matrix size of 12147 × 50. The 
clustering algorithm was used to create all possible decompositions 
between 5 and 115 components. The distance determining which 
voxels should belong to a group when visualizing the results was 
specified by a threshold parameter set to 0.4. A voxel can belong 
to multiple components given the high-dimensional space. For 
instance, in some dimensions it could be close to one cluster and 
in others another.

results
Figure 4 shows the main results from applying the mutual-
 information based algorithm to the 10 resting-state fMRI datasets 
for 60 components. Apart from components that showed a very 
strong spatial resemblance to the patterns typically caused by car-
dio/respiratory pulsations, susceptibility-movement related effects, 
subject movements as well as components that were mainly located 
in cerebro-spinal fluid and white matter areas, 12 components 
showed connectivity patterns that were located in gray matter. 
Figures 4A,B show the resting-state networks typically associated 
with the left and right dorso-lateral parietal-frontal attention net-
work, respectively. Further, Figure 4C shows a bilateral connectiv-
ity pattern that encloses the left and right auditory cortex whereas 
Figure 4D shows a resting-state network that includes the medial 
and lateral aspects of the sensorimotor cortex. The precuneus/pos-
terior cingulate cortex together with the lateral parietal cortex and 
a small portion of the medial prefrontal cortex is included in the 
network shown in Figure 4E. The most anterior part of the medial 
prefrontal cortex is depicted in Figure 4F. The occipital cortex is 
by the algorithm divided into three sub-networks that encom-
passes the anterior/inferior (Figure 4G), posterior (Figure 4H) 
as well the primary visual cortex (Figure 4K). Figure 4I shows a 
network that includes the precuneus/posterior cingulate cortex, 
lateral parietal cortex as well as the medial prefrontal cortex. The 
network depicted in Figure 4J involves the bilateral temporal pole/
insula region. Finally, the cerebellum was included in the network 
shown in Figure 4L.

networks And sub-networks
The distortion derived from the clustering algorithm can be 
used as a measure of how well various decompositions into 
resting-state networks suit the data. Figure 5A shows the mean 

quantization technique competitive selective learning (CSL) (Ueda 
and Nakano, 1994) both for the clustering into cluster components 
reflecting the strong statistical regularities and the interval cod-
ing division mentioned previously. However, any other clustering 
algorithm could have been used.

In the same way as traditional competitive learning, CSL uses 
voxel position x

i
 to update the position of the closest, by a Euclidean 

measure, cluster center y by

y y x yi= + −ε( ).  (2)

Here, ε determines the amount of change for the cluster center posi-
tion in each iteration, and is typically gradually decreased during 
the training phase. In addition, CSL reinitializes cluster centers in 
order to avoid local minima using a selection mechanism according 
to the equidistortion principle (Ueda and Nakano, 1994).

The distortion measure gives an estimate of how well the cluster 
centers describe the original data. Using Euclidean distances, the 
distortion from one cluster center can be defined over all data points 
belonging to cluster center m as

D x ym v
v m

= −
∈
∑|| || .  (3)

A measure of the average distortion over all C cluster centers in the 
M-dimensional space, D M Dm

C
m= ∑ =1 1/  (Ueda and Nakano, 1994), 

can be used to describe how suitable a given number of clusters are 
for the data distribution, as seen in the Section “Results”.

IntegrAtIng MultIple dAtAsets
The distance matrix is independent from the value distribution of 
the original data and the source of the data. Contrary to methods 
that work with the absolute values, using the relations allows us 
to combine distance matrices that could be from different data-
sets or even different data sources. Depending on what we want 
to evaluate, we can combine the individual distance matrices in 
various ways. For the multiple subject resting-state data in the 
Section “Results”, we want to add together the individual results 
to get a more reliable averaged result. To this end, each distance 
matrix element was set to the average value over all the indi-
vidual distance matrices. That is, each dataset was weighted the 
same. In other applications, where the individual datasets may 
have different sources, they could be weighted differently. Other 
operations could also be considered, i.e., a comparison between 
datasets could be implemented by a subtraction operation between 
distance matrices.

experIMentAl
Mr dAtA AcquIsItIon And dAtA pre-processIng
Input to the algorithm consisted of 300 MR echo-planar image 
volumes sensitized to blood oxygenation level dependent (BOLD) 
signal changes acquired during 10 min of continuous rest (fixat-
ing on a cross-hair) in 10 subjects (Fransson, 2006). Functional 
MR images were acquired on a Signa Horizon Echospeed 1.5 Tesla 
General Electric MR scanner (FOV = 220 × 220 mm, 64 × 64 matrix 
size, TR/TE = 2000/40 ms, flip = 80°; number of slices = 29). Further 
details can be found in a previous paper by Fransson (2006). All 
images were realigned, normalized to the MNI template within 
SPM (Statistical Parametrical Mapping, Welcome Trust Center for 
Neuroimaging, London, Friston et al., 1995) and spatially smoothed 
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For the resting-state data where the number of voxels was 121247, 
each distance matrix, one for each subject, took about 30 min to cal-
culate on 512 nodes on a Blue Gene/L machine. However, they could 
have been run in parallel as each distance matrix is independent from 
the others. The iterative implementation of multidimensional scaling 
was run for about 4 h, until convergence. The MDS scales only with 
the number of voxels and dimensions of the resulting matrix, not 
with the number of datasets or time steps. These times could most 
likely be reduced significantly; both by optimizing the code and by 
considering alternative implementations of the algorithm steps.

The decomposition into different components or clusters is 
entirely separated from the calculation of the statistics, and since the 
matrix produced by the MDS is quite small, this is computationally an 
inexpensive step. All decompositions between 5 and 115 took about 
1 h to create on 128 nodes. This is an advantage in certain applications 
over methods where the number of components to decompose the 
statistics into has to be manually predetermined. Computationally 
inexpensive decomposition allows for rapid visualization of the sta-
tistics on different spatial scales. Depending on what one is interested 
in, different decompositions may be of interest.

dIscussIon
We have described a novel data-driven fMRI cluster analysis 
method based on multidimensional scaling and mutual informa-
tion based clustering and shown its applicability for analysis of 

 distortion as defined in Section “Clustering” for each network 
in all  decompositions between 5 and 115. The rapid decline for 
a small number of decompositions tells us that each addition of 
another cluster will explain the data better. The mean distortion 
is not changed as much after 30–40 clusters. Additional clustering 
will result in splitting of the statistically strong networks into their 
corresponding sub-networks.

Examples of this can be seen in Figure 5B. The left and right 
fronto-parietal attention networks are grouped together in the 40 
clusters decomposition. At 60 they are separated into their left and 
right part. Increasing the number of clusters will result in further 
decomposition into their sub-networks as in the 80 decomposition. 
A similar splitting is seen for the default network.

coMputAtIonAl costs
The calculation of the distance matrices is the computationally 
most expensive operation in the algorithm – when run on the entire 
dataset it scales with the number of voxels as N2 and linearly with 
the number of time steps and individual datasets. The memory 
usage can be kept low also on much larger datasets than used here 
by treating the distance matrix as a sparse matrix in the parallel 
implementation. The calculation of a distance matrix is trivially 
parallelizable and involves no expensive communication between 
the nodes involved in the computation, contrary to parallel imple-
mentations of ICA (Keith et al., 2006).

Figure 4 | resting-state networks from a 60-part decomposition: (A, B) 
Left/right fronto-parietal attention network, (C) primary auditory cortex, 
(D) lateral and medial sensorimotor cortex, (e) posterior cingulate cortex/
precuneus, (F) medial prefrontal cortex, (g) anterior/inferior visual cortex, 

(H) lateral/posterior visual cortex, (i) default network, (J) temporal pole/
insula, (K) primary visual cortex (L), and the cerebellum. The color coding 
shows how far from the cluster center a given voxel is where brighter 
red-yellowness indicates a shorter distance to the cluster center.



Frontiers in Systems Neuroscience www.frontiersin.org August 2010 | Volume 4 | Article 34 | 6

Benjaminsson et al. fMRI data analysis technique

with the sensorimotor network in the van den Heuvel study (however, 
an additional explorative analysis revealed separate visual and motor 
networks, see van den Heuvel et al., 2008 for further information). 
The network that included the ventro-medial part of prefrontal cor-
tex (Figure 4F) was apparent in all previous studies except the De 
Luca study. Further, the split of the occipital cortex into a lateral/
posterior part (Figure 4H) and an inferior/anterior part (Figure 4G) 
was also detected by the recent Smith study, but the two networks 
were merged in a single network in the De Luca study. The network 
that involves the bilateral temporal pole/insula region (Figure 4J) was 
similarly detected in the Damoiseaux as well as in the van den Heuvel 
study. The cerebellar network (Figure 4L) was also found in the Smith 
study whereas the default mode network (DMN) (Figure 4I) has 
been reported by all four previous investigations. Finally, the network 
depicted in Figure 4E that encloses the posterior part of the default 
network was also found in the van den Heuvel study.

An important aspect of our methodology to cluster the data into 
resting-state networks and noise-related components is the distor-
tion quantity that provides a measure of how well a specific cluster 
decomposition fits the data. By examining the degree of distortion 
as a function of the number of decompositions chosen, information 
regarding the topological hierarchy of resting-state networks in the 

multi-subject resting-state fMRI data sets. It is relevant to compare 
the present findings of resting-state networks driven by intrinsic 
BOLD signal changes during rest with previous investigations that 
have used other data-driven approaches. The studies of Beckmann 
et al. (2005), De Luca et al. (2006), and Damoiseaux et al. (2006) as 
well as the recent study by Smith et al. (2009) all used ICA based 
approaches to study resting-state functional connectivity, whereas 
the study by van den Heuvel et al. (2008) used an approach based 
on a normalized cut graph clustering technique.

On a general level, our results are in good agreement with the find-
ings reported by all four previous investigations. The networks that 
covered the left and right fronto-parietal cortex (Figures 4A,B) were 
also detected by all previous investigations, although the left and right 
network was merged into a single network in the Beckmann et al.’s 
study (2005) (see also discussion below regarding merging/division 
of networks and its potential significance). Similarly, the networks 
that encompassed the auditory cortex (Figure 4C) and the sensori-
motor areas (Figure 4D) showed a good spatial congruence with all 
four previously reported investigations. The network that foremost 
targeted the primary visual cortex (Figure 4G) shows a large degree 
of similarity to the networks shown by the De Luca, Damoiseaux, and 
Smith studies, whereas the primary visual cortex network was merged 

Figure 5 | (A) Mean distortion for various decompositions. The distortion 
measure can be used to predict a suitable number of clusters. (B) Example of 
the decomposition depending on the total number of clusters chosen. Left: The 

fronto-parietal attention networks shown in a 40, 60, and 80 decomposition. 
Right: A splitting of the default network occurs between the 20 and 
60 decomposition.
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hierarchical clustering algorithms may be used to further char-
acterize the statistical relationships between clusters of different 
spatial scales (Meunier et al., 2009). The resulting MDS matrix 
could also be studied by other means than clustering algorithms, 
such as using PCA. Measurements other than mutual informa-
tion could be used to study other aspects of the data, such as 
causal relations as determined by Granger causality (Roebroeck 
et al., 2005). A change of statistical expression to evaluate would 
generally involve no more changes than replacing the calculation 
determining an element value in the distance matrix. The method 
described here was partly based on a cortical information process-
ing model (Lansner et al., 2009) which also included a classifica-
tion step. Incorporating classification as a final step in the method 
would make it a good candidate for applications such as “brain 
reading” (Eger et al., 2009).

conclusIon
The generic method proposed brings a number of new properties to 
a model-free analysis of fMRI data: The separation of the computa-
tionally demanding calculation of the statistics and the decomposi-
tion step, which is computationally inexpensive, allows for rapid 
visualization and exploration of the statistics on multiple spatial 
scales. Input data can be handled independently and weighted 
together in various ways depending on the application, both for 
data from different subjects and data from different sources. The 
algorithm has been implemented completely in parallel code; this 
means that we can calculate the statistics over all of the input data, 
without any dimensionality reduction, which allows for whole-
brain analysis on a voxel level. It can handle datasets with large input 
sizes as well as large collections of datasets in databases. Some of its 
properties for exploratory data analysis and its applicability to fMRI 
have been demonstrated on resting-state data and shown to be in 
agreement with findings from studies using other methods.

Our method is generic and does not use any specific properties 
of fMRI data. It may therefore also be applicable to completely 
different kinds of data. We are currently exploring its use in, e.g., 
PET data analysis. It further remains to optimize the method, pos-
sibly taking advantage of GPU implementation of certain steps in 
the algorithm.
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that contain elements of language (left) or pain/perception (right) 
(Smith et al., 2009). In addition, a recent study has shown that the 
left side of the fronto-parietal attention network (Figures 4A and 
5B) is conjunctively activated by intrinsic, resting-state activity as 
well as for language related tasks (Lohmann et al., 2009). Taken 
together, these results speaks to the notion that there are aspects of 
attention-driven cognitive processes that involve both the left and 
right parts of the network, and at the same time, a left–right division 
of cognitive labor exist at a sublevel within the same network.

In a similar vein, we observed a putative division of the  DMN 
into an anterior and posterior sub-network (Figures 4E,I), respec-
tively. Similar to the division of the fronto-parietal network, the 
spatial separation of the DMN was not complete. A small degree 
of activity of the posterior part, e.g., the precuneus/PCC, is present 
in the anterior sub-default network (Figure 4I) and vice versa for 
the medial prefrontal cortex in the posterior sub-default network 
(Figure 4E). Our finding of a potential anterior/posterior topo-
graphical hierarchy are in line with previous reports that have sug-
gested that the precuneus/PCC region constitute a network hub in 
the DMN (Buckner et al., 2008; Fransson and Marrelec, 2008) as 
well as the MPFC (Buckner et al., 2008). The cognitive interpretation 
of a putative anterior/posterior division of the DMN is at present 
not clear. Speculatively, the split of the DMN observed here could 
reflect the fact that the anterior sub-network of the DMN, including 
a hub in the MPFC, is tentatively preferentially more involved in the 
self-referential aspects of mental processing (Gusnard et al., 2001), 
whereas the posterior part in which the precuneus/PCC region acts 
as a hub is oriented towards tasks that contains elements of retrieval 
of episodic memory and recognition (Dörfel et al., 2009). 

The method could be extended in various ways. The MDS step 
could be extended to better conserve non-linear relationships as 
in the Isomap algorithm (Tenenbaum et al., 2000). More explicit 
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