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Independent component analysis as a blind source separation 
technique has become a major data-driven analysis tool for fMRI 
studies (McKeown et al., 1998; Biswal and Ulmer, 1999; Calhoun 
et al., 2001; Kiviniemi et al., 2003). It is an explorative data analy-
sis method that produces a number of spatial maps (spatial com-
ponents) and corresponding time courses (Calhoun et al., 2001). 
Generally, spatial ICA is a more appropriate method than time-
domain ICA for analyzing resting-state fMRI data, given the small 
number of time points and large number of voxels (spatial samples) 
included in most fMRI datasets. Resting-state networks (RSNs) can 
be reliably and reproducibly detected using ICA at individual sub-
ject and group levels (Greicius et al., 2004; Damoiseaux et al., 2006; 
Shehzad et al., 2009; Zuo et al., 2010). Generally, the identification 
of meaningful neurophysiological spatial components is usually 
performed either by spatial correlation with a predefined template 
(Greicius et al., 2003; Van de Ven et al., 2004; Calhoun et al., 2008) 
or by visual inspection (Damoiseaux et al., 2006; DeLuca et al., 
2006; Harrison et al., 2008).

Importantly, altering the dimensionality (model order) estima-
tion in ICA can have a significant impact on the spatial characteris-
tics of the RSNs identified (Abou Elseoud et al., 2010). Accordingly, 
ICA results may be “split” into a number of sub-networks, depend-
ing on the parameters of the analysis (e.g., model order selection). 
Notably, the process of ICA model order selection is somewhat 

IntroductIon
Magnetic resonance imaging (MRI) has developed rapidly dur-
ing recent years, enabling very accurate structural and functional 
inferences of neurological and psychiatric diseases. Functional MRI 
(fMRI) enables the detection of task responses as well as sponta-
neous interregional connectivity assessment of the living human 
brain without invasive or radioactive methodology. Resting-state 
functional connectivity analyses study similarities in the temporal 
behavior of blood oxygen level dependent (BOLD) signal fluctua-
tions in different brain regions (Biswal et al., 1995; Cordes et al., 
2000; Lowe et al., 2000; Greicius et al., 2003; Beckmann et al., 
2005; Fox et al., 2005). Coherent spatial patterns of low-frequency 
(<0.1 Hz) fluctuations in the resting-state BOLD signal are referred 
to as a functional network. Alterations in functional connectivity 
of such networks are suggested to precede both structural changes 
and clinical symptoms (Greicius et al., 2004; Filippini et al., 2009). 
A number of studies have used independent component analysis 
(ICA) approaches to measure functional connectivity in clinical 
populations such as Alzheimer’s disease or dementia (Greicius et al., 
2004; Rombouts et al., 2009; Seeley et al., 2009), schizophrenia (Jafri 
et al., 2008; Calhoun et al., 2009), depression (Anand et al., 2005; 
Greicius et al., 2007; Chen et al., 2008; Zhou et al., 2009; Sheline et al., 
2010), epilepsy (Zhang et al., 2009), Huntington’s disease (Wolf et al., 
2008), and amyotrophic lateral sclerosis (Mohammadi et al., 2009).
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arbitrary (i.e., one has to tell ICA how many components to esti-
mate), depending on a number of factors, e.g., data quality (Strother 
et al., 2002, 2010), time points i.e., if one does not perform data 
reduction, the interpretation of the component maps can be a very 
time consuming task and a large majority of these maps are not 
useful (Calhoun et al., 2004), field strength (as the signal-to-noise 
ratio of BOLD signal increases with field strength), number of 
subjects (Yourganov et al., 2010), and regions or functions of inter-
est (Kiviniemi et al., 2009; Abou Elseoud et al., 2010). In addition, 
automatic model order estimation may not be reliable enough to be 
implemented as a standard methodology (Yourganov et al., 2010), 
especially when comparing different studies of a given disease.

The decomposability of a network can be measured using modu-
larity (Guimerà et al., 2004; Newman and Girvan, 2004), which 
can be used as a merit function to find the optimal partition of a 
network. There is strong evidence of brain modularity (Bullmore 
and Sporns 2009), arising from recent human neuroimaging studies 
showing anatomical (Chen et al., 2008) and functional (Ferrarini 
et al., 2009; Meunier et al., 2009a, 2009b) evidences for modular-
ity of brain networks. Animal studies have supported such hier-
archical organization (Hilgetag et al., 2000; Schwarz et al., 2008). 
The underlying functional mechanisms of the modularity of brain 
networks could be explained by the free-energy principle (Friston, 
2009). Brain modularity, as shown by the free-energy principle, is 
essential for transmitting prediction errors to higher cortical areas, 
which use these errors to update an internal model that gener-
ates top–down predictions of sensory inputs (Friston, 2009, 2010). 
Meunier et al. (2009b) applied a computational algorithm to derive 
a hierarchical modular decomposition of human brain networks 
using fMRI. Eight large modules were depicted at the highest level 
of the hierarchy, each compromising more than 10 nodes. While at 
the lowest level, there were 57 sub-modules. Notably, these results 
stand very similar to ICA decompositions obtained at low model 
orders (where large-scale networks represent the large modules) 
as well as at high model orders (where fine-grained sub-networks 
represent the sub-modules).

Independent component analysis studies in clinical populations 
have reported functional connectivity differences, but the use of 
different ICA model orders makes the comparison of these results 
difficult. Previously, we have shown that how RSNs’ characteristics 
change as a function of ICA model order concerning a population 
of healthy subjects. There are strongly independent components 
(e.g., secondary sensory motor and basal ganglia) that cannot be 
depicted at low model orders, and, leaving them out from the analy-
sis might lead to false negative results. Moreover, at higher model 
orders IC sources are finely clustered and therefore might be more 
sensitive to subtle connectivity alterations.

Based on our previous findings, we hypothesize that the detected 
disease-related differences in functional connectivity alter as a func-
tion of ICA model order. In order to investigate this hypothesis, we 
investigated between-group differences in functional connectivity 
with dual regression technique (Beckmann et al., 2009; Filippini 
et al., 2009). The null hypothesis was that the total volume of the 
detected between-group differences would not be affected by ICA 
model order and presents a straight linear relationship. We utilized 
seasonal affective disorder (SAD) as an example of a neuropsy-
chiatric disease to compare with normal healthy controls (HCs). 

Our findings in SAD show only increased connectivity in SAD, 
which facilitates inferences on the effects of model order selection. 
Finally, functional connectivity changes in SAD involve RSNs that 
could be easily identified and followed up throughout estimated 
model orders.

MaterIals and Methods
PartIcIPants
This research is part of the SAD and light therapy project that has 
started in 2009 and still going on at Oulu University, Finland. In 
our study, SAD patients were recruited through advertisements 
in two waves during January–February 2009 (first wave) and 
November 2009–January 2010 (second wave) in the city of Oulu, 
Finland (latitude 65°01′N). The first wave represents the pilot 
study of the SAD and light therapy project, while the second wave 
represents the continuation of the same project. All SAD patients 
(39.78 ± 10.64 years, 30 ♀, 15 ♂) were interviewed by an experi-
enced psychiatrist. Diagnostic and Statistical Manual of Mental 
Disorders (American Psychiatric Association, 1994) diagnoses for 
recurrent major depression (moderate or severe) were obtained 
using the Mini International Neuropsychiatric Interview (MINI; 
Sheehan et al., 1998). In addition, patients had to fulfill the diag-
nostic criteria for “seasonal pattern” according to DSM-IV-TR 
[American Psychiatric Association, 2000; although the diagnostic 
criteria for “seasonal pattern” can be applied to a diagnosis of major 
depressive episodes in both bipolar (I and II) disorder and recur-
rent MDD (American Psychiatric Association, 2000), only patients 
with recurrent unipolar depression were included in the present 
study to increase the homogeneity]. The ethical committee of Oulu 
University Hospital has approved the study for which the subjects 
have been recruited, and informed consent has been obtained from 
each subject individually according to the Helsinki declaration.

The exclusion criteria were as follows: lifetime psychotic disorder, 
other concurrent DSM-IV axis I except anxiety disorder, clinically 
significant DSM-IV axis II disorder, substance abuse or depend-
ence, tobacco smoking, lifetime suicide attempt or suicide ideations 
during the past month, unstable physical disorder, psychotropic 
medications or corresponding herbal preparations, bright light 
therapy for the current episode, ocular-disorders except myopia/
hyperopia. Furthermore, pregnant candidates were excluded. In 
addition, normal exclusion criteria for MRI-scanning were used. 
All SAD patients except four had no comorbid physical disorders 
(in the second wave: the first patient with arterial hypertension 
controlled by an angiotensin II receptor antagonist: the second 
patient suffers from arterial hypertension and hypercholesterolemia 
controlled by angiotensin II receptor antagonist and statins, respec-
tively: the third patient is diagnosed with androgenic alopecia which 
is controlled by finasteride, and the fourth patient suffers from 
menopausal syndrome, using estradiol).

IMagIng Methods
Altogether, 45 anti-depressant-free SAD patients and 45 age-, 
 gender- and ethnicity-matched HCs (no concomitant medica-
tions) from the general population were imaged using the same 
protocol during the same winter-period. Resting-state BOLD data 
were collected on a GE Signa 1.5 Tesla whole body system with 
an eight channel receive coil, using an EPI GRE sequence (TR 
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100, 120, and 150 (high model orders) independent component 
maps (IC maps) was applied to detect RSNs as described earlier 
(Kiviniemi et al., 2009; Abou Elseoud et al., 2010). The IC maps 
were thresholded using an alternative hypothesis test based on 
fitting a Gaussian/gamma mixture model to the distribution of 
voxel intensities within spatial maps (Beckmann et al., 2005) and 
controlling the local false-discovery rate at p < 0.5. Repeatability 
measures, e.g., ICASSO (Himberg et al., 2004), were not used in 
this study as our recent results (Remes et al., 2010) suggest that they 
provide only little improvement to IC estimates using FastICA. The 
expectation for the lack of differences is even more pronounced in 
a group-ICA setting due to increased SNR from pooling individual 
fMRI datasets into a single analysis.

The between-subject analysis of the resting data was carried 
out using a regression technique (dual regression) that allows for 
voxel-wise comparisons of resting-state fMRI (Beckmann et al., 
2009; Filippini et al., 2009; Littow et al., 2010; Veer et al., 2010). Dual 
regression approach identifies subject-specific temporal dynamics 
and associated spatial maps within each subject’s fMRI data set. 
This involves (A) multiple linear regression of the z-score group-
PICA maps against the preprocessed individual 4D resampled data 
sets yielding a subject-specific variance normalized (des norm = 1) 
time course for each component separately, and (B) multiple linear 
regression of these time courses was carried out against the pre-
processed individual data sets in order to obtain subject-specific 
spatial maps.

Statistical difference was assessed non-parametrically using per-
mutation testing implemented in FSL’s Randomize tool, Version 
2.1, incorporating also threshold-free cluster enhancement (TFCE; 
Smith and Nichols, 2009). This involved deriving null distributions 
of t-values for the contrasts reflecting the between-group effects by 
performing 500 random permutations of group labels and testing 
the difference between groups for each permutation (Nichols and 
Holmes, 2002). For each RSN, the resulting statistical maps were 
thresholded at p < 0.05 (TFCE corrected for family wise errors). 
The resulting between-group difference maps were resampled into 
2 mm.

Initially at low model order (most often used in the literature), 
RSNs were identified as anatomically and functionally classical 
RSNs upon visual inspection, ICA prominent low-frequency power 
on Fast Fourier Transformation (FFT) spectra, and slow fluctua-
tion in time courses. RSNs were assigned to commonly described 
RSNs as previously reported (e.g., DeLuca et al. 2006; Kiviniemi 
et al., 2009; Smith et al., 2009; Abou Elseoud et al., 2010). At high 
model orders, RSNs were identified via spatial correlation coef-
ficients (fslcc tool in FSL) using low model order RSNs as tem-
plates, and then verified by visual inspection across estimated model 
orders. The Juelich histological atlas (Eickhoff et al., 2007) and the 
Harvard–Oxford cortical and subcortical atlases (Harvard Center 
for Morphometric Analysis) provided with the FSL software were 
used to identify the anatomical characteristics of both RSNs and 
between-group differences.

For demonstration of the impact of ICA model order on 
between-group differences in functional connectivity, we have 
selected the motor and the visual large-scale networks. These 
RSNs were selected as they (a) showed most distinct disease-related 
changes and (b) could be further divided into several sub-networks 

1800 ms, TE 40 ms, 280 time points, 28 oblique axial slices, slice 
thickness 4 mm, inter-slice space 0.4, covering the whole brain, FOV 
25.6 cm × 25.6 cm, with 64 × 64 matrix, parallel imaging factor 2, 
and a flip angle of 90°). T1-weighted scans were imaged using 3D 
FSPGR BRAVO sequence (TR 12.1 ms, TE 5.2 ms, slice thickness 
1.0 mm, FOV 24.0 cm, matrix 256 × 256, and flip angle 20°, and 
NEX 1) in order to obtain anatomical images for co-registration 
of the fMRI data to standard space coordinates. The subjects were 
instructed to simply lay still inside the scanner with their eyes 
closed, think of nothing particular and not to fall asleep. Motion 
was minimized using soft pads fitted over the ears and hearing 
was protected.

data Pre-ProcessIng
Head motion in the fMRI data was corrected using multi-resolution 
rigid body co-registration of volumes, as implemented in FSL 3.3 
MCFLIRT software (Jenkinson et al., 2002). The default settings 
used were: middle volume as reference, a three-stage search (8 mm 
rough + 4 mm, initialized with 8 mm results + 4 mm fine grain, 
initialized with the previous 4 mm step results) with final tri-linear 
interpolation of voxel values, and normalized spatial correlation 
as the optimization cost function. Brain extraction was carried 
out for motion corrected BOLD volumes with optimization of 
the deforming smooth surface model, as implemented in FSL 3.3 
BET software (Smith 2002) using threshold parameters f = 0.5 and 
g = 0; and for 3D FSPGR volumes, using parameters f = 0.25 and 
g = 0. This procedure was verified with visual inspection of the 
extraction result. In some cases when the eye/tonsil tissue was not 
removed appropriately, these tissues were extracted manually. The 
resulting image was used as a mask for a secondary brain extrac-
tion. After successful brain extraction the BOLD volumes were spa-
tially smoothed with Gaussian kernel (7.5 mm FWHM) and voxel 
time series were detrended using a Gaussian linear high-pass filter 
with a 100 s cutoff. The FSL 4.1.4 fslmaths tool was used for these 
steps. Multi-resolution affine co-registration as implemented in the 
FSL 4.1.4 FLIRT software (Jenkinson et al., 2002) was used to co- 
register mean non-smoothed fMRI volumes to 3D FSPGR volumes 
of corresponding subjects, and 3D FSPGR volumes to the Montreal 
Neurological Institute (MNI) standard structural space template 
(MNI152_T1_2mm_brain template included in FSL). Tri-linear 
interpolation was used, a correlation ratio was used as the optimiza-
tion cost function, and regarding the rotation parameters a search 
was done in the full [−π π] range. The resulting transformations 
and the tri-linear interpolation were used to spatially standardize 
smoothed and filtered BOLD volumes to the MNI standard space. 
However, for computational reasons pertaining to later analysis 
steps, 4 mm resolution was retained after spatial normalization.

Ica analysIs
We have used spatial ICA in this paper and for simplicity, in the 
remainder of this paper, we refer to spatial ICA as ICA. ICA analysis 
was carried out using FSL 4.1.4 MELODIC software implementing 
probabilistic independent component analysis (PICA; Beckmann 
and Smith, 2004). Multisession temporal concatenation tool in 
MELODIC (implementing FastICA algorithm) was used to per-
form PICA related pre-processing and data conditioning in group 
analysis setting. ICA using 20 (low model order), 40, 60, 70, 80, 

Abou Elseoud et al. Resting-state functional hierarchy and disease

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 37 | 3

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


RSN volumes across model orders (Figure 1A). In this paper, for 
simplicity we categorized the estimated ICA model orders into two 
groups: large-scale and fine-grained levels.

large-scale rsns (hIgh hIerarchy)
Large-scale RSNs were localized using a low ICA model order of 20. 
At this high hierarchical level, the entire brain was segmented into 
11 large-scale RSNs (Figure 2). SAD patients showed significant 
increases in functional connectivity in four out of the 11 identified 
RSNs involving the precuneus, the visual cortex, the motor and the 
somatosensory cortices as well as the bilateral caudate and thalamus 
nuclei (Table 1). Most of the large-scale RSNs appear to involve 
more than one functional node, e.g., the motor RSN involves both 
the entire motor, premotor and somatosensory cortices, in addition 
to the auditory cortex.

FIne-graIned sub-networks (low hIerarchIes)
At higher model orders, large-scale RSNs branched into sub- 
networks segmenting every network into smaller fine-grained sub-
networks. For instance, the large-scale single sensorimotor RSN 
was segmented into 5–11 sub-networks (at model order 40–150) 
covering the entire motor, premotor and somatosensory cortices, 
in addition to, a network involving the auditory cortex (Figure 3). 
The remaining large-scale RSNs showed similar tendency to split 
down into either right and left, anterior and posterior, or superior 
and inferior compartments. Segmentation of the brain functional-
ity into detailed sub-networks using ICA model orders of 40, 60, 
70, 80, 100, 120, and 150 yielded 27, 40, 47, 54, 70, 81, and 95 RSNs, 
respectively (Table 2). At each model order, almost every network 
is decomposed of a number of smaller units (see Tables 1–8 in 
Supplementary Material). Therefore, each of these model orders 
represents a unique functional hierarchical level.

Figure 2 shows functional network segmentations at both large-
scale (20 ICs) and fine-grained (70 and 100 ICs) levels. RSNs are 
thresholded at z-score > 5 for demonstration purposes. Notably, 
comparing these hierarchical levels, fine-grained level RSNs are seg-
mented into sub-network clusters, i.e., right and left, anterior and 
posterior, or superior and inferior, etc. (Figure 2, the motor cortex 

at high model orders. The FSL fslstats tool was used to calculate 
the volume of non-zero voxels in each RSN and each significant 
between-group difference. These values were then divided by the 
number of voxels of the anatomical templates included in FSL in 
order to provide anatomical localization of the detected significant 
between-group differences as well as the RSNs. Graphs showing 
the total volume (number of non-zero voxels) of both between-
group differences and RSNs as a function of ICA model order were 
made using Origin software (OriginPro 8 SR0, V8.0725). These total 
volumes were calculated by summing up all non-zero brain voxels 
using the FSL 4.1.4 fslmaths tool. The summed maps were selected 
from group-PICA maps (p < 0.5 threshold) and from between-
group difference maps (TFCE corrected p < 0.05). RSN maps in 
Figure 2 are conservatively thresholded (z-score > 5) in order to 
show differences in functional segmentation across model orders. 
These maps show the core and the number of detected RSNs at 
each model order.

results
The results show significant increased functional connectivity in 
SAD compared to HCs at all estimated model orders. A straight 
linear fit without any change as a function of model order (that cor-
responds to our null hypothesis) does not fit the data (R2 = 0.009, 
p = 0.8) and it has to be discarded. Contrary to the null hypoth-
esis, the total volume of between-group differences significantly 
increased (R2 = 0.6, p = 0.0006) according to the third polynomial 
fit, peaking at model order 70 and then decreasing gradually as a 
function of ICA model order (Figure 1B). On the other hand, the 
total RSNs volume gradually increased, and then showed relative 
stability at higher model orders (Figure 1A). Notably, the total 
volume of between-group differences showed a marked elevation 
between model orders 60 and 70.

Moreover, at model orders 70 and 100, the total volume of 
between-group connectivity differences in proportion to the 
total RSNs volume (fraction of significant voxels) is nearly the 
same ≈ 0.075 (see Figure S1 in Supplementary Material). The frac-
tion of significant voxels is highly correspondent to the volume of 
between-group differences due to narrow differences between total 

FIguRe 1 | (A) RSNs total volume significantly increases as function of ICA model order reaching model order 60. Notably, higher model orders 60–150 showed 
relatively stable total volume. In gray, the total number of brain voxels used in the ICA analysis. (B) Total volume of between-group differences (see Figures 3, 4, 
green color) shows a non-linear increase in volume as a function of model order with volume maxima at model order of 70.
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volume of significant between-group differences reaches maximum 
at model order 70, then further increases in ICA model order convey 
fewer between-group differences (Figure 1B). Also, the total volume 
of RSNs increased up to model order 70, after which it plateaus. 
Notably, the results revealed only increased functional connectivity 
in SAD at all estimated model orders facilitating inferences on the 
effects of model order selection.

The total volume of between-group differences and the total 
volume of RSNs showed a general trend of increase (Figure 1), 
suggesting a relationship between the spatial coverage of RSNs 
and that of between-group differences. However, there is a marked 
elevation between model orders 60 and 70 in the total volume 
of between-group differences without a corresponding increase 
in the total volume of RSNs. Also, while the total volume of 
RSNs plateaus at high model orders (70–150), the total volume 
of between-group differences gradually decreases. Moreover, 
at model orders 70 and 100, the fraction of significant voxels 
reaches maximum (see Figure S1 in Supplementary Material) 
which might be linked to the detected local maxima in the total 
volume of between-group differences. These findings might indi-
cate possible contributions of other factors in the estimation of 
between-group differences.

Independent component analysis utilizes the entire spatial 
extent to estimate both large-scale RSNs and fine-grained RSNs 
by decomposing the functional data into components (ICA spa-
tial modes) according to the estimated/selected model order 
(McKeown et al., 1998; Calhoun et al., 2001; Kiviniemi et al., 2003). 
Functional brain segmentation at model orders 20, 40, 60, 70, 
80, 100, 120, and 150 yielded 27, 40, 47, 54, 70, 81, and 95 RSNs, 
respectively (Table 2). These RSN segmentations showed signifi-
cant differences across model orders. Notably, at model order 20, 
11 large-scale RSNs cover most of the brain cortex with relatively 
low z-score threshold of three. However, the most coherent core 
areas within these 11 RSNs at z-score > 5 do not involve all sub-
cortical regions, parts of parietal and temporal cortices, or the 

in light blue color). Indeed functional segmentation at even higher 
model orders, e.g., 150, is possible and will yield focused detailed 
clusters, but at the same time is not feasible for demonstration pur-
poses because such large number of clusters overlap widely (there-
fore, model orders 20, 70, and 100 were chosen for demonstration). 
Importantly, complex subcortical structures, e.g., basal ganglia, which 
are parts of large-scale RSNs at low model orders (not shown in 
Figure 2, z-score > 5) are clearly depicted as separate networks at high 
model orders (see Figure 2, e.g., thalamus and caudate in hot color).

the eFFect oF FunctIonal hIerarchy on between-grouP 
sIgnIFIcant dIFFerences
The results showed a significant linear increase in the total number 
of RSNs as a function of ICA model order. Interestingly, at low model 
order of 20, only one motor RSN covers the motor brain areas and 
also one visual RSN covers the visual areas (see Figures 3, 4). At 
model order 70, the total number of the motor RSNs was eight, while 
the visual RSNs consisted of 10 networks. At model order 150, the 
motor and visual RSNs consisted of 11 and 16 networks, respectively 
(see Figures 3, 4). Notably, some fine-grained RSNs do not involve 
between-group differences, although their lower model order RSN 
precursors show significant between-group differences, i.e., center 
motor and secondary somatosensory network (see Figures 3, 4 and 
Tables 3–7). It is obvious that the detected between-group differ-
ences are distributed differently at each model order, particularly 
at the highest estimated model orders (120 and 150). Despite the 
prominent spatial similarity of RSNs across model orders, some of 
the RSNs with significant differences at model order 100 and 120 
do not show any differences in the equivalent RSNs at model order 
150 and vice versa (see Figures 3, 4).

dIscussIon
Independent component analysis model order significantly influ-
ences the detected between-group differences in functional connec-
tivity measured using the ICA dual regression approach. The total 

FIguRe 2 | Functional segmentation of resting-state networks (RSNs) at 
different functional hierarchical levels superimposed on an MNI 
template. RSNs are thresholded at z-score > 5. Model order 20 yielded 11 
large-scale networks (top). 47 and 70 fine-clustered RSNs obtained from 

model order 70 (middle) and 100 (bottom), respectively. The same color 
templates (Fslview color templates) were used to mark the fine-clustered and 
large-scale RSNs. Numbers at the bottom of the images refer to MNI 
coordinates (xyz).
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Table 1 | Large-scale resting-state networks (RSNs) which involved significant increased connectivity at model order 20. 

RSN Anatomical region Percent of Non-zero Max z-score Center of mass  

overlap

 

voxels X Y Z X Y Z

1 Superior parietal lobule 56.0 7378 50 30 62 47.34 37.37 62.81

 Lateral occipital cortex 44.7 12130 50 28 62 45.72 27.98 56.26

 Precuneous cortex 44.4 8038 50 28 62 44.67 32.65 60.08

 Supramarginal gyrus 33.5 3581 64 42 56 58.69 44.18 57.44

 Lateral occipital cortex 29.7 5142 24 24 46 47.99 27.82 38.19

 Cuneal cortex 27.1 2139 40 27 62 43.42 26.65 54.26

 Inferior temporal gyrus 26.2 1994 72 30 34 45.3 33.21 30.73

 Middle temporal gyrus 25.8 2507 72 30 34 46.48 32.01 34.4

 Supramarginal gyrus 25.2 3744 64 42 56 51.08 41.38 58.56

 Postcentral gyrus 24.2 5736 50 34 65 48.2 41.88 62.36

 Angular gyrus 23.4  3201 38 33 64 45.85 37 57.86

 Cingulate gyrus, posterior division 18.1 1848 46 38 62 44.52 40.22 56.02

 Supracalcarine cortex 16.9 1059 39 26 60 42.34 30.57 46.54

 Temporal occipital fusiform cortex 14.9 1113 70 32 30 52.97 38.28 27.19

 Parietal operculum cortex 14.0 969 74 48 54 61.11 46.78 52.99

 Middle frontal gyrus 13.9 2531 58 66 64 47.87 66.66 61.67

 Superior frontal gyrus 13.1 2486 58 66 64 47.2 65.85 62.52

 Occipital pole 11.6 1804 52 23 60 50.37 19.78 50.54

 Intracalcarine cortex 10.1 721 36 32 44 43.25 32.47 41.99

 Precentral gyrus 9.2 2681 43 37 63 45.55 51.61 63.8

 Parahippocampal gyrus 9.1 374 60 42 26 56.24 44.14 25.99

2 Visual cortex V2 BA18 75.2 15141 36 18 48 44.35 21.92 39.58

 Visual cortex V1 BA17 73.5 12036 44 20 44 44.38 21.51 39.87

 Visual cortex V5 R 53.2 923 22 24 36 22.55 27.41 35.36

 Visual cortex V5 L 44.9 713 66 21 38 65.19 24.51 37.45

3 1ry auditory cortex TE1.0 R 90.7 1216 18 52 42 19.48 55.43 39.92

 1ry motor cortex BA4p R 84.3 4391 30 50 68 28.66 50.95 62.32

 1ry auditory cortex TE1.2 R 84.0 807 14 60 43 16.56 60.1 38.74

 1ry somatosensory cortex BA3b R 83.2 5519 30 50 68 25.66 52.02 60.58

 1ry somatosensory cortex BA3a R 81.8 2881 28 48 66 27.88 51.44 58.92

 1ry motor cortex BA4a R 78.8 5489 30 50 68 31.38 52.23 63.95

 2ry somatosensory cortex OP4 R 76.1 2401 16 58 51 15.75 59.19 44.26

 1ry motor cortex BA4a L 75.7 5791 46 58 62 58.39 51.63 63.8

 1ry somatosensory cortex BA1 R 74.5 4223 30 50 68 23.84 51.27 61.65

 1ry somatosensory cortex BA3b L 73.9 5668 64 50 66 63.84 51.23 60.48

 1ry motor cortex BA4p L 73.9 4376 64 50 66 60.88 50.29 62.07

 2ry somatosensory cortex OP4 L 73.4 2233 72 56 54 72.86 56.7 44.51

 1ry somatosensory cortex BA2 R 72.3 3558 26 48 65 24.5 48.64 61.19

 1ry somatosensory cortex BA2 L 72.1 4174 64 50 66 65.31 48.5 61.6

 1ry somatosensory cortex BA1 L 72.0 4776 64 50 66 65.57 50.17 61.89

 1ry auditory cortex TE1.0 L 71.3 1235 68 50 42 69.55 53.34 40.83

 1ry auditory cortex TE1.2 L 69.2 900 74 54 40 72.52 57.01 39.95

 1ry somatosensory cortex BA3a L 69.0 2855 64 48 65 61.36 50.47 58.65

 1ry auditory cortex TE1.1 R 68.5 795 18 52 42 22.12 52.11 40.98

 2ry somatosensory cortex OP1 R 66.1 1884 14 60 46 17.4 54.41 45.46

 2ry somatosensory cortex OP3 R 62.3 1420 22 56 52 20.62 57.79 43.87

 1ry auditory cortex TE1.1 L 54.6 785 68 50 42 66.84 50.8 41.09

 Premotor cortex BA6 R 52.8 6931 30 50 68 33.44 55.85 64.11

 2ry somatosensory cortex OP3 L 51.9 823 74 60 45 69.32 56.53 42.14

 2ry somatosensory cortex OP2 R 51.6 637 22 51 42 24.14 54.84 42.57

(Continued)
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Table 1 | Continued

RSN Anatomical region Percent of Non-zero Max z-score Center of mass  

overlap

 

voxels X Y Z X Y Z

 2ry somatosensory cortex OP1 L 49.8 1833 70 55 54 71.53 52.92 45.17

 Premotor cortex BA6 L 48.7 6009 46 58 62 55.8 55.38 64.41

 Anterior intra-parietal sulcus hIP2 R 35.7 1004 24 48 64 23.41 46.7 60.84

 2ry somatosensory cortex OP2 L 35.4 296 68 50 43 65.22 52.24 43.22

 Anterior intra-parietal sulcus hIP2 L 26.8 777 68 52 58 68.58 46.39 59.28

 BA44 R 17.2 716 14 62 46 14.85 64.83 44.54

 BA44 L 13.9 934 75 58 50 74.3 61.16 44.29

 Anterior intra-parietal sulcus hIP1 R 12.3 475 26 44 64 25.67 42.64 61.53

4 Left Putamen 34.9 820 61 69 36 55.87 68.25 35.65

 BA45 L 29.4 1497 68 70 34 67.84 75.03 38.76

 Left Pallidum 28.3 309 52 66 38 52.96 64.46 36.49

 Left Caudate 27.9 528 52 66 38 51.67 68.12 37.91

 Right Putamen 27.8 695 28 70 37 33.92 69.42 35.2

 Premotor cortex BA6 R 27.0 3551 44 72 56 39.16 68.02 62.5

 Premotor cortex BA6 L 26.5 3274 46 70 58 51.39 67.31 63.56

 Left Accumbens 25.6 137 51 68 36 51.47 69.67 34.22

 Left Thalamus 23.0 653 50 65 38 48.54 56.38 37.91

 Right Caudate 22.9 490 38 68 38 37.83 68.46 37.36

 Right Pallidum 21.5 268 38 68 38 37.01 65.19 36.33

 BA45 R 18.8 812 18 71 32 20.44 73.4 37.19

 BA44 L 18.1 1215 62 82 47 68.24 72.01 39.13

 Right Thalamus 16.7 503 38 65 40 40.76 57.71 38.37

 BA44 R 16.7 693 22 70 34 20.82 68.95 41.94

Large-scale RSNs are demonstrated by: anatomical regions involved, number of voxels, and MNI coordinates (in mm) of maximum z-scores, and center of mass.

FIguRe 3 | SAD significant increased functional connectivity (green) in 
the motor cortex at different ICA model orders (20, 40, 60, 70, 80, 100, 
120, and 150) shown superimposed on MNI template. One RSN (red–
yellow) involving both the motor cortices and the auditory cortex as well at 
the low model order of 20. At higher model orders this large-scale RSN 

splits into smaller fine-grained sub-networks. Notably, some of these 
networks still show significant increased connectivity, while others do not. 
Numbers at the bottom of the images refer to MNI coordinates (xyz). The left 
hemisphere corresponds to the right side and t-score threshold is shown at 
the right.

Abou Elseoud et al. Resting-state functional hierarchy and disease

Frontiers in Systems Neuroscience www.frontiersin.org June 2011 | Volume 5 | Article 37 | 7

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Table 2 | The table shows the total number of resting-state networks 

(RSNs) and RSNs with a significant abnormal connectivity. 

No. of model order Total no. of RSNs No. of SAD increased 

  connectivity RSNs

 20 11  4

 40 27 16

 60 46 22

 70 47 25

 80 55 36

100 70 40

120 81 44

150 95 46

Both numbers show a linearly increase as a function of ICA model order.

Table 3 | SAD functional connectivity differences in the motor cortex at all estimated ICA model orders.

Model Anatomical region Percent Non-zero  Max z-score Center of mass

order  of overlap  voxels
 X Y Z X Y Z

40 Broca’s area BA44 R 0.5 21 18 76 50 18.14 76.62 50.33

 Broca’s area BA45 R 0.6 25 18 76 50 18.44 77.9 47.59

60 Broca’s area BA44 R 1.1 46 24 65 56 25.11 66.54 57.78

 Broca’s area BA44 L 0.1 4 66 76 34 66.74 75.75 34

 Broca’s area BA45 L 0.1 6 66 76 34 66.33 75.84 33.84

 Premotor cortex BA6 R 0.1 15 38 72 56 31.59 68.92 57.26

70 Broca’s area BA44 R 1.9 80 26 66 56 20.54 72.62 53.47

 Broca’s area BA45 R 1.4 61 19 76 54 18.32 75.62 51.87

 Premotor cortex BA6 R 0.5 62 38 72 56 31.63 66.91 55.7

80 Broca’s area BA44 R 0.5 19 18 76 50 19.26 75.89 50.26

 Broca’s area BA45 R 0.8 35 18 76 50 19.43 77.82 49.88

100 Broca’s area BA44 R 1.5 64 24 65 56 22.16 69.29 52.32

 Broca’s area BA45 R 0.9 38 22 70 50 20.21 73.25 49.24

 Premotor cortex BA6 R 0.8 109 34 72 60 32.41 69 61.64

 1ry motor cortex BA4a R 0.2 16 24 58 58 24.25 58.62 58.13

 1ry motor cortex BA4p R 0.3 14 24 58 58 25.78 56.79 57.15

 1ry somatosensory cortex BA3a R 0.3 10 24 58 58 26.5 56.1 56.6

 1ry somatosensory cortex BA3b R 0.2 13 24 58 58 24.38 57.85 58

120 Broca’s area BA44 R 2.4 99 22 66 50 23.38 65.63 52

 Premotor cortex BA6 R 3.3 437 40 68 60 31.77 61.39 58.17

 1ry motor cortex BA4a R 1.7 116 26 58 54 24 58.06 56.72

 1ry motor cortex BA4p R 3.5 181 24 60 52 25.66 56.99 55.24

 1ry somatosensory cortex BA3a R 5.1 181 24 60 52 26.29 56.85 55.03

 1ry somatosensory cortex BA3b R 1.8 121 24 60 52 24.56 56.64 56.24

 1ry somatosensory cortex BA1 R 0.3 17 20 54 56 20.7 55.47 56.82

 1ry somatosensory cortex BA2 R 0.4 18 20 54 56 21.53 54.4 56.99

150 Broca’s area BA44 R 0.1 3 22 68 50 22 68.66 51.66

The table describes one of the five motor resting-state networks detected at model order 40 and its subsequent (60–150) sub-networks. SAD significant connectivity 
differences (see Figure 3, first component from the left) are listed by: anatomical regions involved, number of voxels, and MNI coordinates (in mm) of maximum 
z-scores voxels, and center of mass.

cerebellum, c.f. Figure 2. On the other hand, fine-grained RSNs 
do cover the entire brain cortex as well as the cerebellum at the 
same threshold (z-score > 5).

The z-scores of the IC maps are non-linearly affected by model 
order as the calculation of z-score involves dividing by the standard 
deviation of the residual variance which decreases as a function 
of ICA model order. The RSN brain coverage perhaps could be 
adjusted accordingly by modifying the z-score threshold such that 
the coverage would be identical at all model orders. However, in 
the group-PICA dual regression approach applied here, the RSN 
brain coverage does not play a significant role in the results. The 
dual regression utilizes un-thresholded group-PICA maps in order 
to avoid double dipping of the data. Also, un-thresholded RSN 
volumes showed only 2.3 % difference in brain coverage (data not 
shown here). Moreover, the TFCE method (used to retain only 
significant between-group differences in dual regression) does not 
use such fixed thresholds either.

Although there is a high spatial consistency between RSNs at 
high model orders e.g., 70–150 (see Figures 3, 4), the detected 
between-group differences do not show the same degree of con-
sistency (see Tables 3–7). It seems that some between-group 
differences are relatively more consistent across model orders 
than others. Each model order is a unique solution to the 
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Table 4 | SAD functional connectivity differences in the motor cortex at all estimated ICA model orders. 

Model Anatomical region Percent Non-zero Max z-score Center of mass

order  of overlap voxels X Y Z X Y Z

 40 – 0 0 – – – – – –

 60 – 0 0 – – – – – –

 70 1ry motor cortex BA4a L 0.3 24 62 56 54 63.3 55.63 55.16

 Premotor cortex BA6 R 0.1 8 34 56 60 40 62.49 59

 Premotor cortex BA6 L 1.1 137 50 66 54 49.45 67.51 58.75

 1ry motor cortex BA4p L 0.6 33 62 56 54 63.9 55.46 54.72

 1ry somatosensory cortex BA3a L 0.8 33 62 56 54 63.9 55.46 54.72

 1ry somatosensory cortex BA3b L 0.4 32 62 56 54 63.96 55.38 54.75

 Anterior intra-parietal sulcus hIP1 L 1.1 38 62 32 50 62.86 31.86 50.95

 Anterior intra-parietal sulcus hIP2 L 0.7 20 62 32 50 62.54 32.59 51.15

 80 1ry motor cortex BA4a R 0.1 6 45 56 60 44.5 55.5 60

 1ry motor cortex BA4a L 0.4 29 46 56 60 46.62 55.59 59.62

 Premotor cortex BA6 R 0.3 38 45 68 58 43.84 65.51 58.29

 Premotor cortex BA6 L 0.9 107 46 68 58 47.11 64.1 59.14

100 1ry motor cortex BA4a L 7.1 546 66 53 56 67.46 57.44 56.51

 Premotor cortex BA6 L 3.0 369 66 55 58 67.95 58.34 57.54

 1ry somatosensory cortex BA1 L 3.9 258 66 51 56 69.13 56.68 57.79

 1ry motor cortex BA4p L 11.4 674 62 52 54 66.41 55.92 55.59

 1ry somatosensory cortex BA2 L 5.1 294 65 52 54 68.33 54.55 56.37

 1ry somatosensory cortex BA3a L 12.9 534 62 52 54 65.31 55.22 54.56

 1ry somatosensory cortex BA3b L 8.6 660 62 52 54 66.76 55.67 55.91

 Anterior intra-parietal sulcus hIP2 L 1.9 56 66 52 55 66.5 49.97 52

 2ry somatosensory cortex OP4 L 0.9 26 69 56 52 70.42 56.69 56.08

120 1ry motor cortex BA4a L 1.8 138 62 56 54 64.48 55.93 55.24

 Premotor cortex BA6 L 0.5 56 60 56 56 62.71 56.1 56.67

 1ry motor cortex BA4p L 4.9 292 64 52 54 63.91 54.86 54.72

 1ry somatosensory cortex BA2 L 1.7 98 65 52 54 66.29 52.29 54.22

 1ry somatosensory cortex BA3a L 8.1 336 64 52 54 63.85 54.49 54.46

 1ry somatosensory cortex BA3b L 3.6 274 64 52 54 64.37 54.29 54.64

 Anterior intra-parietal sulcus hIP2 L 1.2 35 64 50 53 65.34 49.37 53.85

 2ry somatosensory cortex OP2 L 2.4 20 64 48 49 62.55 47.84 48.3

 2ry somatosensory cortex OP1 L 1.2 43 64 48 50 63.46 48.64 49.25

 1ry auditory cortex TE1.1 L 1.5 22 64 48 49 62.18 47.59 48.27

150 1ry motor cortex BA4a L 2.0 156 62 56 54 64.97 55.02 56.18

 Premotor cortex BA6 L 0.5 57 60 54 56 63.9 55.82 57.53

 1ry motor cortex BA4p L 4.6 272 64 52 53 64.19 54.28 55.31

 1ry somatosensory cortex BA2 L 1.9 109 65 52 54 65.96 52.78 55.57

 1ry somatosensory cortex BA3a L 7.2 298 64 51 52 64.04 53.93 54.92

 1ry somatosensory cortex BA3b L 3.6 274 64 52 52 64.62 54.05 55.39

 Anterior intra-parietal sulcus hIP2 L 0.6 18 64 50 53 64.67 49.11 52.99

The table describes one of the five motor resting-state networks detected at model order 40 and its subsequent (60–150) sub-networks. SAD significant connectivity 
differences (see Figure 3, second component from the left) are listed by: anatomical regions involved, number of voxels, and MNI coordinates (in mm) of maximum 
z-scores voxels, and center of mass.

 decomposition of the spatial brain data and subsequent model 
orders usually yield RSNs that do not share exactly the same brain 
regions. In spatial domain ICA, the mixing vector representing 
function in time is the one being modified when maximizing non-
Gaussian distribution of spatial ICA modes. The time-domain 
mixing vector is likely to capture somewhat different temporal 
aspects of the data within each model order, particularly at high 

model orders that retain more of the original data for the actual 
ICA step. Although the core of RSNs remains very similar across 
model orders, between-group differences are uniquely estimated 
at each model order.

Our results showed that the total volume of RSN maps cap-
tured at high model orders exceeds that of large-scale RSNs at the 
same threshold p < 0.5 level by 13% (Figure 1, left). The  exceeding 
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Table 5 | SAD functional connectivity differences in the motor cortex at all estimated ICA model orders. 

Model Anatomical region Percent Non-zero Max z-score Center of mass

order  of overlap voxels X Y Z X Y Z

40 Anterior intra-parietal sulcus hIP2 R 0.6 18 30 50 58 28.9 49.83 58.77

 1ry motor cortex BA4a R 4.6 320 30 50 64 36.76 46.84 62.28

 1ry motor cortex BA4a L 2.7 203 62 56 60 61.16 52.18 60.19

 1ry motor cortex BA4p R 6.4 335 30 52 56 32.15 49.55 60.91

 1ry motor cortex BA4p L 4.3 252 62 56 60 60.85 51.41 59.74

 1ry somatosensory cortex BA1 R 0.9 51 30 50 64 30.65 49.33 65.49

 1ry somatosensory cortex BA1 L 0.9 63 66 54 58 64.86 51.55 59.38

 1ry somatosensory cortex BA2 R 0.6 29 29 50 60 29.83 48.62 59.38

 1ry somatosensory cortex BA2 L 2.1 123 65 54 58 61.33 48.24 59.06

 1ry somatosensory cortex BA3a R 9.1 321 30 52 56 32.12 49.65 60.11

 1ry somatosensory cortex BA3a L 5.3 219 62 56 59 59.06 49.21 59.27

 1ry somatosensory cortex BA3b R 4.1 275 30 52 57 30.83 50.17 60.76

 1ry somatosensory cortex BA3b L 3.1 238 63 56 60 61.53 51.48 59.37

 Premotor cortex BA6 R 1.3 176 30 52 56 31.78 50.89 60.98

 Premotor cortex BA6 L 1.1 132 62 56 60 62.46 53.98 60.25

60 – – – – – – – – –

70 Anterior intra-parietal sulcus hIP1 R 1.8 68 24 38 60 22.76 39.57 59.81

 Anterior intra-parietal sulcus hIP1 L 2.8 94 60 36 58 60.86 37 59.23

 Anterior intra-parietal sulcus hIP2 R 2.4 68 24 38 60 23.23 40.59 59.96

 Anterior intra-parietal sulcus hIP2 L 1.4 41 60 38 58 62.5 39.09 59.67

 1ry motor cortex BA4a R 0.8 56 38 53 60 38.95 50.37 61.87

 1ry motor cortex BA4a L 1.0 73 60 50 61 59.57 50.04 61.32

 1ry motor cortex BA4p R 1.0 53 36 46 61 35.57 48.16 61.45

 1ry motor cortex BA4p L 2.5 148 60 50 60 59.36 48.55 60.68

 1ry somatosensory cortex BA1 L 0.6 39 60 50 61 60.84 46.75 61.03

 1ry somatosensory cortex BA2 R 0.6 28 24 42 60 27.58 45.1 60.71

 1ry somatosensory cortex BA2 L 2.2 125 60 48 62 60.57 44.53 60.31

 1ry somatosensory cortex BA3a R 2.0 69 36 46 60 35.87 47.54 61.14

 1ry somatosensory cortex BA3a L 3.7 154 60 50 60 59.36 48.34 60.61

 1ry somatosensory cortex BA3b L 1.8 138 60 50 60 59.43 48.58 60.79

 Premotor cortex BA6 R 0.6 77 38 46 60 38.8 50.64 61.56

80 – – – – – – – – –

100 – – – – – – – – –

120 – – – – – – – – –

150 – – – – – – – – –

The table describes one of the five motor resting-state networks detected at model order 40 and its subsequent (60–150) sub-networks. SAD significant connectivity 
differences (see Figure 3, third component from the left) are listed by: anatomical regions involved, number of voxels, and MNI coordinates (in mm) of maximum 
z-scores voxels, and center of mass.

 volume could be explained by: (1) Filling in of the uncovered brain 
regions at low model orders, e.g., the cerebellum. (2) Partial overlaps 
within non-gray matter brain regions, e.g., white matter at a given 
threshold. In our analysis the PCA data reduction step prior to ICA 
was matched to the number of ICA model order. Thus, the non-
gray matter brain regions shared by some RSNs are likely due to 
ICA capturing more of the data variance and/or detecting different 
T2*-weighted image effects and assigning them to different RSNs. 
In addition, at the high model orders (e.g., >100), it is sometimes 
difficult to differentiate RSN and non-RSN sources due to the same 
reason of increased variance capture.

MultIlevel exPloratIon oF FunctIonal braIn connectIvIty
Measuring functional brain connectivity at different hierarchical 
levels using ICA might provide an advantage in modeling the sys-
tematic effects of pathology in brain disorders. Probably, diagnosing 
neuropsychiatric disorders might require selecting the optimal ICA 
model order according to the function under investigation, not only 
the number of RSNs or the volume of between-group differences. 
Also, information regarding the underlying functionality of fine-
grained sub-networks shall play an essential role in determining the 
hierarchical level needed to profile each disorder. Additionally, in 
some brain disorders functional connectivity abnormalities might 
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Table 6 | SAD functional connectivity differences in the motor cortex at all estimated ICA model orders.

Model Anatomical region Percent Non-zero Max z-score Center of mass

order  of overlap voxels X Y Z X Y Z

60 A Anterior intra-parietal sulcus hIP1 R 0.2 8 21 44 64 22.24 43.51 63.12

 Anterior intra-parietal sulcus hIP2 R 0.7 21 20 44 64 22.04 44.76 62.95

 1ry somatosensory cortex BA1 R 0.2 13 20 44 64 21.69 45.3 63.23

 1ry somatosensory cortex BA2 R 0.4 21 20 44 64 22.04 44.76 62.95

60 B Anterior intra-parietal sulcus hIP1 L 0.9 32 62 42 58 64 40.73 61.08

 Anterior intra-parietal sulcus hIP2 L 2.6 75 68 48 60 66.01 43.55 61.41

 1ry motor cortex BA4a L 3.2 248 68 50 60 65.78 50.9 62.36

 1ry motor cortex BA4p L 4.3 255 70 52 60 65.38 50.17 61.97

 1ry somatosensory cortex BA1 L 5.3 354 68 48 60 66.19 48.73 62.18

 1ry somatosensory cortex BA2 L 6.3 363 68 48 60 66.05 47.8 61.69

 1ry somatosensory cortex BA3a L 3.2 134 68 49 60 64.9 48.41 61.26

 1ry somatosensory cortex BA3b L 4.6 351 68 48 60 65.91 49.49 61.99

 Premotor cortex BA6 L 0.7 82 62 54 62 64.36 53.82 63.12

60 C – – – – – – – – –

70 A Anterior intra-parietal sulcus hIP1 R 3.1 119 20 44 63 24.1 43.28 61.04

 Anterior intra-parietal sulcus hIP2 R 13.7 385 20 44 64 21.38 46.33 60.28

 1ry somatosensory cortex BA1 R 7.1 404 20 44 64 24.98 48.03 63.26

 1ry somatosensory cortex BA2 R 9.4 462 20 44 64 22.87 46.49 61.53

 1ry somatosensory cortex BA3a R 5.1 179 26 46 60 28.86 48.97 62.75

 1ry somatosensory cortex BA3b R 5.5 363 25 46 60 26.9 49.38 63.07

 2ry somatosensory cortex OP1 R 3.2 91 18 46 56 18.89 48.31 55.75

 Premotor cortex BA6 R 2.1 272 30 50 64 28.52 51.57 64.47

 1ry motor cortex BA4a R 4.3 301 30 50 64 28.2 51.07 64.41

 1ry motor cortex BA4p R 5.8 300 26 46 60 28.94 49.91 64.15

70 B Anterior intra-parietal sulcus hIP1 L 1.4 47 65 43 60 64.78 39.72 61.03

 Anterior intra-parietal sulcus hIP2 L 3.5 102 66 44 60 65.93 42.4 61.24

 1ry motor cortex BA4a L 2.9 223 66 46 63 64.78 48.73 63.43

 1ry motor cortex BA4p L 4.2 246 64 44 62 64.16 47.93 62.76

 1ry somatosensory cortex BA1 L 5.2 346 66 44 60 65.46 47.31 62.92

 1ry somatosensory cortex BA2 L 6.9 399 66 44 60 65.15 46.5 62.25

 1ry somatosensory cortex BA3a L 4.0 166 66 46 60 64.14 47.5 61.52

 1ry somatosensory cortex BA3b L 4.5 345 66 46 60 64.9 47.72 62.73

 Premotor cortex BA6 L 0.4 47 64 48 66 63.34 51.22 65.79

70 C – – – – – – – – –

80 A Anterior intra-parietal sulcus hIP1 R 0.5 18 21 44 64 20.94 43.67 62.78

 Anterior intra-parietal sulcus hIP2 R 2.0 57 20 44 64 21.19 44.94 63.09

 1ry somatosensory cortex BA1 R 1.0 55 20 44 64 23.53 47.41 63.62

 1ry somatosensory cortex BA2 R 1.2 61 20 44 64 21.14 45.14 63.17

 1ry somatosensory cortex BA3a R 0.3 9 26 46 60 28.43 48.77 63.21

 1ry somatosensory cortex BA3b R 0.5 30 30 50 66 26.63 49.59 63.4

 1ry motor cortex BA4a R 0.3 20 30 50 66 27.91 50.99 64.55

 1ry motor cortex BA4p R 0.4 19 30 50 66 29.47 49.42 64.89

80 B Anterior intra-parietal sulcus hIP1 L 0.9 29 62 44 58 64.96 39.52 60.96

 Anterior intra-parietal sulcus hIP2 L 2.6 74 66 44 60 66.04 43.1 61.12

 1ry motor cortex BA4a L 1.6 122 66 47 62 65.93 48.39 62.56

 1ry motor cortex BA4p L 2.2 128 66 46 62 65.23 47.73 62.13

 1ry somatosensory cortex BA1 L 3.7 248 66 44 60 66.06 46.63 62.35

 1ry somatosensory cortex BA2 L 4.9 283 66 44 60 65.77 46.33 62.03

 1ry somatosensory cortex BA3a L 2.3 97 66 46 60 65.16 47.74 61.29

(Continued)
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(Continued)

Table 6 | Continued

Model Anatomical region Percent Non-zero Max z-score Center of mass

order  of overlap voxels X Y Z X Y Z

 1ry somatosensory cortex BA3b L 2.9 221 66 46 60 65.79 47.13 62.33

80 C – – – – – – – – –

100 A Anterior intra-parietal sulcus hIP1 R 0.4 14 20 44 63 20.93 43.79 62.58

 Anterior intra-parietal sulcus hIP2 R 0.8 23 20 44 64 20.69 44.18 63.09

 1ry somatosensory cortex BA1 R 0.2 10 20 44 64 20.6 44.79 63.9

 1ry somatosensory cortex BA2 R 0.5 23 20 44 64 20.69 44.18 63.09

100 B Anterior intra-parietal sulcus hIP1 L 4.5 154 64 41 62 64.71 38.26 61.63

 Anterior intra-parietal sulcus hIP2 L 7.0 202 66 44 60 65 40.74 61.64

 1ry motor cortex BA4a L 2.6 197 66 47 62 65.12 49.15 63.1

 1ry motor cortex BA4p L 3.3 193 66 46 62 64.83 48.66 62.55

 1ry somatosensory cortex BA1 L 6.2 414 66 44 60 65.02 45.71 63.21

 1ry somatosensory cortex BA2 L 8.3 483 66 44 60 64.88 44.89 62.61

 1ry somatosensory cortex BA3a L 3.0 123 66 47 62 64.96 48.29 61.37

 1ry somatosensory cortex BA3b L 4.0 303 66 45 62 65.2 47.64 62.79

 Premotor cortex BA6 L 0.5 58 64 52 62 62.86 54.07 65.91

100 C Anterior intra-parietal sulcus hIP1 L 0.9 31 62 44 58 65.25 42.91 58.83

 Anterior intra-parietal sulcus hIP2 L 1.2 36 64 44 58 66.19 43.14 59.3

 1ry motor cortex BA4p L 0.7 40 70 56 48 70.06 54.98 49.44

 1ry somatosensory cortex BA1 L 0.3 18 70 53 50 68.22 47.4 57.03

 1ry somatosensory cortex BA2 L 1.2 72 70 56 49 67.58 47.98 55.46

 1ry somatosensory cortex BA3a L 1.5 64 70 56 48 69.68 54.18 49.5

 1ry somatosensory cortex BA3b L 1.0 75 70 56 48 69.85 53.68 49.73

 2ry somatosensory cortex OP1 L 2.1 76 70 56 48 70.07 53.7 49.15

 2ry somatosensory cortex OP2 L 1.7 14 69 54 48 68.43 54.86 48.57

 2ry somatosensory cortex OP3 L 1.1 18 70 56 48 69.01 54.89 48.28

 2ry somatosensory cortex OP4 L 2.7 81 70 56 48 70.04 53.94 49.1

120 A Anterior intra-parietal sulcus hIP1 R 0.3 10 20 48 56 20.4 44.61 61.29

 Anterior intra-parietal sulcus hIP2 R 1.5 41 18 48 56 19.36 47.23 58.28

 1ry somatosensory cortex BA1 R 0.8 47 18 50 56 23.48 48.84 61.74

 1ry somatosensory cortex BA2 R 1.2 61 18 49 56 20.64 48.73 58.38

 1ry somatosensory cortex BA3a R 2.4 84 28 54 60 27.5 53.34 58.86

 1ry somatosensory cortex BA3b R 1.3 89 28 54 60 27.19 52.4 59.78

 2ry somatosensory cortex OP1 R 1.8 50 18 48 56 18.5 49.86 55.46

 Premotor cortex BA6 R 0.5 72 28 54 60 28.36 52.18 61.99

 1ry motor cortex BA4a R 1.1 74 28 54 60 28.2 52.21 61.96

 1ry motor cortex BA4p R 1.9 99 28 54 60 27.84 52.81 60.04

120 B Anterior intra-parietal sulcus hIP1 L 0.9 29 62 40 60 62.79 40.11 60.45

 Anterior intra-parietal sulcus hIP2 L 1.2 36 62 40 60 62.94 40.5 60.58

 1ry motor cortex BA4a L 0.1 5 56 46 60 56 47.2 59.6

 1ry motor cortex BA4p L 0.5 31 56 44 60 57.2 44.86 60.2

 1ry somatosensory cortex BA1 L 0.9 59 61 40 60 59.35 41.48 61.12

 1ry somatosensory cortex BA2 L 1.8 106 62 40 60 59.8 41.77 60.75

 1ry somatosensory cortex BA3a L 1.4 56 58 42 60 56.97 44.13 60.11

 1ry somatosensory cortex BA3b L 0.7 52 56 42 60 57.2 43.36 60.73

120 C Anterior intra-parietal sulcus hIP1 L 0.2 7 60 44 58 63.41 43.72 58.42

 Anterior intra-parietal sulcus hIP2 L 1.4 42 65 43 62 66.44 44.94 59.02

 1ry motor cortex BA4a L 0.2 15 64 44 64 64.67 46.26 62.6

 1ry motor cortex BA4p L 1.0 57 64 44 62 63 45.72 60.77

 1ry somatosensory cortex BA1 L 1.1 71 64 44 62 65.36 44.71 61.89

 1ry somatosensory cortex BA2 L 2.2 125 64 44 62 64.49 45.1 60.38
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be detected among both large-scale and fine-grained RSNs, while 
in other disorders abnormalities may lay either among large-scale 
or fine-grained RSNs. Therefore, there may be no definite model 
order for detecting aberrant functional connectivity for all diseases.

As we mentioned earlier, SAD was used only as an example of brain 
disease in this study. The main focus of this study was to explore if 
disease sensitivity could be optimized by exploring functional con-
nectivity differences at multiple ICA model orders. Therefore, detailed 
interpretation of SAD-related connectivity differences is beyond the 
scope of this paper. More interestingly however, our results showed 
SAD-related increased functional connectivity in RSNs including 
brain regions that have been reported to involve increased metabolism 
in SAD, e.g., in the frontal, orbitofrontal, right parietal, and left middle 
temporal cortices, and in the right caudate: whereas brain regions of 
reduced metabolism were also recorded, e.g., the right middle tem-
poral cortex and left parietal cortex (Cohen et al., 1992). Increased 
functional connectivity might be associated with increased underlying 
cerebral metabolism. In addition, other brain areas not yet associated 
with SAD were also detected, e.g., the PCC, precuneus, and the visual 
cortex. Future work aims at detailed interpretation and discussion of 
SAD-related functional connectivity differences detected in this study 
on neuropsychiatric and neurofunctional bases.

Modularity demonstrated in a wide range of complex systems 
enables the identification of the optimal partition of a network. There 
is strong evidence for the modular organization of human brain 

 networks (Chen et al., 2008; Bullmore and Sporns 2009; Ferrarini 
et al., 2009; Meunier et al., 2009a, 2009b; Valencia et al., 2009). 
Salvador et al. (2005) proposed partial correlation methods to build 
group-level RSNs based upon an averaged similarity matrix across 
subjects, while van den Heuvel et al. (2008) have implemented an 
individual clustering adjacency matrix. Also, Ferrarini et al. (2009) 
have described the hierarchical modular structure of RSNs using 
a partial correlation analysis. Meunier et al. (2009b) functionally 
segmented the brain into eight large modules, each compromising 
more than 10 nodes at the highest level of the hierarchy, and 57 sub-
modules at the lowest level. Recently, Bellec et al. (2010) detected a 
minimum of seven RSNs using bootstrap analysis of stable clusters 
and suggested that there might be many numbers of clusters (where 
local maxima of clustering stability could be spotted). Our ICA seg-
mentations are consistent with these previous results that highlight 
the modular segmentation of the human brain. Nevertheless, a more 
detailed investigation driven by similarity between the ICA functional 
hierarchy of RSNs and the above findings using different method-
ologies for assessing resting-state brain activity would be beneficial.

The potential utility of group based ICA approaches has been 
demonstrated by the increasing number of studies examining 
clinical populations. Large-scale networks (i.e., low model order 
components) are compact and easy to identify, including net-
works such as the visual, auditory, sensorimotor, etc. Notably, 
ICA shows tendency toward “splitting” of large-scale networks 

Table 6 | Continued

Model Anatomical region Percent Non-zero Max z-score Center of mass

order  of overlap voxels X Y Z X Y Z

 1ry somatosensory cortex BA3a L 1.3 52 64 44 62 62.58 45.67 60.42

 1ry somatosensory cortex BA3b L 1.1 82 64 44 62 63.72 45.38 61.07

150 A Anterior intra-parietal sulcus hIP1 R 0.2 9 20 48 56 22.86 48 56.33

 Anterior intra-parietal sulcus hIP2 R 3.7 103 18 49 56 22.97 48.9 57.04

 1ry somatosensory cortex BA1 R 2.4 138 18 50 56 25.79 49.55 63.01

 1ry somatosensory cortex BA2 R 3.2 156 18 50 56 22.63 49.44 58.04

 1ry somatosensory cortex BA3a R 4.7 167 30 50 64 27 51.28 58.67

 1ry somatosensory cortex BA3b R 3.7 246 30 50 64 26.62 50.79 60.75

 2ry somatosensory cortex OP1 R 2.4 69 18 50 56 20.05 50.41 54.6

 Premotor cortex BA6 R 1.2 159 30 50 64 29.26 51.25 64.68

 1ry motor cortex BA4a R 2.5 173 30 50 64 28.96 51.01 64.85

 1ry motor cortex BA4p R 4.3 225 30 50 64 28.32 51.24 62.47

 2ry somatosensory cortex OP2 R 0.7 9 26 56 50 25.33 53.44 51

 2ry somatosensory cortex OP3 R 1.0 22 24 58 50 25.22 56.73 50.49

150 B – – – – – – – – –

150 C Anterior intra-parietal sulcus hIP1 L 0.1 3 62 46 54 62 45 54

 Anterior intra-parietal sulcus hIP2 L 0.3 8 67 45 62 65.53 44.88 59.05

 1ry motor cortex BA4a L 0.4 33 66 47 62 67.05 48.84 62.51

 1ry motor cortex BA4p L 0.6 36 64 44 62 66.18 47.79 62.46

 1ry somatosensory cortex BA1 L 1.0 64 64 44 62 66.6 47.1 62.48

 1ry somatosensory cortex BA2 L 1.2 67 64 44 62 66.48 46.99 62.41

 1ry somatosensory cortex BA3a L 0.6 26 64 44 62 65.69 47.46 62.3

 1ry somatosensory cortex BA3b L 0.8 60 64 44 62 66.49 47.3 62.51

The table describes one of the five motor resting-state networks detected at model order 40 and its subsequent (60–150) sub-networks. SAD significant connectivity 
differences (see Figure 3, fourth component from the left) are listed by: anatomical regions involved, number of voxels, and MNI coordinates (in mm) of maximum 
z-scores voxels, and center of mass.
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Table 7 | SAD functional connectivity differences in the motor cortex at all estimated ICA model orders.

Model Anatomical region Percent Non-zero Max z-score Center of mass

order  of overlap voxels X Y Z X Y Z

40 BA44 R 0.6 26 12 64 46 12.73 63.42 46.38

 1ry somatosensory cortex BA1 R 0.7 39 12 64 46 12.56 62.97 46.61

 1ry somatosensory cortex BA3b R 0.6 38 12 64 46 12.58 62.92 46.58

 1ry motor cortex BA4p R 0.6 29 12 64 46 12.83 62.83 46.82

 2ry somatosensory cortex OP4 R 1.1 35 12 64 46 12.54 63 46.54

60 BA44 R 0.5 21 12 64 46 13.05 63.47 46.85

 1ry somatosensory cortex BA1 R 0.8 46 12 64 46 13.56 61.82 49.77

 1ry somatosensory cortex BA3b R 0.6 43 12 64 46 13.62 61.69 49.67

 1ry motor cortex BA4a R 0.5 33 12 64 47 13.9 61.47 51.09

 1ry motor cortex BA4p R 0.7 39 12 64 46 13.58 61.76 49.23

 2ry somatosensory cortex OP4 R 1.0 30 12 64 46 12.9 62.97 47.23

70 BA44 R 1.0 41 12 62 46 12.64 64.09 46.51

 1ry somatosensory cortex BA1 R 2.4 135 12 62 46 13.49 61.25 49.88

 1ry somatosensory cortex BA2 R 1.1 56 12 62 46 14.27 59.43 50.66

 1ry somatosensory cortex BA3a R 2.2 76 14 64 46 15.31 59.97 49.15

 1ry somatosensory cortex BA3b R 2.2 144 12 62 46 14.43 60.66 50.08

 1ry motor cortex BA4a R 1.3 91 13 64 46 14 61.09 51.66

 1ry motor cortex BA4p R 2.3 120 12 62 46 14.87 60.38 50.49

 Premotor cortex BA6 R 0.8 99 12 63 46 13.82 61.63 51.02

 2ry somatosensory cortex OP4 R 2.5 79 12 62 46 12.67 62.23 47.02

80 BA44 R 0.6 26 12 64 46 12.77 63.65 46.61

 1ry somatosensory cortex BA1 R 1.1 60 12 64 46 13.63 61.47 50.93

 1ry somatosensory cortex BA3a R 0.5 16 13 63 46 13.44 62.38 46.81

 1ry somatosensory cortex BA3b R 0.8 56 12 64 46 13.68 61.4 50.78

 1ry motor cortex BA4a R 0.6 43 13 64 46 14.05 61 52.81

 1ry motor cortex BA4p R 0.9 49 12 64 46 13.83 61.27 50.99

 Premotor cortex BA6 R 0.4 48 12 64 46 13.83 61.54 51.85

 2ry somatosensory cortex OP4 R 1.1 34 12 64 46 12.71 63.24 46.76

100 1ry somatosensory cortex BA1 L 0.5 32 72 54 56 72.91 54.56 56.6

 1ry somatosensory cortex BA2 L 0.6 32 72 54 56 72.91 54.56 56.6

 1ry somatosensory cortex BA3b L 0.4 27 72 54 56 72.71 54.81 56.34

 1ry motor cortex BA4a L 0.3 25 72 54 56 72.72 54.88 56.56

 1ry motor cortex BA4p L 0.3 20 72 54 56 72.35 54.9 56.05

120 – – – – – – – – –

150 1ry somatosensory cortex BA1 L 0.6 38 72 54 56 73.16 56.9 54.12

 1ry somatosensory cortex BA2 L 0.6 36 72 54 56 72.86 56.38 54.4

 1ry somatosensory cortex BA3a L 0.9 36 72 60 48 72.03 59.42 49.3

 1ry somatosensory cortex BA3b L 0.8 59 72 54 56 72.4 57.75 52.06

 1ry motor cortex BA4a L 0.7 51 72 54 56 72.67 57.76 52.38

 1ry motor cortex BA4p L 0.9 51 72 54 56 72.16 58.17 51.29

 2ry somatosensory cortex OP4 L 0.6 17 72 58 50 71.12 58.06 49.88

The table describes one of the five motor resting-state networks detected at model order 40 and its subsequent (60–150) sub-networks. SAD significant connectivity 
differences (see Figure 3, fifth component from the left) are listed by: anatomical regions involved, number of voxels, and MNI coordinates (in mm) of maximum 
z-scores voxels, and center of mass.

into sub-networks by increasing the number of estimated ICs. 
Previously, we showed that the use of high model order ICA is 
an important and useful tool for obtaining detailed parcellation 
of the functional hierarchy of neural sub-systems (Abou Elseoud 
et al., 2010). It is important to notice that different ICA model 
orders describe different functional connectivity and  hierarchical 

aspects. Our results showed that a large-scale network with signifi-
cant differences in connectivity splits into sub-networks. Some of 
these sub-networks still show connectivity differences, while the 
rest show normal connectivity, i.e., some of the sensorimotor and 
visual sub-networks show no changes in connectivity at higher 
model orders. This finding indicates that although the branched 
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number of RSNs. Currently we are planning statistical methods that 
could correct for the type I error also at the level of RSN in combi-
nation with dual regression. Therefore, we performed corrections 
only at individual IC level. In general, our results at high model 
orders, particularly model order 70 are in line with results at low 
model orders. Moreover, the total volume of significant between-
group differences showed no significant increase after model order 
70. However, it would be beneficial to develop a methodology for 
correcting for multiple comparisons simultaneously within and 
between RSN maps.

FunctIonal hIerarchy and dIsease sensItIvIty
Neuropsychiatric disorders (e.g., depression, dementia, schizo-
phrenia, Alzheimer’s, etc.) might occur at either the micro-level 
or macro-level, particularly at the initial stages, and may extend 
to both levels later on (Stoffers et al., 2008; Krishnan et al., 2009; 
Zhang et al., 2010). Some disorders target specific brain systems 
or regions and spare others within the same anatomical struc-
ture, consequently affecting some functions and preserving others. 
Importantly, the choice of ICA model order when the ultimate 
goal is detecting between-group difference should be considered 
cautiously. Our results showed a small number of brain voxels 
with significant between-group differences at low model orders 
(Figure 1, right). Moreover, large-scale RSNs at lower model orders 
suffer from the joining of multiple areas known to be functionally 
independent (Abou Elseoud et al. 2010; see Figure 3 and Table 3, 
at model order 20, one RSN included both motor and auditory 
cortices). Also, large-scale RSNs are unable to capture subcortical 
brain regions as separate RSNs (Abou Elseoud et al. 2010; Ystad 

FIguRe 4 | SAD significant increased functional connectivity (green) in the 
visual cortex at different ICA model orders (20, 40, 60, 70, 80, 100, 120, and 
150) shown superimposed on MNI template. While at low model order of 20 
the visual cortex was segmented into one RSN (red–yellow) which also showed 
a significant increased connectivity, higher model orders provided a more 

fine-grained segmentation. A prominent increase in the number of sub-
networks (red–yellow) with significant increased connectivity is evident at higher 
model orders. Numbers at the bottom of the images refer to MNI coordinates 
(xyz). The left hemisphere corresponds to the right side and t-score threshold is 
shown at the right.

sub-networks descended from a common large-scale network, 
they are independent from each other at the fine-grained levels 
of the hierarchy.

It is also important to consider the neurofunctional meaning 
of such fine-grained sub-networks when selecting ICA model 
order. At present, assigning every sub-network to a neuronal sub- 
functionality appears to be difficult. A number of studies showed 
conclusions linking networks’ splitting and sub-functionalities. 
Seeley et al. (2007) identified such a split in a network suggested 
to be involved in executive function, revealing separate purported 
“control” and “salience” networks. Earlier, Seifritz et al. (2002) 
showed ICA of the auditory cortex that yielded a unique spatial 
map and a temporal pattern, suggesting the presence of two con-
current temporally independent processes. Then by temporally 
decomposing the signal into temporal ICs, transient and sus-
tained components of the human auditory cortex were separated. 
Additionally, high model orders can be used to detect individual 
subcortical components belonging to the thalamus and the basal 
ganglia, which are not detectable using low model order (Ystad 
et al., 2010). Moreover, on the millimeter-scale, marked differ-
ences in the patterns of functional connectivity can be detected 
(Margulies et al., 2007). Future studies are needed in order to link 
functional segmentation to anatomical parcellation and to fill in 
the gap between fine-grained networks and sub-functionality.

At high model orders there is a large increase in statistical tests 
performed compared to low model orders due to the increased 
number of functional RSN sources. The presently applied TFCE 
correction method corrects the results at brain voxel level, but does 
not adjust for the risk (false positives) induced by increasing the 
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et al., 2010; see Figure 2). On the contrary, at high model orders 
the total volume of between-group differences reaches maxi-
mum. However, there is an increased risk of false positives due 
to an increased number of components at higher model orders. 
Therefore, as discussed earlier it might be that applying differ-
ent statistical methods for correcting results at high model orders 
could provide a reasonable solution.

We emphasize that results presented here apply to our 1.5 
Tesla group-ICA setting with the present imaging parameters and 
data pre-processing. Additionally, different optimal model orders 
might be found when higher field strengths and higher resolu-
tions are used. However, as clinical applications require analysis 
of individual fMRI datasets, an additional challenge remains, 
concerning the matter of how one can detect subject-specific 
RSNs robustly at fine-grained levels. High field magnets, e.g., 3 
or 7 Tesla, might offer an alternative which could provide indi-
vidual subject datasets with adequate quality needed for detecting 
subject-specific RSNs.

conclusIon
In this paper we show that detected disease-related differences in 
functional connectivity alter as a function of ICA model order. 
The results showed only increased functional connectivity at all 
estimated model orders. Our findings suggest that multilevel ICA 
exploration of functional connectivity enables optimization of sen-
sitivity to brain disorders. The volume of between-group differences 
altered significantly as a function of ICA model order reaching 
maximum at model order 70 (which seems to be an optimal level 
that conveys the largest between-group difference). Our results 

show that fine-grained RSNs enable better detection of detailed 
disease-related functional connectivity changes. However, high 
model orders show an increased risk of false positives that needs 
to be overcome.
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