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2007; Li et al., 2009; Bressler and Menon, 2010), including structural 
equation modeling (McIntosh and Gonzalez-Lima, 1994), dynamic 
causal modeling (DCM) (Friston et al., 2003), Granger causality 
(Roebroeck et al., 2005), psycho-physiological interactions (Friston 
et al., 1997), dynamic Bayesian networks (Rajapakse and Zhou, 
2007), multivariate autoregressive modeling (Harrison et al., 2003), 
partial correlation analysis (Marrelec et al., 2009), non-linear sys-
tem identification (Li et al., 2010b), and switching linear dynamic 
systems (Smith et al., 2010). Each method has its advantages and 
weaknesses (e.g., see Penny et al., 2004; Ramnani et al., 2004; Witt 
and Meyerand, 2009) and its use should be motivated by the ques-
tion of interest, level of inference, paradigm design, data acquisition 
and analysis.

Here, we consider the use of DCM as a flexible and robust tool 
for assessing effective connectivity (Friston et al., 2003). In contrast 
to functional connectivity, effective connectivity provides a mecha-
nistic account of the cause of the inter-regional interactions that 
would explain the emergence of a particular functional pattern (see 
for more details Friston, 1994, 2002b, 2009b). DCM has been widely 
used across different imaging modalities, populations and tasks (for 
a review see Stephan et al., 2007, 2010; Friston, 2009a). For instance, 
many studies have used DCM of fMRI data to explore inter-regional 
interactions during different cognitive tasks in normal healthy 
subjects. This literature has provided interesting insights about 
how brain regions talk to each other in healthy populations dur-
ing cognitive and motor processing (Grol et al., 2007; Kasess et al., 

INTRODUCTION
Accurate characterization of abnormalities in neural processing is 
important for understanding pathological conditions and recovery 
mechanisms. It may also contribute to the tailoring of efficient 
therapy and intervention procedures. A large fMRI literature has 
already investigated how pathological conditions change neural 
processing, usually in terms of activity or signal changes in a set of 
spatially segregated regions. However, several studies have shown 
that characterizing such abnormal processes in terms of activa-
tion differences in a set of distinct (isolated) brain regions is not 
enough to provide a comprehensive picture of the abnormal brain 
(Meyer-Lindenberg et al., 2001; Ween, 2008). This is due to the 
fact that the function of any brain region cannot be understood 
in isolation but only in conjunction with the regions it interacts 
with during active behavior (e.g., McIntosh, 2000; He et al., 2007; 
Bassett and Bullmore, 2009; Bressler and Menon, 2010; Guye et al., 
2010), a principle known as functional integration (Friston, 1994, 
2002b, 2007).

Functional integration refers to task-dependent processing 
that emerges from changes in interactions among brain regions. 
In this context, deficits in functional integration or connectivity 
are implied when the influence of one brain region on another is 
stronger or weaker in patients relative to control subjects (Price 
et al., 2006; Ween, 2008). There are several approaches that have 
been proposed to assess functional integration or connectivity (for 
a review see Ramnani et al., 2004; Harrison et al., 2007; Rogers et al., 
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2008), face processing (Fairhall and Ishai, 2007; Li et al., 2010a), 
word reading (Chow et al., 2008; Carreiras et al., 2009; Seghier and 
Price, 2010), speech perception (Leff et al., 2008; Eickhoff et al., 
2009), semantic access (Heim et al., 2009; Fan et al., 2010; Seghier 
et al., submitted), spatial memory (Doeller et al., 2008), emotional 
processing (Ethofer et al., 2006; Smith et al., 2006), attentional 
control (Acs and Greenlee, 2008; Plailly et al., 2008; Wang et al., 
2010), conflict monitoring (Fan et al., 2008), and decision making 
(Alexander and Brown, 2010; den Ouden et al., 2010).

In this review we highlight some of the issues that need to be 
considered when effective connectivity is assessed with DCM of 
patient data. The paper is divided into five sections. The first section 
provides some useful definitions that are important for interpreting 
abnormal functional integration in patients. The second succinctly 
presents the theoretical foundations of DCM including the effective 
connectivity parameters, the available frameworks, and the multiple 
levels of inference that DCM can provide. The third section reviews 
previous studies that used DCM of data from patients with focal 
or non-focal damage to characterize abnormal connectivity. The 
fourth section aims to describe some practical guidelines that we 
believe would improve the use of DCM of patient data. In this 
context, we provide a systematic and unbiased approach to reveal 
abnormal connectivity in patients. The fifth section is concerned 
with some critical methodological issues that need to be taken into 
account when interpreting DCM findings in patients.

DEFINITIONS AND PRINCIPLES
We need first to define some concepts used throughout this review. 
Our review of previous work indicates that different terms have 
been used across studies to refer to the same concept. First, the 
term “network” has been used to refer to a set of temporally and 
spatially segregated regions that interact and engage in multiple 
complex behaviors. A network is by definition dynamic, where 
nodes and interactions between these nodes change continuously 
in time and space across different cognitive processes. A network 
can also be referred to as a “system” or “circuit.” A part of a network 
can be referred to as a “sub-network” or “subsystem.” Second, the 
complex dynamics within the network have been described with 
different terms, including: inter-regional interactions, connectivity, 
coupling, interactivity, interdependency, and co-operative action. 
Here we refer to these complex dynamics as “inter-regional interac-
tions.” Third, when characterizing how inter-regional interactions 
differ in patients and controls, previous studies used the terms: 
altered, abnormal, disturbed, atypical, impaired, or dysfunctional. 
Throughout the review we will use the term of “abnormal” when 
referring to inter-regional interactions in patients that are outside 
the range of those observed in healthy controls.

Using these definitions, we tentatively summarize some of the 
implicit assumptions that motivate studies of functional integra-
tion in patients:

(i) local damage to a part of a network can propagate throu-
ghout the whole network (e.g., Alstott et al., 2009; Kim and 
Horwitz, 2009);

(ii) an abnormal network can be viewed as a “new” network and 
not simply the normal network minus the damaged parts 
(e.g., He et al., 2007);

(iii) an abnormal network can comprise sub-networks that 
 correspond to those seen in healthy subjects and novel sub-
networks that are not typically seen in healthy subjects;

(iv) abnormal behavior can be an indicator of abnormal inter-
regional interactions, however an abnormal network may 
not necessarily produce abnormal behavior;

(v) an abnormal network is not fixed; it can evolve and change 
during the course of therapy and recovery; and

(vi) for a given pathology, an abnormal network can vary from 
patient to patient even within a relatively homogenous 
population.

WHAT IS DCM?
Dynamic causal modeling aims to explain, quantitatively and mech-
anistically, how observed fMRI responses are generated (Friston 
et al., 2003). The key features that make DCM the method of choice 
for estimating effective connectivity can be summarized as follows 
(see detailed description in page 3100 of Stephan et al., 2010): 
(i) DCM is dynamic, in the sense that it uses differential equations 
to model inter-regional interactions, (ii) DCM is causal as it aims to 
infer the directionality of the inter-regional interactions and their 
context-dependent modulations, (iii) DCM is a hypothesis-driven 
approach that can incorporate any known effect (e.g., stimuli and 
tasks) to test specific hypotheses that motivated the experimental 
design, (iv) DCM is Bayesian in all its aspects and uses a generative 
model to constrain effects by prior knowledge, (v) DCM explicitly 
uses an empirical forward model that links observed hemodynamic 
responses to the (hidden) neuronal dynamics, allowing inferences 
to be made at the neuronal level, (vi) DCM estimates a range of con-
nectivity parameters that present parallels with neuro-physiological 
models, including psycho-physiological or physio-physiological 
interactions, (vii) the use of DCM with Bayesian model selection 
(BMS) and averaging tools enables inferences at different levels, 
from a set of plausible models (a family of models) to a specific 
connectivity parameter, and (viii) DCM inferences can be made 
both at the single subject and group level.

Fundamentally, DCM is only appropriate for describing 
responses (fMRI, MEG, ERP) that result from controlled external 
stimuli (Friston, 2009a; Stephan et al., 2010). This requires datasets 
that also include periods when external stimuli are both present and 
absent. DCM is therefore not currently suitable for uncontrolled 
continuous “natural” stimulations such as resting-states. It treats 
the human brain as a dynamic system that is subject to multiple 
inputs and produces multiple outputs. Thus, DCM characterizes 
task-dependent inter-regional interactions.

The starting point for DCM is the selection of a fixed set of 
regions and their possible connections. Each combination of experi-
mentally modulated connections corresponds to a model, which can 
then be compared to other alternative models in order to identify 
which model(s) best predict(s) the data (see illustration in Figure 1 
for details of the practical steps). For a given model, DCM estimates 
three different sets of parameters: (i) input or extrinsic parameters 
that quantify how brain regions respond to external stimuli (i.e., 
the external inputs that perturb the model), (ii) endogenous or 
latent parameters that characterize context-independent (or aver-
age) inter-regional interactions, and (iii) modulatory parameters 
that measure changes in effective connectivity induced by the 
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most suitable for the question of interest. This section presents the 
extensions implemented for DCM of fMRI responses. By default, 
the most widely used DCM version corresponds to the bilinear and 
deterministic implementation with one-state equation per region 
(see below).

Bilinear vs. non-linear
The default implementation in DCM codes the rate change in neu-
ronal activity according to the following bilinear evolution or state 
equation (Friston et al., 2003):

dz
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A u B z Cui
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where z is the activity of the neuronal population, A is the first-
order (endogenous, latent, or average) inter-regional interactions 
in the absence of inputs, B is the second-order interaction between 
activity and input (the modulatory effect), and C is the extrinsic 
effects of inputs “u” on activity. The bilinear term B is equivalent to 
the psycho-physiological interactions in the network that reflects 
how the inter-regional interactions are modulated by a given input/
context. This fundamental equation in DCM has been extended 

 experimental conditions. These connectivity parameters are each 
expressed in Hz within the DCM framework. They are not neces-
sarily constrained by mono-synaptic (i.e., direct) anatomical con-
nections and can be either positive or negative. A positive parameter 
means that an increase in activity in one region results in increased 
rate of change in the activity of another region. Conversely, a nega-
tive parameter means that an increase in activity in one region results 
in a decreased rate of change in the activity of another region. Note 
that, due to the limited temporal resolution in fMRI, conduction 
delays in inputs and inter-regional interactions are ignored in DCM 
of fMRI responses, but not in DCM for EEG or MEG data (Friston 
et al., 2003). All DCM parameters and their posterior probabilities 
are assessed with Bayesian inversion by means of the expectation-
maximization algorithm (Dempster et al., 1977; Friston, 2002a).

Below, we succinctly present the available implementations of 
DCM, how to compare alternative models, and the different levels 
of inference that can be made with DCM.

MULTIPLE IMPLEMENTATIONS
Since the seminal paper reported by Friston et al. (2003), there 
have been several extensions of the DCM algorithm to increase its 
flexibility. It is therefore necessary to consider which algorithms are 

FIguRe 1 | An illustration of the “cycle” of practical steps in a typical DCM 
analysis. These steps have been made easy and flexible within the SPM 
software package. It starts with the selection of effects of interest (activated 
patterns) and the time-series extraction of the appropriate regions. Then, a 
predefined structure of the model is specified, including the driving inputs and 
where they enter the system, how the regions inter-connect, and where 

modulatory effects are specified. Additional alternative models can be specified 
and then all models can be compared. ROIs, regions of interest; FFX, 
fixed-effect analysis; RFX, random-effect analysis; BMS, Bayesian model 
selection; BMA, Bayesian model averaging; BPA, Bayesian parameter averaging. 
This figure has been adapted from a previous talk given by KE Stephan and L 
Harrison (during the ICN-SPM course in May 2005).
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for an existing anatomical connection between the regions. These 
 anatomically-based priors have been shown to provide stronger evi-
dence for anatomically motivated models (Stephan et al., 2009b) and 
are particularly useful if tractography data (DTI) are available. They 
can also take advantage of the white matter tracts that are specified 
in recent atlases (e.g., Mori et al., 2005, 2008; Catani and Thiebaut 
de Schotten, 2008) and incorporate this information into the DCM 
when defining the appropriate model structure. In the context of 
the current paper, it is interesting to note that information about 
damaged tracts in a group of patients can be explicitly modeled. 
However, because of the deterministic nature of the current DCM 
implementation (see below), indirect influences on regions cannot 
be ruled out even if direct white matter tracts are missing.

Deterministic vs. stochastic
The default implementation of DCM in SPM is deterministic as 
only the explicitly modeled effects are allowed to influence the 
inter-regional interactions. Thus, DCM estimates the interactions 
between the spatially segregated regions that are temporally per-
turbed by the external inputs included in the model. However, it 
is obvious that this framework cannot rule out the influence of 
indirect effects, including interactions with regions not included 
in the DCM or temporal innovations not modeled in the inputs 
(see discussion in Smith et al., 2010). For instance, a connection 
can excite a group of neurons that inhibit another region thereby 
resulting in an overall effect of inhibition. An extended version, 
known as stochastic DCM (Daunizeau et al., 2009), allows such 
subtle indirect effects to be expressed. It extends the previous state 
equation to:
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where η is the state noise that models stochastic innovations in 
the system. The new term η is defined by Gaussian variables with 
a mean of zero and a covariance structure that can express any 
form of innovations. In other words, in this framework, all indirect 
effects are modeled as stochastic phenomena, thereby allowing the 
hidden-states causing the data and any non-controlled exogenous 
inputs to the system to be inferred (Daunizeau et al., 2009). This 
framework can be very useful because it provides more flexibility 
in modeling unknown or indirect pathologic effects in patients.

LEvELS OF INFERENCE WITH BAyESIAN MODEL SELECTION
One exciting tool in DCM is its BMS procedure. This procedure 
compares the evidence for different competing hypotheses. Because 
the exact mechanisms behind any fMRI responses are unknown, 
it might not be possible to have an a priori prediction about the 
“exact” model. Therefore, it is important to specify a range of alter-
native models and search for the best (most useful) model in the 
model space, e.g., Leff et al. (2008), Seghier and Price (2010), and 
Seghier et al. (submitted). This procedure increases the certainty 
of the best model by testing many other potential explanations of 
the data.

During the Bayesian inversion of the model, the probability of 
the data given the model, known as the model evidence, is approxi-
mated by the negative variational Free-energy (Friston et al., 2007; 

for the assessment of physio-physiological interactions in a given 
network. The extension, known as non-linear DCM (Stephan et al., 
2008), is suitable for explicitly testing whether the activity in a given 
region gates or enables interactions between other regions. The 
state equation in non-linear DCM is given by:
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where the new term “D” is a quadratic quantity that represents the 
physio-physiological interactions in the model or the strength of 
the activity-dependent gating of connections.

This non-linear DCM equation can be helpful when modeling 
“neural gain control” mechanisms in short-term synaptic plasticity 
(Stephan et al., 2008) which are likely to be relevant for character-
izing a given pathology. Such mechanisms are critical for various 
cognitive processes, including top-down modulation of attention 
and learning (see example in den Ouden et al., 2010).

One-state vs. two-state neuronal equations
Because each region is modeled by one neuronal state equation only 
(Eq. 1), it is not possible to assess selective changes in excitatory 
(e.g., glutamatergic) and inhibitory (e.g., GABAergic) subpopula-
tions in each region of the DCM model. This is a very important 
issue that needs to be taken into account when, for instance, making 
inferences about potential inhibitory or excitatory mechanisms in 
DCM. To address this, an extended version of DCM exists that 
uses two-state neuronal equations (Marreiros et al., 2008) to 
model excitatory and inhibitory subpopulations in each region. 
This allows for an explicit description of intrinsic (between sub-
populations) connectivity within a region. In other words, each 
region is modeled by two neuronal subpopulations and DCM can 
thus estimate the interactions between these two subpopulations. 
Interestingly, this parameterization confers dynamical stability on 
the system, enforces positivity constraints on the extrinsic connec-
tions, and enables context-dependent changes in the interactions 
to be modeled as a proportional increase or decrease in connec-
tion strength (Marreiros et al., 2008). The two-state DCM can be 
used, for instance, to specifically test whether patients and con-
trols differ in the interactions between excitatory and inhibitory 
subpopulations.

Anatomical-based priors vs. default shrinkage priors
Different priors are embodied within the Bayesian framework of 
DCM. These include priors on the connectivity parameters (see 
for more details Friston et al., 2003) that are referred to as “shrink-
age” priors because they tend to “shrink” posterior means to their 
prior expectation of zero, particularly when the data are noisy. These 
shrinkage priors make the detection of significant inter-regional 
interactions somewhat conservative. Thus only effects that have a 
significant likelihood with high precision are allowed to deviate 
from zero (i.e., when new data strongly support an existing effect). 
However, it has been shown that such priors can be modified 
(relaxed) to take into account an a priori knowledge about ana-
tomical connectivity (Stephan et al., 2009b). The idea is to assign 
a stronger belief (i.e., by relaxing the shrinkage priors) to a par-
ticular interaction between two regions if one has strong evidence 
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probabilities sum to one over all tested models. Note also that there 
are two sampling schemes in random-effects BMS, the first uses a 
Variational Bayes method that is optimal and fast when the number 
of tested models is smaller than the number of subjects (Stephan 
et al., 2009a), and the second uses a Gibbs sampling method that 
is optimal and accurate when the number of models is larger than 
the number of subjects (Penny et al., 2010).

Inference at the family and the model level
When comparing models with BMS, the best model would be the 
winning model that has the most evidence (e.g., significant exceed-
ance probability) compared to other models. However, it is com-
monly found that one single model does not dominate all other 
models, particularly when the number of models is very large with 
many connections shared between models. In this situation, one can 
look for any similarity in model structures that can better explain 
the data. To do this, a recent extension of BMS has introduced the 
ability to make inferences on a “family” of models (Penny et al., 
2010). A family is a subset of models that share similar charac-
teristics such as the same driving region or the same modulated 
connections (see Penny et al., 2010; Seghier and Price, 2010; Seghier 
et al., submitted). The formation of families should be motivated by 
the question of interest to ensure all models in the model space are 
partitioned into different families with no overlap. It is permissible 
to have different numbers of models in each family. BMS can then 
be used to compare these competing families and inferences can 
be made at the family level.

Inference at the connection level
The last level of inference assesses the significance of a particular 
connectivity parameter. Analysis of the connectivity parameters is 
conducted after comparing models or families because the poste-
rior densities of such parameters are conditional on the particular 
model or family selected (Stephan et al., 2010). If a winning model 
has been identified, one can look at the consistency of effects across 
subjects using random-effects analysis (e.g., t-tests). Alternatively, 
fixed-effect approaches can be applied using Bayesian parameter 
averaging where the connectivity parameters are weighted by their 
precision during the computation of the mean across subjects or ses-
sions. Significant effects at the group level are commonly reported 
at a corrected p-value (e.g., using a Bonferroni correction based 
on the number of tested connections, Sonty et al., 2007; Leff et al., 
2008; Seghier and Price, 2010). If the inference has been made at the 
family level, it is possible to use the new Bayesian model averaging 
(BMA) method where the contribution of each model to the mean 
effect is weighted by its evidence (Penny et al., 2010).

PREvIOUS DCM STUDIES OF PATIENTS
In this section we review previous DCM studies of patients. We 
are particularly interested in the way DCM has been carried out 
in patients and how the differences between controls and patients 
have been statistically characterized both at the model and con-
nection level. A PUBMED search was conducted with the follow-
ing inclusion criteria: (i) fMRI studies, (ii) published in English 
that (ii) used DCM in (iv) patients with any disorder. A total of 
28 studies were identified and are listed in Tables 1 and 2 (Bird 
et al., 2006; Mechelli et al., 2007; Rocca et al., 2007a,b; Sonty et al., 

Stephan et al., 2009a). This approximation, as a lower bound on 
the model evidence, points to the optimal compromise between 
the accuracy and complexity of a given model. It provides a better 
estimation for the complexity term, by taking into account the 
interdependency between the estimated parameters. Thus, model 
evidence is not an “absolute” measure of how good a model is; 
instead it is used in BMS to compare between alternative mod-
els. Moreover, by using the negative variational Free-energy as the 
optimal compromise between accuracy and complexity, the current 
implementation of DCM ensures that (i) model complexity will 
not increase if additional parameters are “redundant” to existing 
parameters and (ii) the parameter estimates of a good model are 
as precise and uncorrelated as possible. In short, BMS estimates the 
likelihood that a given model has generated the observed data.

Sampling the model space
The most critical step when using the BMS tool is the definition of 
the DCM model space (i.e., the set of specified models) because any 
inference at the model level depends on the way the model space 
has been defined (sampled). There are three principles that need to 
be considered: compatibility, size, and plausibility. First, compat-
ibility between models is attained by ensuring that all models of a 
given subject have the same regions, that is, the models all contain 
the same data. Specifically, BMS cannot be applied to models that 
are fitted to different fMRI data. For group studies, a good practice 
is to ensure consistent regions between subjects since group BMS 
implicitly assumes functional compatibility of the modeled effects 
across subjects. Second, there are an infinite number of possibilities 
that can explain the data; it is impossible to sample all these pos-
sibilities and thus a practical limitation on the number of models 
(i.e., the size of the model space) is necessary. Third, plausibility 
reflects a systematic way of defining realistic and interpretable mod-
els according to a priori knowledge or some predefined criteria. This 
will automatically limit the size of the model space and crucially 
avoid including bad or unrealistic models.

Random-effects vs. fixed-effects
Once the model space has been defined and estimated in all subjects, 
BMS can be used to identify the best (most useful) models at the 
group level. There are two classic ways of achieving group BMS 
analyses: fixed-effects and random-effects (see Figure 1 in Stephan 
et al., 2010). The former assumes that the best models are compa-
rable across subjects because subjects would reasonably perform 
the task in a similar way (e.g., identical cognitive strategies). The 
latter may be preferable when studying heterogeneous populations 
or using complex cognitive tasks where optimal models are likely to 
vary across subjects. Random-effects BMS is also preferable when 
outlier effects are suspected because the current implementation (in 
SPM8) of random-effects BMS uses a robust hierarchical Bayesian 
approach. It quantifies the likelihood that a specific model gen-
erated the data of a subject chosen at random, measured via two 
quantities: (i) the Dirichlet parameter estimates (alpha) represents a 
measure of the effective number of subjects in which a given model 
generated the observed data, and (ii) the “exceedance” probability 
(xp) describes the belief that a particular model is more likely than 
any other model given the group data (Stephan et al., 2009a). The 
exceedance probability “xp” is particularly intuitive as all  exceedance 
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Mintzopoulos et al., 2009; Shannon et al., 2009; Vaudano et al., 
2009; Agosta et al., 2010; Allen et al., 2010; Goulden et al., 2010; 
Miyake et al., 2010; Rowe et al., 2010). These studies have provided 
valuable insights into the abnormal connectivity in patients with 

2007; Cao et al., 2008; Eickhoff et al., 2008; Grefkes et al., 2008, 
2010; Hamandi et al., 2008; Schlosser et al., 2008, 2010; Abutalebi 
et al., 2009; Almeida et al., 2009a,b; Benetti et al., 2009; Crossley 
et al., 2009; Dima et al., 2009; Fujii et al., 2009; Grezes et al., 2009; 

Table 1 | List of previous DCM studies of patients that used one single model (i.e., DCM model space = 1 model). Studies are listed in alphabetical order.

Study Disorder Np/Nc Task R M Findings

Abutalebi 

et al. (2009)

Bilingual Aphasia 1 pat., 0 con. Picture naming (in 

L1 and L2); 

Longitudinal 

recovery study 

(3 sessions).

5 1 Increased connectivity after therapy between 

regions associated with “language control”.

Agosta et al. 

(2010)

Alzheimer’s disease 25 pat., 11 con. (with 

two groups of 

patients)

A simple motor 

task with the right 

hand.

6 1 Altered endogenous connectivity between 

patients and controls on the primary 

sensorimotor cortex.

Almeida 

et al. (2009b)

Major and bipolar 

depression

31 pat., 16 con. Emotion labeling in 

happy vs. sad 

faces.

4 1 Abnormal connectivity between orbitofrontal 

and amygdala differentiated major from 

bipolar depressed patients.

Bird et al. 

(2006)

Autism spectrum 

disorder

16 pat., 16 con. Attention 

modulation in faces 

and houses.

3 1 Reduced attentional modulation in patients 

compared to controls.

Cao et al. 

(2008)

Dyslexia 12 pat., 12 con. 

(children)

Rhyme judgment 

task.

4 1 Reduced connectivity modulation in dyslexics 

compared to controls between fusiform and 

parietal regions.

Correlations between reading skills and 

connectivity in left parietal.

Crossley 

et al. (2009)

Schizophrenia 26 pat., 13 con. (with 

two groups of 

patients)

Working memory 

task.

5 1 Connectivity between superior temporal and 

middle frontal gyrus was negative in controls 

and positive in patients.

Eickhoff 

et al. (2008)

heterotopic hand 

replantation

2 pat., 14 con. Motor (hand 

movement).

8 1 Abnormal inhibition from ipsilateral to 

contralateral M1.

Goulden 

et al. (2010)

Major depression 30 pat., 29 con. Emotional face 

processing task.

4 1 Improved group differences on connectivity 

parameters when using permutation testing.

Grefkes 

et al. (2008)

Stroke patients 

(subcortical lesions)

12 pat., 12 con. Motor (hand 

movement).

8 1 Reduced coupling between bilateral M1 

during stroke-affected hand movements.

Correlation between reduced connectivity 

and degree of impairment.

Mechelli 

et al. (2007)

Schizophrenia 21 pat., 10 con. (with 

two groups of 

patients)

Voice detection 

from spoken words 

task.

5 1 Abnormal connectivity between anterior 

cingulate and superior temporal gyrus, in 

particular in patients with verbal 

hallucinations.

Mintzopoulos 

et al. (2009)

Stroke patients 5 pat., 12 con. Motor (squeezing a 

robotic device).

3 1 Reduced endogenous connectivity between 

M1 and cerebellum and increased 

connectivity between SMA and M1 in 

patients relative to controls.

Miyake et al. 

(2010)

Patients with eating 

disorders

36 pat., 12 con. (with 

3 groups of patients)

Detection of 

negative vs. neutral 

words.

2 1 Significant group differences in the 

endogenous connectivity from medial frontal 

to the amygdala.

Rocca et al. 

(2007a)

Patients with 

multiple sclerosis

12 pat., 14 con. A simple motor 

task with the right 

hand.

4 1 Stronger endogenous connectivity in patients 

than controls between right primary 

sensorimotor cortex and cerebellum.

Shannon 

et al. (2009)

Externalizing 

behavior disorder

21 pat., 11 con. A reward and 

non-reward task.

2 1 Significant differences between controls and 

patients on both endogenous and non-reward 

modulatory effects, mainly on the caudate.

Np, number of patients; Nc, number of controls; R, number of regions; M, number of models.
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Table 2 | List of previous DCM studies of patients that used and compared more than one model (DCM model space ≥ 2 models).

Study Disorder Np/Nc Task R M Findings

Allen et al. 

(2010)

Schizophrenia 15 pat., 15 con. Sentence completion 

task.

3 14 Best model identical in controls and patients.

Increased endogenous connectivity between anterior 

cingulate and middle temporal regions in patients 

compared to controls.
Almeida 

et al. (2009a)

Bipolar disorder 21 pat., 25 con. Emotion labeling in 

happy vs. neutral 

faces.

3 4 Best model identical in controls and patients.

Abnormal increase in endogenous connectivity between 

parahippocampal and cingulate cortex in patients 

compared to controls.
Benetti et al. 

(2009)

Schizophrenia 26 pat., 14 con. 

(with two groups 

of patients)

Working memory task. 2 4 Models have different regions.

Endogenous connectivity between right hippocampus 

and inferior frontal gyrus was stronger in controls than 

patients.
Dima et al. 

(2009)

Schizophrenia 13 pat., 16 con. Perception of the 

hollow-mask illusion.

5 2 Best model identical in controls and patients (but not 

when using RFX analysis).

No significant correlations between connectivity and 

symptoms.
Fujii et al. 

(2009)

Blind patients 15 pat., 24 con. Tactile Braille 

discrimination task.

5 2 Model comparison done in patients, and the best model 

was then used in controls.

Modulations between parietal and occipital regions were 

positive in patients and negative in controls.

Early blind showed stronger connectivity than the late 

blind patients.
Grefkes et al. 

(2010)

Stroke patients 

(subcortical 

lesions)

11 pat., 0 con. Motor (hand 

movement); 

interference with TMS.

6 4 TMS applied to the contralesional motor cortex.

TMS enhanced endogenous connectivity between 

ipsilesional SMA and M1.
Grezes et al. 

(2009)

Autism spectrum 

disorder

12 pat., 12 con. Perception of fearful or 

neutral actions 

(videos).

6 2 The connectivity parameters of both models were 

compared between patients and controls.

Stronger connectivity in controls than patients during 

fearful compared to neutral context, in particular on the 

amygdala.
Hamandi 

et al. (2008)

Epileptic patients 1 pat., 0 con. Interictal epileptiform 

discharges.

2 2 Onsets defined as spikes (visual monitoring in EEG);

Increased connectivity from left parahippocampal to 

lingual gyrus during epileptic discharges.
Rocca et al. 

(2007b)

Patients with 

benign multiple 

sclerosis

15 pat., 19 con. Stroop color-word 

task.

6 2 The best model of driving inputs in controls was then 

used in patients.

Endogenous and modulatory effects were different in 

patients vs. controls, and they were correlated to the 

severity of the structural damage.
Rowe et al. 

(2010)

Parkinson’s 

disease

16 pat., 17 con. Action selection in 

finger-tapping task; 

Dopaminergic therapy.

4 48 Best model identical in controls and patients.

Model selection is reproducible.

Connectivity parameters are less reliable across sessions
Schlosser 

et al. (2008)

Major depression 16 pat., 16 con. Stroop color-word 

task.

5 4 Best model identical in controls and patients.

Higher endogenous connectivity between anterior 

cingulate regions in patients compared to controls.
Schlosser 

et al. (2010)

Obsessive 

Compulsive 

disorder

21 pat., 21 con. Stroop color-word 

task.

6 5 Best model identical in controls and patients.

Increased modulation between frontal and cingulate 

cortex in patients during incongruent trials.
Sonty et al. 

(2007)

Primary 

Progressive 

Aphasia

8 pat., 8 con. Semantic word 

matching.

6 5 Best model identical in controls and patients.

Reduced connectivity between Broca and Wernicke’s area 

in patients compared to controls.

Reduced connectivity was correlated with accuracy.
Vaudano 

et al. (2009)

Epileptic patients 7 pat., 0 con. Generalized spike 

wave discharges.

3 3 Discharges used as driving inputs and enter the system at 

different regions.

The best model showed spike wave discharges input on 

precuneus.

Np, number of patients; Nc, number of controls; R, number of regions; M, number of models.
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within the best model structure given the data. Other studies have 
used a model that is less complex than the fully connected ver-
sion when a priori hypotheses concerning the architecture of the 
optimal model are possible on the basis of previous structural 
and functional connectivity findings (e.g., Grefkes et al., 2008; 
Abutalebi et al., 2009; Crossley et al., 2009; Goulden et al., 2010). 
Irrespective of which model is selected, single model studies were 
more concerned about the differences in connectivity parameters 
and thus their findings do not address differences between patients 
and controls at the network level.

STUDIES WITH MULTIPLE COMPETINg DCM MODELS
To avoid heavy reliance on a predefined model other studies have 
used BMS to identify the best model from competing alterna-
tives (varying from 2 to 48 models, see Table 2). The compari-
son between connectivity parameters is then performed on the 
parameters of the best model. This procedure has the advantage of 
providing the opportunity to make inferences both at the model/
system level and the parameter/connection level within the optimal 
structure. It is perfectly valid (and sufficient) to limit the infer-
ence to the system level, for instance by showing whether or not 
patients are using the same network as the controls (e.g., is the 
winning model identical in patients and controls?). That said, all 
previous studies were mainly interested in inferences at the con-
nection level and the BMS was usually presented as an intermedi-
ate analysis step. To ensure the possibility of such inference, these 
studies used different methods to guarantee that the final selected 
model is the same between controls and patients. This conceptual 
limitation will be unnecessary when the new BMA tool for making 
comparisons across multiple models or families is implemented 
in SPM (see Penny et al., 2010).

Practically, three methodologies have been used to compare the 
best model in patients and controls. First, the majority of studies 
used BMS on the same set of alternative models and implemented 
this independently in patients and controls (e.g., Sonty et al., 2007; 
Schlosser et al., 2008, 2010; Almeida et al., 2009a; Allen et al., 2010; 
Rowe et al., 2010). All these studies showed the winning model 
to be identical in patients and controls. Note however that this 
similarity may depend on whether RFX or FFX methods are used; 
for instance, patient and control models were found to be identical 
with FFX analysis but different with RFX analysis (Dima et al., 
2009). Second, an alternative approach used by Rocca et al. (2007b) 
in a study of patients with multiple sclerosis performing a Stroop 
task involved the use of BMS within controls only to find the best 
model in controls, followed by a comparison of the parameters 
of that model in patients and controls (Rocca et al., 2007b). For 
instance, when faced with the choice of where inputs enter the 
system, Rocca and colleagues defined two alternative models with 
two different driving regions. They then identified the best model 
and used the driving region of the winning model as a driving 
region for patients as well (Rocca et al., 2007b). The third proce-
dure was used by Fujii et al. (2009) to study blind patients during 
tactile Braille discrimination tasks. It involved identification of the 
best model in patients and then used this model in comparison to 
controls (Fujii et al., 2009). Note that the last two procedures rely 
on the hypothesis that the best model of one group is identical to 
the best model in the second group.

a range of pathologies. However, the aim of our review is not to 
discuss the relevance of their  findings. This would necessitate a 
separate review that considered the models tested, tasks and stimuli 
used, region selection, driving and modulatory inputs, and the rel-
evance of the findings in light of previous neuropsychological and 
computational models. Instead, the current review considers the 
methodological approaches that have been used (see Tables 1 and 
2) and we refer to these studies for illustrations of the methods.

Consistent with the most widely used implementation of DCM, 
all 28 studies were deterministic and used the bilinear one-state 
neuronal equation without anatomical-based priors. Matched 
groups of controls were included in all but four studies (Hamandi 
et al., 2008; Abutalebi et al., 2009; Vaudano et al., 2009; Grefkes 
et al., 2010). The driving inputs were specified in standard block or 
event-related designs in all but two studies (Hamandi et al., 2008; 
Vaudano et al., 2009) where internally generated epileptogenic wave 
discharges from the epileptic patients being studied were used as 
the driving inputs.

The models used varied in their complexity, from simple 
models with two regions (e.g., Benetti et al., 2009) to complex 
models with eight regions (e.g., Grefkes et al., 2008). All studies 
involved adult subjects except one study of dyslexic children (Cao 
et al., 2008). The tasks and stimuli varied extensively between 
the studies because they were purposely designed to maximize 
differences between patients and controls. For instance, working 
memory tasks were used in patients with schizophrenia (Benetti 
et al., 2009; Crossley et al., 2009), Stroop word-color tasks were 
used in patients with depression (Schlosser et al., 2008), and 
semantic tasks were used in aphasic patients (Sonty et al., 2007; 
Abutalebi et al., 2009). One critical difference between these 
studies concerns the level of inference made in both patients 
and controls. We thus divided the 28 studies into two sets: a set 
of 14 studies that tested one model only (Table 1) and therefore 
did not require the BMS procedure and a second set of 14 stud-
ies that used BMS to compare at least 2 models in patients and 
controls (Table 2).

STUDIES WITH ONE FIxED DCM MODEL
The 14 studies with only one DCM model in both patients and 
controls were exclusively interested in how connectivity param-
eters differed between groups. The same model (i.e., same regions, 
driving inputs, and modulatory inputs) was defined in patients and 
controls and the connectivity parameters of that model were com-
pared between patients and controls on a connection by connec-
tion basis. The main motivation of such strong reliance on a single 
model is to ensure the same model is tested on both populations so 
that connectivity parameters can be compared. This avoids the case 
when the winning model is not the same in patients and controls. 
Because the parameters are conditional on the selected model the 
definition of one unique model can be problematic. Some studies 
have used a fully connected model because it allows all possible 
combinations of inter-regional connections to be estimated and 
tested (e.g., Bird et al., 2006; Mechelli et al., 2007; Rocca et al., 
2007b; Cao et al., 2008; Agosta et al., 2010; Miyake et al., 2010). 
However, we argue that a fully connected model is by definition the 
most complex and may lead to over-fitting of the data. Moreover, 
it cannot guarantee that connectivity parameters are estimated 
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A SySTEMATIC PROCEDURE FOR DCM IN PATIENTS
The studies reviewed above have used a variety of procedures to 
assess effective connectivity in patients. This makes any meaning-
ful comparison between their findings difficult. This diversity 
also illustrates the different procedures that have been used to 
address the methodological challenges that arise when DCM is 
used with patient data. In this section, we propose a practical 
procedure that can be used to compare effective connectivity 
in patients and controls. This involves the standard DCM pro-
cedures (see Definitions and Principles above) but with some 
specific modifications that are particularly relevant for patient 
studies. They relate to region selection, the definition of the driv-
ing regions, the definition of plausible models, identifying the 
best model or family of models, and the comparison of con-
nectivity parameters in patients and controls. Note however we 
are not claiming this approach is the only correct way of using 
DCM in patients; the optimal approach should always be tailored 
to the specific questions, the selected effects of interest, and the 
definition of the model space.

REgION SELECTION
Models should, by definition, be comparable between patients 
and controls. This means models must have identical nodes. 
Accordingly, only commonly activated regions in patients and 
controls can be included in DCM. Thus, DCM in patients focuses 
on the characterization of abnormal connectivity in a common 
network of regions (see schematic illustration in Figure 2). A fuller 
characterization of patient data would therefore benefit from a 
report of abnormalities at the level of regions (areas that are more 
or less activated in patients than controls) in addition to a report of 
abnormal connectivity within the set of areas commonly activated 
in patients and controls. Second, there should be minimal inter-
subject variability in the anatomical location of a given region. 
This is because large variability in region locations may result in 
the comparison of functionally different regions across patients 
and controls (for a similar rationale, see Seghier and Price, 2010; 
Seghier et al., submitted). This is particularly critical in regions 
where functional specialization may vary at a high spatial scale. 
As a general rule, the distance between corresponding regions in 
different individuals should correspond to the size of the spatial 
smoothing kernel. Third, the distance between different regions 
in the same individual needs to ensure that the data included in 
one region is not also entered into another region. Fourth, we also 
advocate the definition of proper F-contrasts of interest that can 
be used to adjust the extracted time-series and thus minimize the 
contribution of other confounds (e.g., session effect, head motion, 
incorrect trials).

DRIvINg REgIONS
After extracting the ROIs, an important step in the construction 
of plausible models is the choice of driving regions (i.e., where 
the inputs enter the system). It is wise to specify primary sen-
sory regions as driving regions if they are included in a model. 
However, for other regions, the motivation for selecting driving 
regions should be carefully based on prior anatomical or func-
tional knowledge as all connectivity parameters depend on how 
the information flow is assumed to propagate from driving regions. 

DIFFERENCES IN CONNECTIvITy PARAMETERS
After defining the best model in both patients and controls, previ-
ous studies have tested whether the parameters of that model differ 
between the two groups. Some studies have limited this comparison 
to the endogenous connectivity (e.g., Rocca et al., 2007a; Benetti 
et al., 2009; Miyake et al., 2010), whereas other studies have looked 
at how patient connectivity differed in the context of stimulus or 
task changes (e.g., Bird et al., 2006). Abnormal connectivity in 
patients has been found to correspond to either a change in the 
strength of connectivity (stronger or weaker parameters than con-
trols) or a change in polarity (positive vs. negative). For instance, 
Schlosser et al. (2008) found patients with major depression have 
stronger connectivity between anterior cingulate regions when 
compared to controls during a Stroop color-word task (Schlosser 
et al., 2008). Conversely, Sonty et al. (2007) illustrated reduced con-
nectivity by showing that, relative to controls, patients with primary 
progressive aphasia have weaker connectivity between Broca and 
Wernicke’s areas during semantic word matching tasks. An example 
of reversed polarity has also been shown with negative modulatory 
effects between parietal and occipital regions in controls compared 
to positive modulations in blind patients (Fujii et al., 2009).

Interestingly, a few studies have also investigated the correla-
tions between abnormal connectivity and other behavioral or 
diagnostic measures in patients. For instance, Rocca et al. (2007b) 
showed a significant correlation between abnormal connectivity 
and the severity of structural damage in patients with multi-
ple sclerosis. Cao et al. (2008) found that reduced modulations 
between the fusiform and parietal regions correlated with reading 
skills in dyslexic children (Cao et al., 2008). Another example is 
provided by Grefkes et al. (2008) who found a significant correla-
tion between reduced connectivity in primary motor regions and 
the degree of motor impairment in stroke patients with subcor-
tical lesions (Grefkes et al., 2008). Moreover, other studies have 
used connectivity parameters to distinguish between different 
pathological groups. For instance, Almeida et al. (2009b) found 
that the abnormal connectivity between the orbitofrontal cortex 
and the amygdala differentiated patients with major depression 
from patients with bipolar depression during a task of emotional 
labeling of happy vs. sad faces (Almeida et al., 2009b). Miyake 
et al. (2010) found that endogenous connectivity between the 
medial frontal gyrus and the amygdala during the detection of 
negative vs. neutral words showed variable patterns between three 
subgroups with different types of eating disorders (Miyake et al., 
2010). Furthermore, two other studies illustrated how external 
interventions can be monitored with DCM in diseased popu-
lations. The first was a longitudinal study of a bilingual apha-
sic patient by Abutalebi et al. (2009) and assessed connectivity 
between five regions of interest during a picture naming task in 
two languages. Increased connectivity was found after therapy in 
regions associated with “language control,” consistent with the 
patients’ behavioral recovery (Abutalebi et al., 2009). The sec-
ond study combined DCM and transcranial magnetic stimulation 
(TMS) (Grefkes et al., 2010) and focused on stroke patients with 
subcortical lesions during hand movement tasks. In their study, 
Grefkes et al. (2010) found that applying TMS to the contral-
esional motor cortex increased connectivity between ipsilesional 
motor regions (Grefkes et al., 2010).
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BMS FOR THE BEST MODEL OR FAMILy OF MODELS
First, it should be stressed that it is better to use the most recently 
available negative variational Free-energy model evidence measure 
instead of the suboptimal AIC or BIC measures (for more details 
see Stephan et al., 2009a). The problem with AIC and BIC (still 
used in some recent work) is that they may bias model selection 
toward more simplistic models and do not take into account the 
interdependency between connectivity parameters. Using the nega-
tive variational Free-energy measures, BMS can be run separately on 
patients and controls to identify the best family of models in patients 
and controls (assuming the same model space is defined in both 
groups). Family inference enables the investigator to test and report 
the evidence for an optimal class of models in patients or controls. 
If patients and controls show a different winning family or model 
then this is an interesting result to report, particularly in the con-
text of a commonly activated set of regions (see previous section). 
This would mean that data from patients and controls cannot be 
adequately and sufficiently fitted by the same model structure (e.g., 
Horwitz et al., 1995), suggesting that the patterns of fMRI activation 
observed in patients have emerged from other alternative models 
that can be tested and identified with the BMS. Moreover, differences 
can be investigated at the level of inter-subject variability within and 
between patients and controls. For example, some patients may have 
similar winning models to controls and other patients may have 
different winning models. Inter-subject variability within groups 
can then be related to behavioral measures acquired in or out of the 
scanner. This is particularly interesting when the aim of the study is 
to predict performance at the individual subject level.

DIFFERENCES AT THE CONNECTION LEvEL
If inference is sought at the connection level it is important to only 
compare models that are tested within the same model space in both 
groups, including the same winning model or family of models. 
For the same winning model, two sample t-tests or ANOVAs can 

In the absence of a priori knowledge, it is useful to perform a 
preliminary BMS procedure that systemically varies the site of 
driving regions across a set of candidate regions. This can be done 
by specifying all plausible models (in terms of endogenous and 
modulatory effects) and repeating them with each combination 
of driving regions (for a similar procedure, see Leff et al., 2008; 
Penny et al., 2010; Seghier et al., submitted). Then, by using a RFX 
BMS across patients and controls, the winning family represent 
the best driving regions.

PLAUSIBLE MODELS
This step should be systematic in the sense that it needs to explore 
a set of alternative plausible models for a given set of regions, par-
ticularly when prior knowledge of a network is uncertain. Even 
if the inference of interest is at the connection level, it is difficult 
to interpret and generalize differences in connectivity parameters 
in patients that have only been compared to controls in the con-
text of one fixed model. Our concern is based on the fact that the 
connectivity parameters are conditional on the predefined model. 
Thus, evidence is stronger when it is known to be based on several 
competing models. It is also helpful (if possible) to classify models 
in a set of meaningful families that can then be compared with BMS. 
For instance, family categorization could be based on the exist-
ence of a commonality at the level of an endogenous connection, 
modulated connection, or driving input. Additional constraints 
help to limit the size of the DCM model space. This is necessary, 
since, for example, there are over one billion possible models in 
the model space of a fully connected DCM with six regions if it is 
searched in an unconstrained manner for the best modulated con-
nections. Limiting the model space to the most plausible models 
limits the possibility of diluting evidence with the inclusion of bad 
or implausible models. It would also be helpful if authors detailed 
how they constrained the model space as this may aid in the design 
of future studies.

FIguRe 2 | Illustration of the problem of the “missing nodes” in 
DCM when comparing patients to controls. Regions A and B are 
activated in both groups, region D is damaged in patients but present in 
controls, and region C is a compensatory region that is only activated in 
patients. The deterministic DCM can assess the interactions between 

A and B [noted int(AB) on a solid black line], but would ignore the indirect 
effects of regions D and C (shown with gray lines). The interactions between 
A and B are thus a complex mixture of these effects [e.g., in patients = int(AB) 
in the context of C without D; in controls = int(AB) in the context of  
D without C].
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(5) How generalizable are conclusions concerning abnormal 
connectivity? This issue is particularly critical for studies that 
aim to define a biomarker for a given pathology. First, the 
results identified in a particular group of subjects can only 
be translated to other subjects that show significant effects in 
all the regions of interest. What then happens when patients 
have one or two missing nodes? Second, generalizability also 
depends on abnormalities that manifest outside the network 
of interest, because the effects could have indirect influen-
ces on the sub-network of interest. This problem concerns 
all levels of inference in the implementation of determini-
stic DCM and should be carefully considered when genera-
lizations are made about abnormal connectivity. It is even 
more critical if one is interested in making inferences at the 
individual level (e.g., if abnormal connectivity is being used 
as a biomarker for distinguishing between patients and con-
trols or for classifying new patients). Nevertheless, it should 
be noted that patient and control connectivity parameters 
represent the same thing and are directly comparable when 
the analysis of patient and control data is based on the iden-
tical model space with identical priors for the model parame-
ters (including those for the forward hemodynamic model 
and those for neuronal coupling).

FUTURE DEvELOPMENTS
In addition to the methodological issues highlighted above that 
warrant further investigations, other developments can potentially 
add more flexibility to the use of DCM in patient studies. We focus 
here on four future developments: (1) quantify the vulnerability 
of a given network after damage, (2) sample the model space in an 
unconstrained manner, (3) include new computational models in 
DCM, and (4) combine DCM with other approaches.

(1) Quantifying the vulnerability of the network to damage. 
Parallels can be made with the increased interest in graph 
theory for complex brain network analysis (for review see 
Bassett and Bullmore, 2009; Bullmore and Sporns, 2009; 
Bressler and Menon, 2010; Guye et al., 2010). Using graph 
theory, previous studies have investigated connectivity chan-
ges that result from an insult to a given part of the network 
(e.g., Kaiser et al., 2007; Honey and Sporns, 2008; Alstott 
et al., 2009), for instance by using structural network proper-
ties of the lesion site to predict the functional (i.e., dynamic) 
consequences of the focal damage. This literature has yielded 
the development of different measures to quantify the “resi-
lience” or the “vulnerability” of a given network after insult 
(see different coefficients in Rubinov and Sporns, 2010) and 
also proposed new statistical approaches for identifying 
differences in networks between patients and controls (see 
Zalesky et al., 2010). The translation of these sorts of measu-
res to the DCM framework would be a valuable contribution 
for future studies of patients.

(2) Sampling model space in an unconstrained manner. Defining 
the model space in a comprehensive way is a challenging step 
(e.g., see critique in Tauchmanova and Hromcik, 2008), in 
particular when the number of nodes or inputs is relatively 
high. One exciting possibility is the ability to sparsely sample 

be used to compare connectivity parameters between patients and 
controls. Alternative permutation testing (Goulden et al., 2010) 
can be used in studies with small samples. For the same family of 
models, the latest BMA procedure is more suitable (see illustration 
in Penny et al., 2010; Seghier et al., submitted) when the two groups 
differ in the distribution of model evidence across the model space 
(e.g., the posterior probabilities of plausible models are different in 
the two groups). Moreover, it is sometimes interesting to look for 
correlations between connectivity parameters in patients and their 
phenotype or genotype. This helps to interpret differences between 
patients and controls and to determine whether any connectivity 
pattern can serve as a biomarker for a particular deficit or signature 
of a particular reorganization mechanism.

CONCEPTUAL AND METHODLOgICAL ISSUES
Other conceptual and methodological issues should be acknowl-
edged when using DCM in patients (see for instance Daunizeau 
et al., 2010). We focus here on five issues that we believe are crucial 
for interpreting or generalizing DCM findings. All five warrant 
further systematic investigations, on both simulated and real data, 
in order to characterize their influences.

(1) Effective connectivity, like functional responses, varies across 
subjects. Although group effects are easy to report and 
important in showing the most consistent effects in a given 
population, variable connectivity patterns across patients 
can indicate different ways a given deficit can be expressed 
and the strategies that patients may be using to compen-
sate for those deficits. It is also possible that variability may 
change with the level of inference, as shown recently in a 
group of patients with Parkinson’s disease where inferences 
at the model level were more reliable and reproducible than 
inferences at the connection level (e.g., Rowe et al., 2010).

(2) The network of areas included in a DCM are typically only 
part of the complete and complex neural system that supports 
the task. Therefore, the inter-regional interactions within the 
selected sub-network are only a parsimonious model of the 
“true” system.

(3) The problem of missing nodes is crucial for DCM (see Smith 
et al., 2010). As highlighted above, the deterministic DCM 
will only test the differences in connectivity within the com-
monly activated network, ignoring the regional effects that 
are absent or novel in patients compared to controls. For 
this reason we have suggested that the abnormalities should 
be reported at the level of regions in addition to the level of 
connectivity.

(4) The remote effect of abnormal connectivity in another net-
work. This problem concerns the influence of abnormal 
parts in a subsystem that may propagate to other networks 
causing “indirect” abnormal connectivity in the subsystem 
of interest. For instance, it is possible that damaged parts 
within one functional system manifest as abnormal connec-
tivity that is not necessarily related to the main task/process 
of interest. This effect is linked to the more global problem of 
the missing nodes that can sometimes be sufficiently strong 
to invalidate DCM results of a given subsystem (see discus-
sion in Daunizeau et al., 2010).
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