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Moreover, a priori model testing based on fewer free parameters 
presents significant challenges for an investigation that deals with 
the developmental trajectories of skills sub-serving verb genera-
tion. In particular, such limitations significantly impact our ability 
to test specific models (e.g., regionally weighted or focal network 
models) of language development using neuroimage data as input 
to connectionist approaches for neurocognitive modeling. In the 
connectionist approaches a system behavior is captured by adjust-
ing the weights on connections between elements in the network 
to investigate how the statistical structure of inputs influences the 
behavior of the network (Plaut et al., 1996). Therefore, with more 
parameters (degrees of freedom) one is better positioned to capture 
any development shifts in neurocognitive modeling.

The utility of independent component analysis (ICA) for exam-
ining changes in brain networks associated with age and brain 
development has recently been demonstrated in the context of 
resting state (Stevens et al., 2009a) as well as active neurocogni-
tive processes (Stevens et al., 2009a,b) such as language function 
(Schmithorst et al., 2006; Karunanayaka et al., 2007, 2010, 2011; 
Kim et al., 2011). Unlike model-based approaches, ICA is a data-
driven technique capable of detecting additional task-related neu-
ral networks that exhibit activity with different temporal behavior 
(Calhoun et al., 2001a). This approach has significant advantages 

IntroductIon
Functional brain imaging methods have recently emerged as means 
of investigating connectivity and the dynamic flow of information 
across neural networks sub-serving cognitive functions (McIntosh 
and Gonzalez-Lima, 1994; McIntosh et al., 1994; Friston et al., 2003; 
Penny et al., 2004a,b). These methods measure, e.g., the gener-
ated electrical/magnetic fields (EEG/MEG) or the hemodynamic 
response associated with neural activity (fMRI). The functional 
data analysis methods frequently focus on identifying areas of acti-
vation under different behavioral conditions with less attention 
paid to the behavior of the underlying network (Friston et al., 1995).

Until recently, fMRI studies have employed model-based 
approaches predicated upon a priori knowledge of an applied 
stimulus and the brain’s response [hemodynamic response function 
(HRF)] to the stimulus (Bandettini et al., 1993; Worsley and Friston, 
1995). Such models are typically based on canonical forms for the 
HRF and do not reflect individual variations or account for differ-
ences between individuals of different age, sex, or pathologies. We 
have previously discussed that this statistical approach may not cap-
ture the complexity of brain networks supporting a language task 
such as covert verb generation (Karunanayaka et al., 2010). Several 
methods have been proposed to circumvent this drawback by avoid-
ing assumptions about the shape of the HRF (Ollinger et al., 2001). 
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prenatal period (Wada et al., 1975; Chi et al., 1977), which suggests a 
structural basis for early left hemisphere lateralization of related func-
tions (Foundas et al., 1994). While functional asymmetries are not 
present at birth (Kotilahti et al., 2010) the anatomical asymmetries, 
in association with genetic factors, may underlie later development of 
functional asymmetries (Szaflarski et al., 2002; Francks et al., 2007). 
In fact, previous reports from the parent project that generated this 
data set (Szaflarski et al., 2006a,b; Holland et al., 2007) and others 
(Wood et al., 2004; Chou et al., 2006) have indicated that the initial 
left lateralization in this area strengthens with age with maximum 
left lateralization achieved around the age of 20–25 years followed 
by gradual decrease in the observed asymmetries with increasing age 
(Szaflarski et al., 2002, 2006a). Therefore, in this study we expected 
to confirm the age-related changes in the networks (inter and intra) 
that sub-serve verbal abilities.

Because the noun must be held in working memory as the verbs 
are generated, we expect that the temporal cortex must be connected 
to a fronto-parietal network that is routinely activated in studies 
involving working memory (Chein et al., 2003). This includes acti-
vation of the inferior frontal gyrus, dorsolateral prefrontal cortex, 
and parietal cortex. More specifically, the superior temporal cortex 
is functionally connected to the inferior frontal gyrus (through the 
arcuate fasciculus) as the anatomical connections between these two 
regions are well established (Catani et al., 2005). The dorsolateral pre-
frontal (executive control) and parietal (sustained attention to words) 
cortices modulate activity in this region through either the superior 
branch of the arcuate fasciculus (Catani et al., 2005) or the superior 
longitudinal fasciculus. Because working memory shows age-related 
improvement, we would expect that the associated neural regions will 
also show age-related changes. Furthermore, the protracted period 
of development of the frontal lobes (Giedd et al., 1999; Schmithorst 
et al., 2002; Giedd, 2004; including connections with Brodmann’s 
areas 17, 18, 31, and 32) may make the associated cognitive func-
tions, the underlying regions, and the connections with these regions 
particularly dynamic through the course of childhood.

To generate a verb that is plausibly related to the noun, the 
child must select semantic concepts that are associated with the 
meaning of the noun. On the output side, semantic retrieval is 
likely to engage the middle and inferior temporal regions (seman-
tic knowledge) and the hippocampi (information retrieval). The 
semantic concepts must be coded into phonological form, typi-
cally thought of as the second stage of the word retrieval process 
(Binder et al., 2008). Because semantic associations refine over 
the course of childhood (McDonald, 1997; McGregor et al., 2002; 
Beitchman et al., 2008), it is likely that activation in both of these 
areas will change with age. The phonological form is further coded 
into subvocal speech (Thompson-Schill et al., 1997). This suggests 
a second activation by inferior frontal gyrus for subvocal phono-
logical encoding as well as contributions by the insula for speech 
coordination in subvocal naming. In the covert verb generation task 
the speech motor network is still engaged but must be inhibited so 
that words are not spoken overtly (Skipper et al., 2005). We would 
also expect age-related changes in the neural networks supporting 
these cognitive components and the connections between them.

There is evidence to suggest that the developing brain adheres to 
two rudimentary principles of organization: functional integration 
and functional specialization (Berl et al., 2006). At a  neurobiological 

when compared to the model-based methods that may not identify 
brain areas with temporal behavior that is not correlated with the 
experimental design matrix. However, ICA generates a considerable 
number of components that may not necessarily be part of the stud-
ied network (Calhoun et al., 2001b). To address this issue, we have 
incorporated several additional steps in our ICA method that make 
the results of our study more targeted and objective (Karunanayaka 
et al., 2010). In particular, we have adopted a theory-driven focus 
based on the Wernicke–Geschwind model of the language network 
with the aim of investigating developmental shifts in the verb gen-
eration circuitry in children from 5 to 18 years of age (Geschwind, 
1965a; Anderson et al., 1999). Inclusion of such a focus yields a 
biologically plausible network model for covert verb generation 
predicted by the methods proposed here, which is more inclusive 
and specific in comparison to models extracted using general linear 
modeling (Yuan et al., 2006; Holland et al., 2007).

In the present paper, we explore the age dependency of the 
connections between the nodes of the language network that 
sub-serve the verb generation task. The verb generation model 
discussed here is based on nodes generated from a group ICA of 
fMRI data obtained from 336 children ranging in age from 5 to 
18 years: which has been discussed in detail in one of our previ-
ous publications (Karunanayaka et al., 2010). The current analysis 
takes the previously described ICA analysis further by investigating 
interactions within the identified verb generation network using 
linear structural equation modeling (LSEM). The initial investiga-
tion of verb data using group ICA specifically dealt with: (1) ICA 
decomposition of verb data; (2) age effects in the task-relatedness 
of each individual IC map (at individual network level) using an 
a priori criterion (e.g., correlation with the task reference) and 
Bayesian formalism; (3) brief description of the steps leading to the 
present model (Karunanayaka et al., 2010). In the current analysis, 
the previously described model is further expanded with input 
functions (processing of presented nouns) and output functions 
(retrieval and covert verb production) together with hypothesized 
connections within and between them. In addition, a theory-driven 
focus has been proposed taking the biological plausibility of the 
verb model into account; evaluated against the literature with the 
focus on the language circuitry. Thus, the current investigation 
provides an elegant methodology capable of providing unique 
insight into the framework of neurocognitive brain development 
in children: by combining and extending previously published 
ICA results (Karunanayaka et al., 2010) with some of the figures 
reproduced in this paper for convenience and completeness. Thus, 
in the present work the emphasis is placed on the neurocogni-
tive brain development and on estimating the age dependency of 
inter- and intra-network connectivity predicted using LSEM and 
correlation analysis.

The verb generation task begins with an auditory presentation of 
a noun: requires the listener to process the noun’s phonological form, 
and attach meaning to that form (Hickok and Poeppel, 2004). Based 
on our previous description, this process begins with an input via 
the superior temporal gyrus (Karunanayaka et al., 2010). Processing 
in this area extends posteriorly from primary auditory cortex, as the 
act of accessing word’s meaning is presumed to activate a broader 
network (Levelt et al., 1999; Pulvermuller, 2001). The posterior supe-
rior temporal cortex is known to be structurally asymmetric from the 
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generation networks extending the finding of our previous study 
(Karunanayaka et al., 2010). The previously described group ICA 
provides a complete recipe of the prerequisite steps involved in ICA 
decomposition to identify the key elements underlying a biologi-
cally plausible neural network that sub-serve a specific neurocogni-
tive task (Schmithorst and Brown, 2004; Schmithorst et al., 2006; 
Karunanayaka et al., 2010, 2011; Kim et al., 2011). A complete age 
and sex breakdown of the included subjects (native, monolingual, 
English speakers) is detailed in Table 1. Based on the Edinburgh 
Handedness Inventory (Oldfield, 1971), 311 subjects were right-
handed, 24 left-handed, and 1 ambidextrous. All subjects were 
prescreened for any conditions which would prevent an MRI scan 
from being acquired (Karunanayaka et al., 2010). Out of 336 sub-
jects, 331 received the Wechsler Preschool and Primary Scale of 
Intelligence (WPPSI-R, ages below 6) or the Wechsler Intelligence 
Scale for Children [Third Edition (WISC–III, ages 6–16 years); 
Wechsler, 1991] or the Wechsler Adult Intelligence Scale, Third 
Edition (WAIS–III, ages 17 and 18 years; Wechsler, 1997). 
Similarly, 330 subjects received the Oral and Written Language 
Scales (Carrow-Woolfolk, 1996). The age range for all subjects 
was 4.92–18.92 years; Mean Wechsler Full-scale IQ = 111.6 ± 13.84 
(range = 70–147); Mean OWLS = 107.7 ± 14.3 (range = 66–151).

FunctIonal ImagIng
All images were acquired using a Bruker 3T Medspec (Bruker 
Medizintechnik, Karlsruhe, Germany) imaging system. An MRI-
compatible audiovisual system was used for presentation of the 
stimuli. Details of the techniques used to obtain fMRI data from 
younger children are discussed elsewhere (Byars et al., 2002). 
EPI–fMRI scan parameters were: TR/TE = 3000/38 ms; 125 kHz; 
FOV = 25.6 cm × 25.6 cm; matrix = 64 × 64; slice thickness = 5 mm. 
Twenty-four slices were acquired, covering the entire cerebrum. 
One hundred ten whole-brain volumes were acquired (with the 
first 10 being dummy scans) in 5 min 30 s. Techniques detailed 
elsewhere (Byars et al., 2002) were used to acclimatize the subjects 
to the MRI procedure and make them comfortable inside the scan-
ner. A whole-brain T1 weighted MP-RAGE scan was also acquired 
for anatomical co-registration.

Verb generatIon task
The fMRI paradigm of silent verb generation (Holland et al., 2001, 
2007) is a 30-s on–off block design. All stimuli were presented 
using MacStim (White Ant Software, Melbourne, VIC, Australia) 
at a rate of one noun every 5 s, for six stimuli during each 30 s 
epoch. During the active epochs, the subjects silently generated 

level, this distinction can be identified with progressive specialization 
or focalization reflecting the consolidation of synaptic reinforce-
ment of a network (Lenneberg, 1967; Muller et al., 1998; Berl et al., 
2006). In this paper, we present a unified framework and examine 
the developmental trajectories in the language circuitry based on 
fMRI data using complementary modeling approaches. As previ-
ously (Karunanayaka et al., 2010), we employ ICA, a data-driven 
method, to identify spatially coherent activation patterns. In the 
current investigation, we extend these analyses by applying correla-
tion analysis and LSEM to model connectivity between these spatial 
distributions. Several, other approaches have previously been pro-
posed to investigate network interactions following ICA analyses. 
Stevens et al.’s (2007) used dynamic causal modeling (DCM) to 
search for the presence of a meaningful causal structure among 
selected IC time courses in an event related fMRI study of visual 
Go/No–Go task. Another study examined the functional network 
connectivity (FNC) between schizophrenia patients and healthy 
controls based on the temporal dependency among ICA compo-
nents (Jafri et al., 2008). Demirci et al. (2009) extended this analysis 
one step further by incorporating Granger causality test (GCT) to 
investigate causal relationships between brain activation networks; 
we also have recently implemented Granger causality analysis to 
investigate the connections within the epileptic network (Szaflarski 
et al., 2010). Several, other investigations have further highlighted 
the usefulness of combining ICA with Granger causality on sim-
ulated, single subject and group data (Londei et al., 2006, 2007, 
2010). Some of the above mentioned methods are relatively sophis-
ticated and more suitable for investigating specific group differences 
between healthy and patient populations. However, the emphasis 
of the current analysis is on investigating the overall developmental 
trends associated with the language circuitry and presenting the 
findings in the framework of a theoretical model for neurocog-
nitive brain development. Thus, given the large sample size, the 
simplicity of the proposed partially data-driven approach can be 
considered more suitable for understanding the global network 
structure (including connectivity) associated with complex verbal 
language tasks in general, and verbal fluency tasks in particular.

materIals and methods
subjects
One hundred sixty-five boys and 171 girls took part in the study 
following Cincinnati Children’s Hospital Institutional Review 
Board approval. Informed consent was obtained from parent 
or guardian, an assent was also obtained from subjects 8 years 
and older. Exclusion criteria were: previous neurological illness; 
learning disability; head trauma with loss of consciousness; cur-
rent or past use of psychostimulant medication; pregnancy; birth 
at 37 weeks gestational age or earlier; or abnormal findings at 
a routine neurological examination performed by an experi-
enced pediatric neurologist. All subjects were considered healthy 
based on neurological, psychological, and structural measures 
(Holland et al., 2007). Subjects included in this report were also 
included in our previous studies focusing on verb generation in 
children (Holland et al., 2001, 2007; Karunanayaka et al., 2010) 
and adults (Szaflarski et al., 2006a). While this report includes 
fMRI data from the same subjects, it describes an entirely new 
analysis of  connectivity ( causality) associated with covert verb 

Table 1 | Age and gender breakdown of the study population (165 boys 

and 171 girls).

Age in years 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Sex

M 9 8 9 17 14 12 17 18 17 9 10 9 13 3

F 7* 12 17 10 11 12 11 15 21 11 11 10 12 11

*Includes one girl 4 years 11 months. The ethnic background of the subjects was: 
302 Caucasian, 21 African–American, 2 Asian, 3 Hispanic, 1 Native American, 2 
Asian/European, and 5 Multi-Ethnic.
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basis for  completion of the task through the age of the oldest sub-
jects (18 years). By concatenating the data from the entire cohort 
and searching for the components (or networks) that are com-
mon across the age group, we are able to identify the persistent 
structural elements (network nodes) underlying the fMRI verb 
generation task consisting of seven IC networks and shown in 
Figure 1. Table 2 contains a summary of the respective activation 
foci for each of the components. Coordinates listed for each IC 
correspond to the center of mass of each individual spatial element 
contained in the IC map.

To summarize, the selection of IC maps is based on three criteria: 
(1) power spectral analysis at the task frequency; (2) phase and 
(3) relevance of the spatial maps to the theoretical model of verb 
generation. Thus, by following the above mentioned criteria, the 
results of this ICA analysis can be replicated by other researchers 
in the field.

From this point on, we focus on estimating the changes in con-
nectivity between elements of the model identified by ICA using 
LSEM which is a unique contribution of this work.

appropriate verbs such as drink or fill, to aurally presented nouns 
such as cup. Subjects were asked to tap their fingers in response to a 
modulated tone presented at 5 s intervals during the control epochs. 
The control task was specifically designed to control for sublexical 
auditory processing and also to divert subjects to stop generating 
verbs into the control epochs. The fMRI task was selected such that 
children as young as 5 years old would be readily able to perform 
the task without any difficulty.

group Ica
A complete description of the group ICA methodology for verb 
generation fMRI data has been discussed in detail elsewhere 
(McKeown et al., 1998; Calhoun et al., 2001a; Schmithorst et al., 
2006; Karunanayaka et al., 2010). Basic steps involved in ICA 
decomposition are briefly mentioned here for the purpose of com-
pleteness. ICA is a data-driven analysis technique that does not 
rely on any prior knowledge of the task performed and is capable 
of identifying spatially independent components that have similar 
time courses. The power of group ICA in making statistical infer-
ences from fMRI data has been presented in several investigations 
(Calhoun et al., 2001a; Schmithorst and Brown, 2004; Schmithorst 
and Holland, 2006; Karunanayaka et al., 2010).

The ICA decomposition entails several preprocessing steps [nor-
malizing (mean centering) and 40 retained principal components 
(PCA)] at the single subject level. The data from all subjects are then 
concatenated into a single dataset before a second PCA reduction 
resulting in 50 retained components. Finally, 25 runs of the Fast 
ICA algorithm (Hyvarinen, 1999b) are combined with hierarchical 
agglomerative clustering (Himberg et al., 2004) to estimate and 
validate the independent component maps sub-serving covert verb 
generation. Performing multiple runs (when combined with hier-
archical agglomerative clustering) ensures that our analysis resulted 
in the most reliable components even after taking into account the 
stochastic nature of the Fast ICA algorithm. Although, ICA can be 
used to remove motion-related artifacts, individual motion has 
been fully characterized before performing the ICA decomposition. 
A detailed analysis of motion (including task-related movement) 
related to this task is discussed elsewhere (Yuan et al., 2009).

The task-relatedness of each IC map is then investigated using 
the associated IC time course by examining the spectral power at 
the task frequency and the phase of the IC time course relative to 
the task reference function as detailed previously (Karunanayaka 
et al., 2010). It should be noted that, by definition, spatial ICA 
requires independence only in the spatial domain and not in 
the time domain. Thus, an analysis performed in one domain 
(e.g., time) can be followed by analysis in another domain (e.g., 
spatial) without adding any undue bias to subsequent statisti-
cal manipulations. Finally, a voxel-wise random effects analysis 
(one-sample t test) is performed on selected individual IC maps 
in the spatial domain to determine the cortical regions active in 
the entire cohort. To further clarify this step, if one were to reverse 
the domains of the preceding analysis (e.g., spatial followed by 
time), the end result would be the same because of the above 
mentioned symmetry. An assumption inherent in this approach 
is that the structural components of the network for verb genera-
tion are in place by the age of the youngest subjects in our cohort 
(5 years) and continue to get fine tuned to form the structural 

FIguRe 1 | Seven task-related spatial independent components maps are 
shown in panels a-g. These ICs are computed using group ICA analysis of 336 
children ages 5–18 performing the task of covert verb generation (Karunanayaka 
et al., 2010). Slice range: Z = −25 to +50 mm (Talairach coordinates). Three 
corresponding single subject IC maps are shown at bottom (g, b, d). These individual 
spatial maps  and the associated time courses (Figure 2B) are estimated using a 
back propagation algorithm following the ICA decomposition at the group level and 
used in the subsequent LSEM analysis. All images are in radiologic orientation.
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of each group IC map (Karunanayaka et al., 2007). Specifically, 
 representative average time courses were extracted from the func-
tional data set (i.e., real signal intensities) based on these function-
ally defined ROIs. It is important to remember that ROIs derived 
from spatial IC maps often include multiple anatomical brain areas, 
as outlined in Table 2. For all of the IC maps shown in Figure 1, 
except for IC d, ROIs were defined separately for the left and right 
hemisphere components of the IC. Based on these ROIs, as men-
tioned earlier, extracted real signal time courses from the functional 
data set were then used for the between hemispheres intra-network 
connectivity computations.

A variety of models can be tested in SEM to capture relationships 
among variables and can provide a quantitative test for a hypoth-
esized theoretical model. SEM takes the entire variance–covariance 
structure into consideration when evaluating models. Furthermore, 
SEM is a generalization of regression, path and confirmatory fac-
tor models that have been extensively used in psychology, eco-
nomics and other social sciences. The model estimation in SEM 
involves minimizing the difference between the observed variance–
covariance structure and the one predicted by the implied model. 
However, when using SEM to model brain activity no distinction 
is made between the neuronal and the hemodynamic levels (Penny 
et al., 2004b) which can be considered a drawback of the method.

In the presented model, which is based on Figure 1, we only 
evaluated the feed-forward connections. As noted above, repre-
sentative time courses for each of the components (elements) in the 
LSEM are comprised of individual IC time courses from the previ-
ously performed ICA decomposition. The individual LSEM(s) were 
then solved for optimal path coefficients using the Amos software 
(Arbuckle, 1989) which utilizes an iterative maximum likelihood 
method. These optimal path coefficients (connection strengths) 
correspond to the solution of the structural equations where the 
difference between the observed and the predicted covariance 
matrix is a minimum. Finally, we evaluated the goodness of fit 
between the predicted and the implied covariance matrices using 
the χ2 distribution with m (m + 1) − n degrees of freedom (m 
corresponds to the number of elements and n corresponds to the 
number of coefficients in the LSEM respectively). The details of 
LSEM implementation for fMRI data have been discussed else-
where (McIntosh and Gonzalez-Lima, 1994; Solodkin et al., 2004; 
Karunanayaka et al., 2007; Dick et al., 2010). The LSEM itself was 
used (constrained by the proposed verb generation model discussed 
in the introduction) in a semi-exploratory manner when selecting 
the final LSEM. Advantages of alternative methods for brain activity 
modeling (such as DCM) have also been discussed by other authors 
(Friston et al., 2003; Penny et al., 2004b). Recently, an extended ver-
sion of SEM called unified structural equation modeling (uSEM; 
Smith et al., 2010) has been proposed capable of estimating con-
temporaneous as well as lagged effects simultaneously (Stoeckel 
et al., 2009). An automatic search procedure has also been proposed 
to uSEM making it entirely data-driven by increasing its flexibil-
ity substantially (Kim and Horwitz, 2009). However, DCM is still 
appears to be the most statistically sophisticated approach that 
incorporates neuronal hemodynamic relationship into a dynamic 
model of BOLD activities using Bayesian estimation (Friston et al., 
2003; Friston and Stephan, 2007; Sarty, 2007). Thus, given the fact 
that the relationship between BOLD signal and neuronal activity 

lInear structural equatIon modelIng
Linear Structural Equation Modeling is a statistical method mainly 
used for hypothesis testing regarding causal influences among meas-
ured or latent variables. In addition, SEM is capable of statistically 
testing a variety of theoretical models that hypothesize how sets of 
variables define constructs and how these constructs are related to each 
other. In terms of neuroimaging, SEM relates to effective connectivity 
that captures causal relationships (directionality) in terms of path coef-
ficients in the model. This approach differs from a typical functional 
connectivity analysis that can only determine the degree to which two 
brain regions co-vary (Friston et al., 1997). As mentioned elsewhere, 
our group ICA decomposition is based on the methods developed by 
Calhoun et al. (2001b) and is designed to evaluate individual IC maps 
and corresponding time courses based on group results. In other words, 
in this method individual IC time courses are estimated using a back 
propagation method which is followed by the ICA decomposition at 
the group level. In this paper, we use these individual IC time courses as 
input to estimate LSEM(s) at the subject level in order to examine the 
effective connectivity within the network model for verb generation.

A second level, intra-network functional connectivity analysis 
was also performed using representative real signal intensity average 
time courses from ROIs defined based on the spatial distribution 

Table 2 | Activation foci (Talairach coordinates) for the ICA components 

displayed in Figure 1.

Anatomical region BA Talairach

  X,  Y,  Z

A

R. parahippocampal gyrus 30/35 22,  −41, −5

L. parahippocampal gyrus 30/35 −26,  −41, −5

R. inferior temporal gyrus 19/37 42, −57, −5

L. inferior temporal gyrus 19/37 −46, −57,  −5

R. medial temporal gyrus 19/39 34,  −69, 20

L. medial temporal gyrus 19/39 −26, −73,  25

B

Cuneus 17 2,  −77, 10

C

R. inferior frontal gyrus 44 34,  11,  10

L. inferior frontal gyrus 44 −34,  11,  10

D

L. medial temporal gyrus 21 −54, −41, −5

L. inferior frontal gyrus 45/46 −46,  27, 15

L. inferior/medial frontal gyrus 44/9 −42, 7, 35

L. middle frontal gyrus 6/8 −6, 23, 45

L. angular gyrus/inferior parietal lobule 39/40 −30, −65, 40

e

R. superior temporal gyrus 22 50, −29, 5

L. superior temporal gyrus 22 −54, −45, 10

F
R. inferior frontal gyrus 45/47 30, 31, 0

L. Inferior frontal gyrus 45/47 −38, 23, 0

G
R. insula Insula 38, 11, 0

L. insula  −38, 11, 0
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IC based on known functional neuroanatomy (knowledge-base) 
ascribed to each Brodmann’s area encompassed by the component. 
As mentioned previously, a theory-driven focus (Geschwind, 1965a; 
Anderson et al., 1999) complements data-driven methods such 
as ICA by way of corroborating prior hypotheses about cognitive 
functions sub-serving the verb generation fMRI task.

Depending on the modularity (or function), IC modules are 
then connected to one another to form the LSEM. In this study, 
LSEM is directly derived from the covert verb generation model as 
discussed in the Section “Introduction”. For studies of developmen-
tal changes within a network, LSEM of an fMRI task can investigate 
what changes in functional connectivity explain the neural basis of 
development in language networks. This physiological approach 
should be guided by the weak constraint that anatomical proximity 
and connectivity of brain regions are incorporated in the model 
(Karunanayaka et al., 2007). Alternatively, a cognitive approach 
can also be implemented to investigate how functional/effective 
connectivity changes are related to cognitive development. The 
emphasis of the current analysis is inline with the latter approach 
where the effective connectivity changes between IC modules sub-
serving covert verb generation are investigated.

Finally, a second level Pearson correlation analysis was per-
formed on path coefficients in the LSEM to investigate any age 
effects associated with the proposed cognitive model for covert 
verb generation.

results
Six out of the seven IC maps shown in Figure 1 were detected in all 
25 IC runs while the component shown in Figure 1a was detected 
in 17 IC runs assuring high reliability (Karunanayaka et al., 2010) 
and defines the covert verb generation network for each subject 
included in the study. The maps in the lower row (individual sub-
ject level) of Figure 1 shows three corresponding individual sub-
ject level IC maps with corresponding IC time courses: estimated 
following the ICA decomposition at the group level and used in 
the subsequent subject level LSEM analysis. Figure 2A shows two 
of the corresponding average time courses for IC maps shown in 
Figures 1a,d. Figure 2B shows the individual IC time courses for 
these networks in two subjects: used as the input to the LSEM 
computations. The phase progression of the average time courses 
from leading to lagging the task reference time course (indicated by 
dark and light gray background) is clearly visualized in Figure 2A.

The developmental trajectories, network behavior (lateraliza-
tion, task-relatedness, etc.) and the language functions attributed 
to each IC have been discussed in detail elsewhere (Karunanayaka 
et al., 2010). The highly left-lateralized IC map shown in Figure 1d 
(with lateralization index equal to 1) was identified previously as 
capturing most of the left-dominance observed in a standard GLM 
analysis for the covert verb generation task (Holland et al., 2007). 
To perform the intra-network connectivity analysis for this left-
lateralized network, four separate ROIs were defined in the left 
hemisphere as shown and labeled in Figure 3. As explained above, 
only the real signal time courses from activated regions (refer to 
Table 2 for further details) inside the colored circles are included in 
the ROI analysis. The connection between (1) left middle temporal 
gyrus (LMTG) → (3) left middle inferior frontal gyrus (LMIFG) 
showed significant age dependent connectivity changes (r = 0.15, 

is poorly understood (de Marco et al., 2009), LSEM may be a very 
effective method for making inferences about changes in the causal 
structure from fMRI time series data.

In addition, several methods have been employed to obtain rep-
resentative time courses for the components included in a SEM 
analysis: one popular method being the maximum active voxel rep-
resentation (Jennings et al., 1998; Goncalves et al., 2001) which we 
employed previously to investigate developmental trends associated 
with the narrative story comprehension in children (Karunanayaka 
et al., 2007). However, in the current analysis, IC time courses were 
used to evaluate individual LSEMs to investigate the verb genera-
tion task in children. A brief description of the differences between 
the two methods are included in the section below and also in the 
Section “Discussion.”

bIologIcal constraInts
Several principles have guided the process of constructing a biologi-
cally plausible linear structural equation model for verb generation. 
As the first step (described above), ICA was used as a data-driven 
descriptor of neural elements involved in performing the fMRI 
paradigm. The second step involved a Fourier method in the time 
domain to determine which ICs were most task-related by testing 
the correlation between the fundamental frequency of each IC time 
course and the task frequency. The third step involved constructing 
a biologically plausible LSEM using the knowledge of the sequence 
of neurocognitive functions involved in the task with IC mod-
ules as building blocks (Karunanayaka et al., 2007). The IC maps 
require only independence in the spatial domain allowing highly 
correlated temporal structures to form the theoretical basis for the 
current SEM analysis. Finally, the phase of the Fourier transform 
of the associated IC time courses and the known neuroanatomi-
cal constraints were also taken into consideration when imposing 
connections between the model elements.

Some individual ICs out of the seven selected, contain more 
than one Brodmann’s area even though the representative time 
course for the IC represents all of the voxels included in the spatial 
map. This is because ICA reveals a set of chronoarchitectonically 
identified areas (Bartels and Zeki, 2004) or functionally connected 
regions that may span several Brodmann’s areas. If a given cognitive 
task recruits only one of the observed regions in a given map, then 
there will be another component separated out by ICA containing 
only that region. However, if two distinct cognitive functions have 
very similar time course, they may well be grouped into a single 
ICA component. This is a limitation of correlational analysis. Still, 
under certain minimal assumptions, the spatial independence of 
IC maps can be equated with their modularity, establishing a cor-
respondence between the IC component and a specific cognitive 
task (Duann et al., 2002; Calhoun et al., 2004). A limitation of this 
assumption is our inability to determine spatial independence of 
components with absolute certainty due to the finite number of 
voxels in fMRI experiments. However, this limitation may have only 
a minimal effect on the current investigation because of the excel-
lent signal to noise ratio provided by the large number of subjects 
in the study. Therefore, we argue that it is reasonable to assume that 
each IC map constitutes a module (a cognitive functional unit) in 
the proposed LSEM. Depending on the spatial distribution of the 
IC (activation), a specific language function can be assigned to each 
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As described in the Section “Materials and Methods,” an LSEM 
was constructed using the functional IC maps with reference to 
the literature for prior knowledge (i.e., knowledge-base) about the 
known neuroanatomy of the brain regions involved in the language 
circuitry. This LSEM was further refined based on the hypothesized 
cognitive functions associated with the brain regions encompassed 
within each spatial IC map, forming the basis for the proposed 
theoretical cognitive model for covert verb generation as shown 
in Figure 5. Of note is that the connections between brain regions 
may not be explicitly included in the proposed model if they are 
implied by inclusion within a single IC. For example, IC d includes 
frontal, temporal, and parietal regions. The cartoon in Figure 5 
demonstrates this aspect of the model by using an extended ROI 
spanning these lobes to illustrate the spatial extent of IC d.

Table 3 shows the average value of each standardized path coef-
ficient and the age-related changes in path coefficients computed 
for the LSEM shown in Figure 5. A similar figure (model) was 
included in a previous study by Karunanayaka et al. (2010); though 
that diagram did not include the path coefficients computed here 
as a parameter expressing brain connectivity. As mentioned earlier, 
the focus of the present analysis is on developmental changes in 
connectivity within the neural circuitry of language; therefore, we 

p = 0.007). The Functional connectivity between (1) LMTG → (4) 
left angular gyrus (LANG) showed no significant age effects. 
Similarly, the functional connectivity between (4) LANG → (2) 
left inferior frontal gyrus (LIFG) showed significant age effects 
(r = 0.143, p = 0.0089) while the functional connectivity between (4) 
LANG → (3) LMIFG did not. Finally, the functional connectivity 
between (3) LMIFG → (2) LIFG showed a highly significant age 
effect (r = 0.18, p = 0.002).

Similarly, we also examined the inter-hemispheric functional 
connectivity based on individual spatial IC maps. The IC map 
shown in Figure 1c showed a highly significant age effect (r = −0.3, 
p = 2.457e − 008) in the connectivity between the hemispheres 
(Figure 4). Similarly, the IC map shown in Figure 1f also showed 
significant age effect (r = −0.132, p = 0.015) in inter-hemispheric 
connectivity. However, the IC shown in Figure 1e (bilateral supe-
rior temporal gyri; BA 22) did not exhibit significant age effects 
in functional connectivity between the left and right hemispheres 
(Figure 4). Similarly, IC modules a, b, and g also did not exhibit 
any age-related inter-hemispheric functional connectivity changes. 
Thus, for these components, we have not included the results of 
the above mentioned inter-hemispheric functional connectivity 
analysis.

FIguRe 2 | (A) Associated averaged time courses from two group IC 
networks shown in Figure 1. Horizontal axis is time and the vertical axis is 
intensity (pseudo). Gray and white background indicates the timing of the 
task reference function; (B) associated IC time courses from two subjects 

(red and blue) corresponding to Figures 1a,d networks. These IC time 
courses correspond to similar individual subject networks as shown in the 
lower row (individual subject level) of Figure 1. These IC time courses are 
used in subject level LSEM evaluations.
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attributed to the youngest subjects having higher than average IQ 
(Karunanayaka et al., 2010). To be more specific, when the children 
between the ages 5 and 8 years were excluded, the weak correlation 
between age an IQ did not reach significance and consequently we 
have not included IQ as a covariate in the analysis.

dIscussIon
Methods for network connectivity analysis based on functional 
neuroimaging data are developing rapidly as a means of expand-
ing our understanding of neurocognitive function beyond what 
the neo-phrenology or functional blobology of fMRI have been 
able to reveal (Friston et al., 2003; Schmithorst and Holland, 2007; 
Schmithorst et al., 2007; Rajapakse et al., 2008; Dick et al., 2010). 
ICA is an ideal preliminary step for network connectivity analysis 
because it is able to detect areas that exhibit task-related behavior 
which might not correlate highly with an a priori model or refer-
ence function. In the present analysis, we began with ICA of verb 
generation data which detected activations in multiple networks 
with different temporal signatures. Multiple activation time courses 
detected in the same brain regions (specifically frontal and temporal 
cortex) provide direct evidence of their participation in multiple 
cognitive aspects of the verb generation task. ICA provided the basis 
for construction of a LSEM for the network that sub-serves verb 
generation task and allowed us to use this standard statistical meth-
odology to explore the age dependency of the relationships among 
cognitive modules revealed by the ICA analysis (Karunanayaka 
et al., 2007).

The theoretical framework guiding this research focuses on 
investigating the developing brain from a network perspective 
and lays the foundation for deciphering any developmental trends 
as interactions between underlying networks. Starting with the 
Wernicke–Geschwind model for the language network, we used 
a data-driven approach to analyze results from an fMRI experi-
ment in a large sample of children over a wide age range in order 
to extract key network elements supporting verb generation. This 
classical model guided our thinking about how to connect mod-
ules identified by group ICA results as having a strong correlation 
with the task behavior. We then examined the network structure to 
identify developmental trajectories that correlate with age and abil-
ity of children to think and reason at increasing levels of maturity 
(Schmithorst et al., 2006, 2007). We have shown elsewhere, how ICA 
can be used to explore developmental changes in brain activation 
patterns associated with individual neural networks supporting 
covert verb generation (Karunanayaka et al., 2010). The current 
analysis takes this approach one step further by incorporating 
LSEM to the investigations of the theories of brain development 
using the regionally weighted or focal network models (Berl et al., 
2006). Although, these hypothesized brain developmental models 
draw support from current neuroimaging literature, our analysis 
seems to favor the regionally weighted model of normal language 
development.

Independent component analysis by itself is not capable of reveal-
ing the precise cognitive correlates of the identified components 
(Schmithorst et al., 2006). Instead, this data-driven method must 
be utilized to identify spatial distributions (IC maps) from fMRI data. 
As with GLM-based analyses, the function of the detected regions 
must be inferred and should be constrained by prior knowledge of 

examined changes in the path coefficients estimated by the LSEM 
as a function of age. The following path coefficients exhibited age-
related changes: The path coefficient between IC e → IC f showed 
an increase in connectivity with age (r = 0.13, p < 0.017). The path 
coefficient between IC e → IC d showed a modest (identified with 
a trend) age-related connectivity decrease (r = −0.111, p < 0.044). 
However, the path coefficient between IC f → IC d exhibited a 
highly significant age-related increase in connectivity (r = 0.18, 
p < 0.00088). Figure 6 graphically displays the corresponding 
standardized path coefficients that showed statistically significant 
age-related changes. These values are italicized in Table 3.

For the group of children included in this study, subject age was 
significantly correlated with the full-scale IQ (Spearman’s r = −0.18, 
p < 0.0008). This small but significant negative correlation is mainly 

FIguRe 3 | Regions included (only the active areas) in the intra-
component functional connectivity analysis for IC d are 1medial temporal 
gyrus (LMTg), 2inferior frontal gyrus (LIFg), 3middle inferior frontal gyrus 
(LMIFg), 4angular gyrus (LANg). Each brain region will be represented by 
the average activation within that ROI across time. Slice range: Z = −25 to 
+50 mm (Talairach coordinates). All images are in radiologic orientation (left in 
the picture is right in the brain).

FIguRe 4 | graphical representation of the age dependence of functional 
connectivity between left and right hemispheres corresponding to IC 
maps shown in Figures 1C,e. IC c exhibits a highly significant functional 
connectivity between the left and the right inferior frontal gyrus.
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(Karunanayaka et al., 2010). Given the limitations [(Wright’s rules; 
Write, 1934) and the number of nodes in the model] in evaluating 
LSEM(s), a careful consideration must be given before selecting either 
approach. In general, any theoretical model for language related 
cognitive functions will be a compromise between the complexity 
of the neural system sub-serving language comprehension and the 
interpretability of the resulting models. Complex models can account 
for intricate dependencies (both anatomical and functional) but the 
interpretability of the resulting models would be severely compro-
mised (McIntosh and Gonzalez-Lima, 1994; Dick et al., 2010).

As suggested by Dick et al. (2010), one approach would be to use 
the hypotheses being tested as guiding the constraining aspects of the 
model development. An alternative, more appealing approach would 
be to model brain functions in terms of interactions between underly-
ing sub-networks, inline with the method we have proposed in this 
paper. To circumvent inherent drawbacks of the second approach, in 
addition to the theory-driven focus, we incorporated a secondary cor-
relation analysis specifically to investigate the within network behavior 
sub-serving covert verb generation in children (Friston et al., 1997).

The functional connectivity results of IC d revealed unique fea-
tures related to semantic processing circuitry in children. Several 
studies have implicated activation in the middle temporal gyrus 

the functional neuroanatomy. However, once the spatial distributions 
are known, depending on the complexity either a physiological or 
a cognitive approach can be employed for the connectivity analysis 

FIguRe 5 | The proposed covert verb generation model based on group ICA 
maps shown in Figure 1. This model is based on our previous publication 
(Karunanayaka et al., 2010; Figure 4). The brain cartoon shows the approximate 
locations of each IC map from Figure 1. Transparent ellipses indicate regions 
located medially within the brain and not visible from the lateral surface whereas 
opaque ellipses correspond to regions that are mainly located on the lateral surface 

of the brain. IC d is represented in both frontal and temporal–parietal regions as 
reflected in the distributed nature of this left-lateralized network. The network is 
divided into word processing (shown in blue) and word generation modules (shown 
in green). The SEM block diagram at bottom shows how these brain networks are 
graphically connected forming the basis for the cognitive model for the covert verb 
generation task. Only the Feed Forward Connections are evaluated.

Table 3 | The age-related changes in the standardized path coefficients (r 

and p value) for the SeM shown in Figure 5 are shown in column 2 as 

Pearson correlations between the path coefficient and age. Column 3 

shows the average value of each standardized path coefficient for the entire 

age range of 5–18 years included in the analysis. Path coeffiences with a 

significant age correlations are highlighted in bold font.

Connection r value, p value Avg. value of Std.  

  path coefficient

IC e → IC f 0.1295, 0.0175 0.31

IC e → IC a −0.0429, 0.4326 0.16

IC e → IC d 0.1804, 0.0444 0.27

IC f → IC d 0.1804, 0.000888 0.33

IC d → IC a −0.07917, 0.1475 0.17

IC a → IC b −0.1036, 0.0577 0.36

IC a → IC g −0.0232, 0.6660 0.23

IC g → IC c −0.0385, 0.4807 0.57

Karunanayaka et al. A developmental model for language

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 29 | 9

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


lateralization and localization over the course of language devel-
opment (Ahmad et al., 2003; Gaillard et al., 2003). Our previous 
findings of increasing left lateralization of IFG activation with 
age for the verb generation task in children are consistent with 
the functional connectivity findings showing decreasing left–right 
connectivity with age suggesting that the left hemisphere is able 
to act more autonomously in support of word generation as the 
brain matures (Holland et al., 2007). This interpretation is also 
consistent with the regionally weighted model of normal language 
development. Further, this finding alone can explain the differ-
ences between young and old subjects in language recovery after 
left-hemispheric injury with the ability of the language functions 
to shift to the right hemisphere in the early (prenatal and early 
postnatal injury) but dependence on the left-hemispheric regions 
for aphasia recovery in late life stroke (Tillema et al., 2008; Saur 
et al., 2010).

The inter-hemispheric functional connectivity between the 
posterior aspects of superior temporal gyrus (IC e) showed no 
age effects. The time courses for IC e and IC c described above 
have shown the highest increase in task-relatedness (developmental 
trend) as detailed in a previous study involving the same subject 
population (Karunanayaka et al., 2010). However, the age depend-
ence of these networks differs in terms of the inter-hemispheric 
connectivity as seen in Figure 4, with no significant age trend found 
in the posterior network encompassed by IC e (BA22).

Although the relationship between structural maturation and 
functional activation is rather complex, the present functional con-
nectivity data provides additional evidence in support of language 
lateralization being dominated by the inferior frontal brain regions. 
While one recent study did not observe any asymmetries in lan-
guage lateralization in newborns (Kotilahti et al., 2010), this study 
also found a more uniform involvement of the left hemisphere in 
speech processing indicating that left-hemispheric specialization 
for language processing may already be present at birth. Dehaene-
Lambertz et al. (2002) also found that left lateralization of lan-
guage function was present in posterior brain regions in infants as 
young as 3 months of age. These findings are inline with previously 
reported left lateralization of language functions noted in 6- to 

in the acquisition of semantic representations (Blumenfeld et al., 
2006; Booth et al., 2007). Similarly, research in adults suggests that 
more activation in the inferior frontal cortex is associated with more 
effortful retrieval or greater selection demands (Seger et al., 2000; 
Gurd et al., 2002; Whatmough et al., 2002; Booth et al., 2007). Age 
effects seen in the functional connectivity between these two regions 
suggest that the selection demands imposed on the inferior frontal 
gyrus increase with age. This may be due to the fact that the present 
verb generation task does not impose restriction on the number 
of verbs a subject can generate for a given noun. Evidence suggests 
that this design is successful in minimizing the amount of variance 
attributable to performance (Gaillard et al., 2003).

The functional connectivity between LMTG → LANG showed 
no significant age effects. The inferior parietal cortex has been 
implicated in feature integration and semantic categorization to 
form a coherent concept so that semantic relationships between 
words can be determined (Grossman et al., 2003; Karunanayaka 
et al., 2010). The demand for such processes may be at a minimum 
for this task (ceiling effect) since we developed this fMRI task in 
such a manner that even the youngest children in our study can 
perform this task easily. Nevertheless, Booth et al. (2007) have sug-
gested that the inferior parietal lobule may have distinct areas for 
processing semantic versus phonological information. This may 
explain observed age effects in functional connectivity: between 
LANG → LMIFG with no age effects and between LMIFG → LIFG 
with highly significant age effects.

The significant decrease in functional connectivity with age 
between right and left hemisphere elements of IC c implies a sub-
stantial change in the degree to which the left and right brain 
regions (inferior frontal gyrus) co-vary. Note that structural and 
functional asymmetries have also been found in the prenatal and 
early postnatal brain (Wada et al., 1975; Chi et al., 1977; Dehaene-
Lambertz et al., 2002) suggesting a bias for left hemisphere language 
lateralization very early in life. The anatomical data suggest that 
early brain development may lead to an underlying architecture 
that preferentially supports language within the left hemisphere: a 
normal variant of the focal network model (Berl et al., 2006). This 
neuroanatomical bias is hypothesized to be related to functional 

FIguRe 6 | Standardized path coefficients corresponding to the SeM shown in Figure 5 that showed significant changes with age are plotted as a 
function of age in months.
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verb generation in the developing brain. As mentioned previously, 
compared to DCM, the current investigation only models contem-
poraneous connections without taking into account the neuronal 
hemodynamic relationships explicitly (Penny et al., 2004b). The 
emphasis is, therefore, on the overall network behavior confirm-
ing or facilitating the generation of new hypothesis. The current 
investigation focused on the overall connectivity pattern shedding 
more insight into several networks that need further investigations 
using more sophisticated methods like uSEM, DCM, or Granger 
causality (Stevens et al., 2007; Jafri et al., 2008; Demirci et al., 2009; 
Londei et al., 2010; Smith et al., 2010). SEM is useful in this regard 
in that it provides a quantitative measure of overall model fit 
which allows the optimum set of path coefficients to be identified 
objectively. These coefficients can then be examined as a function 
of age to determine how connection strengths change with brain 
development. Finally, LSEM was also used as an exploratory tool 
in the proposed theoretical model in a highly restrictive manner. 
By introducing a theory-driven focus we partially avoided evaluat-
ing models of different structures. However, model selection (or 
identifying the true network structure) is a challenging statistical 
problem that has received increased attention in the neuroimaging 
community in recent times (Zheng and Rajapakse, 2006; Rajapakse 
and Zhou, 2007). We have already developed a Spectral Bayesian 
Network method (based on Model Averaging) to identify the most 
plausible models based on fMRI data, which is inline with our 
long-term objective of developing statistical methods capable of 
confirming (or rejecting) existing theoretical models for cognitive 
development.

lImItatIons
Study limitations inherent in covert verb generation task have 
been discussed in detail elsewhere (Szaflarski et al., 2006a,b; 
Karunanayaka et al., 2010). Therefore, we will only review addi-
tional limitations pertaining to the analyses employed in this paper.

In this study, we have only focused our attention on task-related 
networks even though considerable amount of intrinsic fluctua-
tions are typically inherent in fMRI time courses. ICA, in general, 
tends to over specify the problem imposing severe limitations on 
our computational ability for connectivity analysis. Implementing 
objective methods to select non-task-related components to be 
included in the connectivity analysis is non-trivial. On the other 
hand, including such components is very subjective making inter-
pretations difficult. The SEM should also be limited to a reasonable 
number of nodes (maximum of 10∼15) as any data set can be fit-
ted to models with increasing complexity. Thus, we have adopted 
a theory-driven focus coupled with proper selection processes to 
guide the analysis and interpretations circumventing above men-
tioned drawbacks. Therefore, we had no option but to limit the 
analysis to task-related components. However, if one can overcome 
the computational (and methodological) limitations, DCM might 
be more suitable to investigate intrinsic connectivity that is affected 
by the context of the task in ways which do not show up as a strictly 
task-related modulation of the time course.

As previously mentioned, ICA is a data-driven technique and, 
therefore, its use obviates conventional statistical approaches 
to hypothesis testing. Consequently, one extension of this data 
analysis method would be to incorporate constraints at the ICA 

12-month-old children (Minagawa-Kawai et al., 2007) and later 
studies of language lateralization in older children, adolescents and 
young adults (Holland et al., 2001; Szaflarski et al., 2006a).

The proposed LSEM for verb generation is hypothesized to sup-
port both word processing and word generation. However, only 
the networks included in the word processing module exhibited 
age dependent effective connectivity changes. Each of these net-
works represents a unique spatial distribution with corresponding 
time course that sub-serves specific functions of the network (e.g., 
working memory, visual imagery, or acoustic word recognition). As 
mentioned earlier, although the spatial distributions of IC maps are 
independent, the corresponding time courses are allowed to have 
highly correlated temporal structures.

According to the focal network theory, the underlying neural 
network structure for language processing is generally well estab-
lished by the age of 5 (Ahmad et al., 2003) with first evidence of 
network structure seen already in newborns (Kotilahti et al., 2010). 
Therefore, it is reasonable to assume that interactions between 
functions such as coordination of speech articulation, subvocal 
word production, and visual imagery at network level are well 
established for this group of children. However, based on our 
results, there is ample evidence to suggest that the within network 
(intra-network) behavior is undergoing a continuous process of 
dynamic change. As discussed in detail elsewhere (Karunanayaka 
et al., 2010), the areas of a distributed network can change the 
degree of engagement making it a more efficient component of the 
normally developing network. This forms the basis for the region-
ally weighted model and the differences in weights may account 
for the observed normal variations in cognitive skill level, use of 
different cognitive strategies and changes in the biological substrate 
for a function (Berl et al., 2006). This picture is consistent with the 
intra- component functional connectivity results observed for IC 
c, d, and e. (Karunanayaka et al., 2010).

As mentioned above, module IC d is the most left-lateralized 
part of the network for this task and is presumed to be associated 
with semantic representations of the nouns that are being heard 
(Karunanayaka et al., 2010). All connections to this module are 
age dependent. This module may also sub-serve working memory 
required by the verb generation task. Several studies have reported 
age-dependent BOLD signal and connectivity changes mainly in 
the frontal areas of the brain (Gaillard et al., 2000; Schlaggar et al., 
2002; Schmithorst et al., 2002; Schapiro et al., 2004). We suggest 
that these later aspects of development are captured by the observed 
connectivity changes within the word processing module in our 
proposed model. Finally, in terms of the regionally weighted model, 
these changes can be interpreted as increasing the participation of 
this left-lateralized network supporting phonological and semantic 
expressive functions as part of covert verb generation.

The biological relevance of the model derives from two sources. 
First, the highly task-related elements of the model are selected 
based on the data-driven ICA results. Secondly, the biological plau-
sibility originated with the close correspondence to the Wernicke–
Geschwind model and has been evaluated against the literature for 
the neural circuitry of language; especially for the semantic process-
ing network (Kim et al., 2011). These biological underpinnings for 
our model give us confidence that the proposed model is indeed rel-
evant to the cognitive and biological processes taking place during 
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 decomposition step to guide the analysis and increase the predic-
tive power (Lu and Rajapakse, 2005). Finally, the verb genera-
tion task utilized here was not specifically designed to acquire 
in-scanner performance data. Consequently, performance effects 
on the connectivity coefficients cannot be completely discounted 
even though the fMRI task design enabled the youngest children 
in the study to complete the task without any difficulty. Since, 
performance can be related to IQ, including IQ as a covariate can 
produce overcorrected, anomalous, and counterintuitive findings 
about neurocognitive functions (Dennis et al., 2009). It has also 
been shown that IQ should only be used as a covariate in those 
rare circumstances where selection bias has produced problems of 
non-representativeness in the sample (Dennis et al., 2009). Clearly, 
such a condition was not present here although we observed a 
small negative correlation between age and IQ. This was mainly 
due to our youngest subjects having higher than average IQ scores. 
Furthermore, in one of our previous connectivity studies (narrative 
story comprehension) with the same population, the effects of the 
age × IQ interaction term were investigated using a multivariate 
regression model and were found not to confound the age-related 
tendencies associated with SEM path coefficients (Karunanayaka 
et al., 2007). This performance-related limitation can be addressed 
in the future by collecting intra-scanner performance data using 
either sparse fMRI data collection (Schmithorst and Holland, 2004) 
or block-design task with forced responses (Szaflarski et al., 2002). 
Such a design will also allow real-time performance on the task to 
be monitored and potentially included as a covariate in the analysis 
of age dependence in connectivity. Recently we have shown that 
brain activation during covert verb generation correlates with the 
number of verbs generated during an overt phase of verb generation 
during the same task (Vannest et al., 2010). While both overt and 
covert verb generation produced similar patterns of activation, the 
correlation with performance suggests that performance could also 
be related to connectivity in the language networks sub-serving the 
tasks. This question could be specifically addressed with a modi-
fied overt verb generation task in which the number of responses 
is explicitly controlled as a design parameter.

conclusIon
A theoretical model for covert verb generation was investigated 
using fMRI data from a large cohort of children and adolescents 
between the ages 5–18 years undergoing fMRI study with such a 
task. Previously identified, spatially independent and task-related 
networks (IC maps) were combined with SEM to investigate age 
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