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not been observed during more physiological corticostriatal 
synaptic responses (Flores-Barrera et al., 2010), when neurons 
are embedded in their rich polysynaptic network where indi-
rect effects can ensue (Albin et al., 1989; Mink, 2003; Flores-
Barrera et al., 2009; Bateup et al., 2010; Kravitz et al., 2010; 
Redgrave et al., 2010). Two questions need to be answered: First, 
if indirect pathway D

2
-expressing neurons are more excitable 

than direct pathway neurons (Day et al., 2006; Flores-Barrera 
et al., 2010) then, it is important to know whether activation 
of D

1
-class receptors is strong enough to make direct pathway 

neurons more excitable, perhaps as excitable as indirect path-
way neurons. Secondly, it is also important to know whether 
D

2
-class receptor activation is strong enough to decrease sig-

nificantly the corticostriatal response of indirect pathway neu-
rons. In other words, to test the robustness of dopaminergic 
actions on corticostriatal responses it is necessary to observe 
whether DA actions do in fact produce a balance in excitabil-
ity as the “two pathway hypothesis” postulates. If this is so, 
it is necessary to know how much margin is available to the 
system in order to achieve the supposed balance. To answer 
these questions, we used selective agonists and antagonists of 
D

1
- and D

2
-class receptors, bacterial artificial chromosome 

(BAC) transgenic mice to identify the recorded neurons, and 

IntroductIon
Striatal dopamine (DA) is involved in initiation of learned pro-
cedures (Schultz, 2007). Localization of different DA receptors in 
medium spiny neurons (MSNs) belonging to direct and indirect 
pathways of the basal ganglia (Gerfen, 2000) has led to the idea that 
balanced activity in these two pathways is regulated by opposite 
actions of DA in each of them: the “two pathways hypothesis” (Albin 
et al., 1989; Mink, 2003; Redgrave et al., 2010). Both voltage- and 
current-clamp data in single cells have partially confirmed these 
assumptions: D

1
-class receptor (D

1
R) activation facilitates firing 

in MSNs of the direct pathway by enhancing Ca
V
1 (L) calcium 

current, whereas D
2
-class receptor (D

2
R) activation represses fir-

ing in MSNs of the indirect pathway by decreasing the same cur-
rent (Surmeier et al., 1995; Hernández-López et al., 1997, 2000). 
Supposedly, facilitating the direct pathway and preventing activity 
in the indirect pathway are DA roles when promoting movement 
(Bateup et al., 2010; Kravitz et al., 2010). These DA receptors use 
different signaling cascades to target Ca

V
1 (L) calcium channels 

(Surmeier et al., 1995; Hernández-López et al., 1997, 2000).
Nonetheless, although clear differences in DA actions can 

be recorded during direct stimulation experiments (Surmeier 
et al., 1995, 2007; Galarraga et al., 1997; Hernández-López 
et al., 1997, 2000; Salgado et al., 2005), these differences have 
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evoked suprathreshold synaptic responses in which both pol-
ysynaptic and intrinsic currents are involved (Flores-Barrera 
et al., 2009, 2010).

Because both DA receptors and Ca
V
1 channels are found in dendrites 

of MSNs where most cortical inputs arrive (Freund et al., 1984; Carter 
and Sabatini, 2004; Kreitzer and Malenka, 2005; Day et al., 2006), and 
because DA modulation particularly targets Ca

V
1 channels in MSNs 

(Surmeier et al., 1995; Hernández-López et al., 1997, 2000), the present 
study focuses in the involvement of this intrinsic current on corticostri-
atal synaptic integration and its role during dopaminergic modulation. 
However, the present work was not intended to exclude other possible 
contributors. It was found that dopaminergic actions expected by the 
two pathways hypothesis are robust and readily observed upon corti-
costriatal responses, provided the recorded cells from both pathways are 
identified and selective pharmacological tools are employed.

MaterIals and Methods
All experiments were carried out in accordance with the National 
Institutes of Health Guide for Care and Use of Laboratory Animals 
and were approved by the Institutional Animal Care Committee of 
the Universidad Nacional Autónoma de México. BAC-transgenic 
mice for D

1
- and D

2
-receptors expressing MSNs (D

1
- and D

2
-MSNs) 

of 60- to 90-day-old mice were anesthetized, decapitated, and their 
brains removed and submerged in an iced saline solution containing 
(in mM): 120 NaCl, 3 KCl, 25 NaHCO

3
, 2 CaCl

2
, 1 MgCl

2
, and 11 

glucose (33–35°C, 300 mOsm/l with glucose, pH 7.4, after bubbling 
with 95% O

2
 plus 5% CO

2
). Briefly, and as previously described in 

detail, 350 μm thick parasagittal slices were cut (Flores-Barrera et al., 
2010) on a vibratome and left to equilibrate for at least 1 h at room 
temperature in the same saline. Thereafter, slices were transferred to a 
recording chamber and continuously superfused with the same saline 
at 33–35°C. Intracellular recordings were performed from spiny neu-
rons of the dorsal neostriatum using sharp electrodes filled with 
potassium-acetate 3 M and 1% biocytin (d.c. resistance 80–120 MΩ). 
Records were obtained with an active bridge electrometer (Neuro 
Data, Cygnus Technology, Inc., Delaware Water Gap, PA, USA), digi-
tized, and saved for off-line analysis with a personal computer. After 
recordings, neurons were injected with biocytin for its anatomical 
identification. Biocytin injected neurons were identified as D

1
- or 

D
2
-type receptors expressing MSNs. D

1
- and D

2
-type dopaminergic 

agonists: SKF 81297 and qinelorane, as well as antagonists: SCH 
23390 and sulpìride were used. Ca

V
1 (L) type calcium agonist Bay 

K 8644 and L-type calcium channel blockers, nicardipine (Sigma, 
St. Louis, MO, USA), and calciseptine (Alomone Labs, Jerusalem, 
Israel) were dissolved and applied to the bath saline. Most experi-
ments were paired, so that recordings in the presence and absence 
of bath-applied drugs were compared in the same neuron with non-
parametric statistics (Systat v.7., SPSS Inc., Chicago, IL, USA): When 
D

1
 and D

2
-MSNs parameters were compared Mann–Whitney’s U test 

was employed. Statistical significance was set at P < 0.05.

results
dopaMInergIc ModulatIon of cortIcostrIatal responses In 
Msns froM dIrect and IndIrect pathways
Medium spiny neurons were identified as belonging to the  
direct or indirect pathways by double labeling the biocytin-filled 
and green fluorescent protein positive (GFP+) recorded cells. 

Figure 1A shows a suprathreshold corticostriatal response (red) 
from a BAC D

1
-receptor expressing neuron. Photomicrograph at 

right shows the double labeled recorded neuron (superimposed 
eGFP-green and biocytin-red). Figure 1B shows a suprathreshold 
corticostriatal response (green) from a BAC D

2
-receptor express-

ing neuron. Photomicrograph at right shows the double labeled 
neuron. Corticostriatal responses in D

1
-receptor expressing MSN 

(D
1
-MSN) show action potentials of increasing amplitude and a 

slowly decaying plateau potentials, whereas D
2
-receptor expressing 

MSN (D
2
-MSN) shows a larger but briefer depolarization with fir-

ing of inactivating action potentials followed by a quasi exponential 
decay. Inset in Figure 1A shows superimposition of both record-
ings to emphasize their differences (Flores-Barrera et al., 2010): 
area under D

1
-MSNs response is 10,568 ± 523 mV·ms and area 

under D
2
-MSNs response, without including the autoregenerative 

response, is 8,204 ± 697 mV·ms, respectively (n = 36; P < 0.001).
Corticostriatal responses evoked with increasing stimula-

tion strength were tested in D
1
-MSNs with 1 μM SKF 81297, a 

selective D
1
-class receptor agonist (Figures 2A–C, black traces: 

control; red traces: plus SKF 81297). In all direct pathway neu-
rons recorded, D

1
-receptor activation enhanced the response, 

augmenting the depolarization, and the number of action poten-
tials fired. Surprisingly, responses exhibited inactivation of action 
potentials during synaptic depolarization, a phenomenon more 
commonly seen in D

2
-MSNs but rarely seen in D

1
-MSNs in con-

trol conditions (Flores-Barrera et al., 2010). That is, D
1
-receptor 

activation could render direct pathway neurons as excitable as 

Figure 1 | Corticostriatal response in D1- and D2-MSNs. (A,B) 
Suprathreshold corticostriatal responses in direct (red) and indirect (green) 
pathway MSNs are different (inset in A, superimposed records) and can serve 
to identify the neurons during physiological experiments: intrinsic 
autoregenerative response underlies spikes in D2-MSNs, a more sustained 
plateau potential is characteristic of D1-MSNs. At right, superimposition of 
biocytin-filled recorded cells in red with green fluorescent protein positive 
(GFP+) neurons from BAC mice. Recorded cells are double labeled (yellow). 
Calibration: 20 μm.
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Corticostriatal responses evoked with increasing stimula-
tion strength were tested in D

2
-MSNs with 1 μM quinelorane, a 

selective D
2
-class receptor agonist (Figures 2E–G, black traces: 

control; green traces: plus quinelorane). In all indirect pathway 
neurons D

2
-receptor activation reduced the response, decreasing 

the depolarization. In these traces, it was preferred to illustrate the 
autoregenerative response that commonly underlies the train of 
action potentials in indirect pathway neurons (Flores-Barrera et al., 
2010) to show that D

2
R action decreases that response. Action of 

quinelorane was completely blocked by the D
2
-receptor antagonist 

1 μM sulpiride (n = 3; not shown). Percentages of depolarization 
reduction induced by D

2
-agonist in the maximal corticostriatal 

response without including the autoregenerative response were 
23 ± 6% (n = 10; P < 0.03). That is, D

2
-receptor activation signifi-

cantly decreased the synaptic response of indirect pathway neurons. 
Figure 2H shows subtractions from the records above. Note that 
D

2
-receptor activation decreases the corticostriatal response includ-

ing the autoregenerative response (Figure 2H, arrow; Bargas et al., 
1991; Flores-Barrera et al., 2010).

Taking all the results together it appears that DA actions can 
balance the excitability of direct and indirect pathway neurons of 
the basal ganglia by both enhancing the excitability of direct and 
repressing the excitability of indirect pathway neurons (Galarraga 
et al., 1997; Carter and Sabatini, 2004; Liu et al., 2004; Day et al., 
2008) as the “two pathways hypothesis” requires. Areas under 
synaptic responses for each cell type after DA receptors activa-
tion and with respect to their own controls are 9,124 ± 609 mV·ms 
vs. 11,810 ± 1,264 mV·ms for D

1
-MSNs (n = 8, P < 0.03) and 

8,950 ± 1,006 mV·ms vs. 7,173 ± 687 mV·ms for D
2
-MSNs (n = 10; 

P < 0.03).

caV1 calcIuM current contrIbutIon durIng cortIcostrIatal 
responses
Both DA receptors and Ca

V
1 (L) calcium channels are found in 

dendrites of MSNs where cortical inputs arrive to generate corti-
costriatal responses (Freund et al., 1984; Carter and Sabatini, 2004; 
Kreitzer and Malenka, 2005; Day et al., 2006). Ca

V
1 channels are 

activated during corticostriatal responses in non-identified MSNs 
(Galarraga et al., 1997; Adermark and Lovinger, 2007; Flores-
Barrera et al., 2009). These channels are also a main target for 
D

1
- and D

2
-receptors signaling during direct somatic stimulation 

(Hernández-López et al., 1997, 2000). Finally, Ca
V
1 channels have 

also been shown to participate in the generation of down- to up-
state voltage transitions in MSNs (Vergara et al., 2003). Therefore, 
it is logical to infer that they may be involved in the evoked cor-
ticostriatal responses in both direct and indirect MSNs, however, 
this last point has not been proved.

Figures 3A,B show that the Ca
V
1 channel blocker, 400 nM 

calciseptine, reduces corticostriatal responses in both D
1
- and 

D
2
-MSNs. Superimposed records in control (black) and in the 

presence of calciseptine (blue) confirm that intrinsic calcium cur-
rents are activated by corticostriatal transmission in both classes 
of projection neurons. Blockade of Ca

V
1 channels in D

1
-MSNs 

decreased the corticostriatal response by 29 ± 2% (n = 7; P < 0.05), 
while it decreased the response by 29 ± 2% (n = 8; P < 0.007) in 
D

2
-MSNs. Similar reductions were observed after 2.5 μM nica-

rdipine (see Figure 4). Note two rising  components in D
1
-MSNs: 

indirect pathway neurons. Action of SKF 81297 was completely 
blocked by the D

1
-receptor antagonist 1 μM SCH 23390 (n = 3; 

not shown). Percentages of depolarization enhancement induced 
by D

1
-agonist in the maximal corticostriatal response were 

29 ± 8% (n = 8; P < 0.03). Figure 2D shows subtractions from 
the records above. Note that D

1
-receptor activation enhances the 

corticostriatal response both by prolonging and increasing the 
plateau potential in a gradual manner and, most importantly, 
by disclosing an initial underlying autoregenerative response at 
the initial depolarization during the highest stimulus strength 
(Figure 2D, arrow).

Figure 2 | Dopaminergic modulation of corticostriatal responses in 
D1- and D2-MSNs. (A–C) Orthodromic corticostriatal responses to a single 
stimulus of increasing stimulation intensity in a D1-MSN. Controls: black and 
after addition of 1 μM of the D1R selective agonist SKF 81297 (red); 
superimposed in each frame. Note increasing firing and depolarization due to 
D1R activation including action potential inactivation (C). (e–g) Orthodromic 
corticostriatal responses to a single stimulus of increasing stimulation 
intensity in a D2-MSN. Controls: black and after addition of 1 μM of the D2R 
selective agonist quinelorane (green); superimposed in each frame. 
Underlying autoregenerative response is shown instead of the action potential 
train. Note a decrease in synaptically evoked depolarizations due to D2R 
activation in each frame. (D,H) Subtraction of superimposed recordings above: 
D1R action facilitated both initial and sustained plateau depolarizations. Note a 
possible autoregenerative response (arrow, D). D2R action decreased 
depolarizations at all stimulus intensities, including autoregenerative 
responses (arrow, H).
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a D
1
-MSN (Figure 3E) and in a D

2
-MSN (Figure 3F) show that the 

Ca
V
1 agonist prolongs the plateau potential and induces the  firing 

of more action potentials in D
1
-MSNs, whereas it depolarized the 

response of D
2
-MSNs along its entire decay. Bay K 8644 helps in elic-

iting an autoregenerative response in D
2
-MSNs (inset in Figure 3F). 

Bay K 8644 actions show increasing and sustained depolarizations in 
D

1
-MSNs (Figure 3G), and a decaying depolarization after the initial 

peak in D
2
-MSNs (Figure 3H). Inset in Figure 3F shows in another 

indirect pathway neuron, after 2.5 μM nicardipine in the presence of 
Bay K 8644 a reduction in orthodromic autoregenerative response.

Because the actions of calcium blockers was so similar in both 
neuronal classes, the different roles that Ca

V
1 channels accomplish 

in each response, as disclosed by Bay K 8644, suggests that other 
synaptic or intrinsic currents are in charge of Ca

V
1 channels regula-

tion, perhaps at dendritic sites.
Areas under synaptic responses for each cell type after Ca

V
1 

agonist Bay K 8644 with respect to their own controls are 
11,821 ± 1,324 mV·ms vs. 15,306 ± 1,600 mV·ms for D

1
-MSNs 

(n = 4; P < 0.05) and 7,919 ± 2,178 mV·ms vs. 11,308 ± 2,600 mV·ms 
for D

2
-MSNs (n = 4; P < 0.05).

dopaMInergIc ModulatIon Is occluded when caV1 channels 
are blocked
Figure 4A shows superimposed corticostriatal responses in a repre-
sentative D

1
-MSN in control (black), in the presence of 2.5 μM nica-

rdipine (light blue) and after application of the D
1
-class receptor 

agonist 1 μM SKF 81297 (red). Note absence of action of D
1
-agonist 

after blockade of Ca
V
1 channels. Figure 4B shows superimposed 

corticostriatal responses in a representative D
2
-MSN in control 

(black), in the presence of 2.5 μM nicardipine (light blue) and 
after application of the D

2
-class receptor agonist 1 μM quinelorane 

initial and late, and only an initial component plus a prolonged 
decay in D

2
-MSNs. Subtractions of superimposed records dis-

close the calciseptine-sensitive component (Figures 3C,D; Flores-
Barrera et al., 2010). Areas under responses for each cell type after 
blockers of Ca

V
1 channels with respect to their own controls are 

11,646 ± 750 mV·ms vs. 8,212 ± 462 mV·ms for D
1
-MSNs (n = 7; 

P < 0.03) and 7,876 ± 864 mV·ms vs. 5,611 ± 675 mV·ms for 
D

2
-MSNs (n = 8; P < 0.007). Inset in Figure 3B shows in other 

indirect pathway neuron, a reduction in the orthodromic autore-
generative response after 2.5 μM nicardipine.

We next tested the effects of the Ca
V
1 (L) calcium agonist Bay K 8644 

(2.5–5 μM) on the corticostriatal response. Superimposed records: in 
control (black) and in the presence of 2.5 μM Bay K 8644 (orange) in 

Figure 3 | Contribution of CaV1 calcium current during the corticostriatal 
response in D1- and D2-MSNs. (A) Superimposed records: in control (black) 
and in the presence of 400 nM calciseptine (blue) in a D1-MSN. (B) 
Superimposed records: in control (black) and in the presence of 400 nM 
calciseptine (blue) in a D2-MSN. Note briefer train of action potentials in 
D2-MSNs as compared to D1-MSNs (cf. A,B). Inset: shows the 
autoregenerative response that underlies the train of action potentials in 
D2-MSNs (cf. Figure 2), before (black trace) and during 2.5 μM nicardipine 
(light blue). (C,D) Subtractions of superimposed records above disclose the 
calciseptine-sensitive component in D1- and D2-MSNs. Note initial and late 
rising components in D1-MSNs, and only the initial followed by continuous 
decay in D2-MSNs. (e) Superimposed records: in control (black) and in the 
presence of 2.5 μM Bay K 8644 (orange) in a D1-MSN. (F) Superimposed 
records: in control (black) and in the presence of 2.5 μM Bay K 8644 (orange) 
in a D2-MSN. CaV1 agonist prolonged the plateau potential and induced the 
firing of more action potentials in D1-MSNs, whereas it depolarized the 
response of D2-MSNs along its decay. Inset in (F) shows that Bay K 8644 
helps in eliciting an autoregenerative response in D2-MSNs. (g,H) Subtraction 
of Bay K 8644 actions: Note an increasing and sustained depolarization in 
D1-MSNs, and a decaying depolarization after the initial peak in D2-MSNs.

Figure 4 | Dopaminergic modulation is decreased when CaV1 are blocked. 
(A) Superimposed records in a D1-MSN and (B) in a D2-MSN in control (black 
records) and in the presence of 2.5 μM nicardipine (light blue records). Addition 
of D1R-agonist SKF 81297 (red recording) in a D1-MSN (A) and of a D2R-agonist 
quinelorane (green recordings) in a D2-MSN (B). Note lack of actions of DA 
agonists once CaV1 channels are blocked.
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as several intrinsic inward and outward currents (Flores-Barrera 
et al., 2009, 2010). This implies to test DA actions during more 
physiological responses.

The present experimental work demonstrates the main postulate of 
the “two pathways hypothesis,” that is, that the excitability of neurons 
from both basal ganglia pathways can reach a dynamic balance due to 
both D

1
- and D

2
-class receptors activation which enhance and decrease, 

respectively, the corticostriatal responses of direct and indirect pathway 
neurons. DA actions have a wide range of operation since D

1
-MSNs 

can become more excitable than D
2
-MSNs if necessary. Therefore, the 

present data support DA role as that of balancing both basal ganglia 
pathways. Targeting of Ca

V
1 channels was somehow expected since 

the gating of voltage-dependent and ligand-gated (ionotropic) ion 
channels in the dendritic membrane, as well as long-term synaptic 
plasticity, depend on calcium entry through these channels (Snyder, 
et al., 2000; Hallett et al., 2006; Adermark and Lovinger, 2007).

Variable results and randomness in firing found in vivo more 
physiological situations (Kostal et al., 2007) are attributed to a popu-
lation or vectorial neural coding (Wu et al., 2002), evidence of which, 
has been obtained for the striatal microcircuit (Carrillo-Reid et al., 
2008, 2009). Thus, although the present work supports potent and 
robust DA postsynaptic actions in a more physiological situation, 
several groups have also reported potent presynaptic actions on ter-
minals making contact with each class of projection neuron (Flores-
Hernández et al., 1997; Guzmán et al., 2003; Bamford et al., 2004; 
Tecuapetla et al., 2007) and following determined connections rules 
(Taverna et al., 2008), suggesting the possibility of a concomitant 
dynamic regulation of synaptic weights as well as dopaminergic 
regulation of striatal interneurons (Tepper et al., 2004).

conclusIon
Dopamine plays a fundamental role in normal basal ganglia 
function, the deficits arising from reductions in the sustained 
stimulation of DA receptors show a rather wide involvement in 
behavioral processes (Schultz, 2007). After DA depletion, a reduc-
tion in the corticostriatal response was reported in substance P 
expressing MSNs whereas an enhancement in the response was 
observed in enkephalin expressing MSNs, partially explained 
by a decrease of synaptic GABAergic connections among MSNs 
(Flores-Barrera et al., 2010). In contrast, the present study shows 
that the dopaminergic D

1
R activation increased the corticostriatal 

response in D
1
-MSN up to the point of action potential inactivation 

as that observed in D
2
-MSNs whereas D

2
R activation depressed the 

corticostriatal response in D
2
-MSNs and decreases duration and 

amplitude of calcium autoregenerative responses recorded in these 
neurons. Therefore, dopaminergic DA  receptors actions tend to 
equalize the excitability of MSNs from both pathways.

Because modulation of Ca
V
1 channels is lost in the absence of DA, 

the changes observed in the corticostriatal response after DA deple-
tion: a decrease in the depolarizing plateau of SP+  expressing MSNs, 
and a greater intrinsic excitability of ENK+ expressing MSNs can be 
readily explained. The end result is that both classes of MSNs lose their 
ability to balance their activity during Parkinsonism (Flores-Barrera 
et al., 2010), being, perhaps, a main cause of movement impairment.

It is concluded that strong cortical stimulation can  overcome all 
these indirect network effects so that the present results  support 
the DA role expected by the “two pathways hypothesis.”

(green). Note absence of action of D
2
-agonist after blockade of 

Ca
V
1 channels. These experiments suggest that Ca

V
1 channels are 

a major target of DA modulation during corticostriatal integration.

dIscussIon
Corticostriatal responses of D

1
- and D

2
-MSNs constitute an “elec-

trophysiological footprint” that readily distinguishes between direct 
and indirect pathway neurons (Flores-Barrera et al., 2010) because 
dendritic excitability, and therefore, corticostriatal integration is dif-
ferent in D

1
- and D

2
-MSNs when all synaptic and intrinsic currents 

are in place (Day et al., 2008; Flores-Barrera et al., 2010). The present 
work demonstrated: (1) A selective dopaminergic D

1
-class receptor 

mediated increase in firing and depolarization of the corticostri-
atal response in D

1
-MSNs in such a way as to approach the level of 

excitability found in D
2
-MSNs. (2) A selective dopaminergic D

2
-class 

receptor mediated a significant decrease in firing and depolarization 
of the corticostriatal response in D

2
-MSNs. (3) Ca

V
1 (L) calcium 

currents contribute to corticostriatal integration in both D
1
- and 

D
2
-MSNs; including the autoregenerative response underlying the 

train of spikes characteristic of D
2
-MSNs. (4) Blockade of Ca

V
1 chan-

nels occluded the actions of selective DA receptor agonists in their 
respective responsive neurons from the direct and indirect pathways. 
(5) By acting in both pathways simultaneously DA may balance the 
excitability of the neurons from both basal ganglia pathways to make 
D

2
-MSNs less excitable than D

1
-MSNs, if necessary, thus reversing 

their responsiveness to cortical commands. These findings show that 
there is enough margin to tune up the excitability of the neurons from 
both pathways, upon demand. This tuning capability is very probably 
lost during Parkinsonism (Flores-Barrera et al., 2010).

The present work did not exclude, however, the possible par-
ticipation of other calcium channels (Carter and Sabatini, 2004; 
Salgado et al., 2005; Higley and Sabatini, 2010) in corticostriatal 
integration and only underlines the importance of Ca

V
1 channels.

Ca
V
1 channels are positioned near cortical glutamatergic syn-

apses in MSNs dendrites (Freund et al., 1984; Carter and Sabatini, 
2004; Higley and Sabatini, 2010), a strategic location to partici-
pate in corticostriatal integration. However, in spite of voltage- and 
current-clamp recordings during direct stimulation experiments 
in single cells agree with the assumptions of the “two pathways 
hypothesis,” that are, first, D

1
-class receptor activation facilitates 

firing in D
1
-MSNs during direct somatic stimulation of single cells 

(Hernández-López et al., 1997) and enhances Ca
V
1 calcium current 

in isolated neurons (Surmeier et al., 1995), and secondly, D
2
-class 

receptor activation represses firing in MSNs of the indirect pathway 
by decreasing the same current (Hernández-López et al., 1997, 2000; 
Day et al., 2008), the fact is that in trying to find these differences 
during striatal network activity, in vivo, the expectations of the two 
pathways hypothesis become very variable and even contradictory 
(Liang et al., 2008; Kravitz et al., 2010).

It is argued that an undisputed electrophysiological evidence of 
the two pathways hypothesis is lacking during more physiological 
conditions because indirect circuit influences distort or increase 
the variability of the responses (e.g., Kravitz et al., 2010). Therefore, 
in this work we wanted to observe whether dopaminergic actions 
expected by the “two pathways hypothesis” is robust enough to 
be preserved during corticostriatal suprathreshold dendritic inte-
gration which is known to activate polysynaptic pathways as well 
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