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(McGinty et al., 2008). Because D1 receptors are positively cou-
pled to adenylate cyclase, it had been assumed that the cAMP/
PKA cascade is sufficient for CaCRE-mediated gene expression 
subsequent to CREB phosphorylation by dopaminergic agonists. 
In MSNs, CREB is phosphorylated in response to dopaminergic 
(Cole et al., 1995; Simpson et al., 1995) and glutamatergic signals 
(Vanhoutte et al., 1999). In dissociated striatal cultures, CREB 
phosphorylation and Fos immunoreactivity induced by dopamine, 
the D1 dopamine agonist, SKF82958, or forskolin, is blocked by 
NMDA receptor antagonists (Konradi et al., 1996; Valjent et al., 
2005). Therefore, phospho-CREB is thought to integrate dopamin-
ergic and glutamatergic signals that modulate the cAMP response 
element (CRE)-mediated expression of target genes, such as c-fos 
and opioid peptides, in these neurons. CREB is also a common 
phosphorylation target of all three pathways activated by neuro-
trophins: the ERK MAPK, phosphoinositol-3 kinase (PI-3K), and 
phospholipase C γ (PLCγ) signaling cascades (Patapoutian and 
Reichardt, 2001).

Brain-derived neurotrophic factor/TrkB signaling is critical 
for activity-dependent synaptic plasticity, the cellular basis of 
learning and memory, and neuroadaptations underlying drug 
seeking (Rattiner et al., 2004; Ou and Gean, 2006; Russo et al., 

IntroductIon
Amphetamine (AMPH) triggers behavioral activation and gene 
expression in the striatum by integrating dopamine and gluta-
mate inputs to medium spiny neurons (MSNs) that project to the 
dorsal and ventral pallidum and ventral midbrain. Activation of 
genes/proteins that mediate or temper the psychomotor response 
to stimulants is triggered primarily by D1 dopamine–Gs-coupled-
PKA signaling (McGinty et al., 2008). However, dopamine and 
glutamatergic afferents to the striatum also express brain-derived 
neurotrophic factor (BDNF) that activates TrkB receptors present 
on all MSNs (Freeman et al., 2003). Thus, there is a potential inter-
action between dopamine, glutamate, and BDNF/TrkB signaling in 
the behavioral and neurochemical response to AMPH. Overlapping 
signaling cascades activated by these MSN inputs suggest that the 
striatum responds to an initial, moderate dose of AMPH with a 
complex repertoire that both mediates psychomotor effects and 
simultaneously functions to bring the network back to homeostasis. 
Thus, we investigated the regulation and function of TrkB activation 
in the response of MSNs to acute AMPH.

AMPH activates the extracellular signal-regulated kinase (ERK)/
mitogen-activated protein kinase (ERK MAPK) cascade that leads 
to CREB phosphorylation and striatal opioid peptide expression 
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USA). At the end of 1 h habituation, the striatum was infused 
bilaterally with 1 μl of 35.7 mM K252a (a non-selective kinase 
inhibitor with high affinity for Trk receptors-Biomol) or 50% 
DMSO vehicle (veh) at a rate of 0.25 μl/min. The dose of K252a 
was based on effective intracranial infusions in published studies 
(Ou and Gean, 2006; Whitfield, et al., 2011). After the infusions, rats 
were put back into the photocell chambers until they received an 
i.p. injection of AMPH (2.5 mg/kg) or 1 ml/kg saline (sal) 20 min 
later. Behavioral activity was recorded for 3 h (based on peak opioid 
peptide mRNA response to AMPH; Wang et al., 1995) after the 
i.p. injections. Immediately after behavioral testing, the rats were 
anesthetized with equithesin and decapitated. Brains were dissected 
and frozen for in situ hybridization histochemistry.

Western BlottIng
Tissue was homogenized in lysis buffer with protein phosphatase 
inhibitor mixtures. The protein concentration was measured with 
BCA assay. Equal amount of proteins (15 μg) were resolved using 
6% SDS-PAGE and transferred to a nitrocellulose membrane. The 
membrane was blocked with 5% milk/TBST and probed with rabbit 
primary antiserum against TrkB, phospho-tyrosine (p-Tyr), p-TrkB 
706 (Cell Signaling Technology, Inc.), or p-TrkB 816 (gift of Dr. 
Moses Chao, NYU) overnight at 4°C. For total TrkB, the inten-
sity of each protein sample was normalized by calnexin (Stressgen 
Bioreagents). After a series of washing, membranes were incubated 
with HRP-conjugated anti-goat secondary antibody, the immuno-
reactive bands on the membrane were detected by ECL+ chemilu-
minescence reagents on a X-ray film. Membranes were re-probed 
with calnexin after stripping. Integrated density values were meas-
ured for individual bands using Image J software.

ImmunoprecIpItatIon
The procedure for immunoprecipitation has been described previ-
ously (Sun et al., 2009). Briefly, 200 μg of sample was incubated 
with TrkB antibody and protein A agarose beads. After washing 
with lysis buffer, Laemmli sample buffer was added to the collected 
beads and boiled for 5 min. Equal amount of samples was loaded 
and subjected to western blotting. Membranes were probed with 
p-Tyr, p-TrkB 706, p-TrkB 816, or TrkB antisera. Five percent of 
total homogenates was used as input to normalize band intensities.

motor actIvIty recordIng
Horizontal activity (total distance traveled) and vertical activity 
(rearing) were monitored for 3 h in photocell chambers (Accuscan 
Instruments, USA). Beam breaks were recorded continuously and 
clustered in 5 min bins by a PC running VersaMax/Digiscan System 
Software (Accuscan Instruments, Inc.).

In sItu hyBrIdIzatIon hIstochemIstry
Brains were cut at 12 μm through the striatum and mounted on 
slides. Adjacent sections were processed for Nissl-staining to detect 
cannula tracks and in situ hybridization histochemistry as pre-
viously described (Shi and McGinty, 2006). Briefly, the sections 
were fixed in buffered 4% paraformaldehyde and pre-hybridized 
to minimize non-specific binding. Sections were hybridized with 
a 48-mer 35S-dATP- or 33P-dATP-labeled oligonucleotide encod-
ing preprodynorphin (PPD) or preproenkephalin (PPE), washed, 

2008; McGinty et al., 2010). The normal striatum contains little 
BDNF mRNA; instead it receives extensive projections from the 
substantia nigra and cortical pyramidal neurons that synthesize 
BDNF and transport the protein anterogradely to be released in 
an action potential and calcium-dependent manner (Sauer et al., 
1994; Seroogy et al., 1994; Altar et al., 1997). The biological effects 
of BDNF are primarily mediated by the tropomyosin kinase recep-
tor, TrkB (Chao, 2003), which is abundantly expressed in corti-
cal pyramidal neurons, ventral midbrain dopamine neurons, and 
GABAergic striatal MSNs (Numan and Seroogy, 1999; Freeman 
et al., 2003). Furthermore, BDNF directly stimulates opioid pep-
tide gene expression, as exogenous BDNF infused into the stria-
tum (Sauer et al., 1994) or substantia nigra (Arenas et al., 1996) 
increases the expression of striatal MSN peptides. Conversely, 
BDNF deficient mice express less opioid peptide mRNA in the 
striatum (Saylor et al., 2006) and exhibit more prolonged hyper-
locomotor activity following acute amphetamine exposure (Saylor 
and McGinty, 2008).

Because AMPH stimulates dopamine and glutamate trans-
mission in these pathways, BDNF is also likely to be released and 
may contribute to AMPH-induced changes in striatal signaling. 
Direct measurement of BDNF release is problematic; however, 
evidence of BDNF binding to and activation of TrkB receptors 
can be indirectly measured by the degree of TrkB phosphorylation 
(Poo, 2001). Further, BDNF mRNA levels positively correlate with 
activity in the cerebral cortex (Rocamora, et al., 1996; Poo, 2001) 
and BDNF mRNA increases in many cortical areas after injection 
of acute cocaine or amphetamines (Le Foll, et al., 2005; Saylor and 
McGinty, 2008). Since BDNF regulates the constitutive expression 
of MSN opioid peptides, AMPH-induced opioid gene expression is 
dependent on ERK activation, and BDNF modifies reward-related 
behaviors, we have begun to investigate whether or not BDNF/
TrkB signaling contributes to AMPH-induced behavioral activity 
and striatal signaling.

materIals and methods
anImals and desIgn
All procedures were carried out in accordance with the National 
Institutes of Health Guide for Care and Use of Laboratory Animals 
(NIH Publications No. 8023, revised 1996) and were approved by 
the Institutional Animal Care Committee of MUSC. Adult male 
Sprague-Dawley rats (250–275 g; Charles River, Raleigh, NC, USA) 
were individually housed under standard conditions (12 h light–
dark cycle; food and water ad libitum). All animals were handled 
daily for 5 days. On day 6, the rats were randomly assigned to 
treatment groups. In Experiment 1, the rats were injected i.p. with 
2.5 mg/kg d-amphetamine sulfate (NIDA Res Triangle Institute, 
NC, USA) or saline. Fifteen minutes or 2 h after injection, the 
rats were decapitated and the PFC, nucleus accumbens (NAc), and 
caudate–putamen (CPu) were dissected out for immunoblotting 
procedures.

In Experiment 2, on the sixth day, rats were anesthetized with 
an equithesin/ketamine cocktail and intracranial guide cannulae 
were implanted bilaterally into the dorsal striatum as described 
(Shi and McGinty, 2006). Rats recovered and were handled for 
5 days following surgery. On the test day, rats were habituated to 
photocell chambers (Accuscan Instruments, Inc., Columbus, OH, 
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statIstIcal analysIs
Behavioral data were analyzed by calculating the area under the curve 
(AUC) for the activity counts plotted against time followed by a mixed 
factor analysis of variance (ANOVA). For the hybridization data, a 
mixed factor nested ANOVA was performed on the integrated density 
values collected from three adjacent sections per rat. For Western 
blot data (Experiment 1), a two-tailed t-test was performed on 

and dried before putting the slides on X-ray film and exposing for 
1–4 weeks. The integrated density of the hybridization signals on 
three adjacent sections per brain was quantified by NIH Image 
analysis after subtracting white matter background. Under the 
density slice option, the hybridization signal in the entire dorsal 
striatum in the injected side was measured using a circle (200 pixel 
diameter) as described (Wang and McGinty, 1995).

Figure 1 | Two hours after a single AMPH injection, TrkB phosphorylation 
is increased. (A) Total TrkB receptor protein level in the CPu was not altered, (B) 
tyrosine phosphorylation of TrkB (p-Tyr) was increased in the CPu, (C) 
autophosphorylation of TrkB (p-TrkB 706) was increased in the CPu, (D) PLCγ 
phosphorylation site of TrkB (p-TrkB 816) was increased in the CPu, (e) total TrkB 

receptor protein level in the NAc was not altered, (F) tyrosine phosphorylation of 
TrkB (p-Tyr) was increased in the NAc, (g) autophosphorylation of TrkB (p-TrkB 
706) was not increased in the NAc, (H) PLCγ phosphorylation site of TrkB (p-TrkB 
816) was increased in the NAc, *p < 0.05 when compared to saline-treated 
group indicated by mean ± SEM. N = 6/group.
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Figure 2 | AMPH-induced vertical activity (VA), but not total distance 
traveled (TDT), is augmented by K252a. (A) Vertical activity recorded for 1 h 
before intra-striatal K252a or vehicle infusion and for 3 h after AMPH or saline 
injection. (B) Area under the curve (AUC) analysis for 3 h after i.p. injections 
indicated by mean ± SEM. *p < 0.05 K-A vs. V-A; $$p < 0.01 K-A vs. K-S; 

###p < 0.001 V-A vs. V-S. (C) Activity recorded for 1 h before intra-striatal K252a or 
vehicle infusion and for 3 h after AMPH or saline injection. (D) Area under the 
curve (AUC) analysis for 3 h after i.p. injections indicated by mean ± SEM. 
@@@ = p < 0.001 vs. V-S and K-S. V-S, vehicle saline; K-S, K252a-saline; V-A, 
vehicle-AMPH; K-A, K252a-AMPH. N = 6–8/group.

 integrated density values. When an ANOVA F-ratio was significant, 
multiple comparisons were made using a Student-Newman–Keuls 
test. Independent t-tests were used to analyze the difference between 
groups. Results were determined to be significant when p < 0.05.

results
experIment 1: amph Increased trkB phosphorylatIon In the 
strIatum In a delayed manner
Fifteen minutes after a single AMPH injection, neither total or 
phospho-TrkB receptor protein levels in the dorsomedial prefrontal 
cortex (dmPFC), NAc, and CPu were altered (data not shown). In 
contrast, p-Tyr (tyrosine phosphorylation of TrkB), p-TrkB 706 
(autophosphorylation site), and p-TrkB 816 (PLCγ phosphoryla-
tion site) immunoreactivities were significantly increased in the 
CPu 2 h after amphetamine (Figures 1A–D). In the NAc at 2 h, 
amphetamine significantly increased p-Tyr and p-TrkB 816, but not 
p-TrkB 706, immunoreactivity (Figures 1E–H). No differences were 
detected in the dmPFC 2 h after AMPH injection (data not shown).

experIment 2: k252a augmented amph-Induced vertIcal 
actIvIty and suppressed amph-Induced ppd mrna
AMPH-stimulated horizontal movement measured as total dis-
tance traveled and vertical activity as previously described (Shi 
and McGinty, 2006). Intra-striatal infusion of K252a did not alter 

AMPH-induced total distance traveled but augmented AMPH-
induced vertical activity (Figure 2). In situ hybridization revealed 
that AMPH-stimulated PPD and PPE mRNA levels in the CPu as 
previously described (Smith and McGinty, 1994; Shi and McGinty, 
2006). Intra-striatal infusion of K252a suppressed AMPH-induced 
PPD, but not PPE, mRNA levels in the CPu (Figure 3). A representa-
tive cannula placement for this experiment is illustrated in Figure 4.

dIscussIon
Two hours, but not 15 min, after a single AMPH injection, p-TrkB 
protein expression was increased in the CPu and NAc, but not in 
the dmPFC. Similar to a previous study (Meredith et al., 2002), total 
TrkB immunoreactivity was not increased 2 h after acute AMPH. 
However, in that study repeated daily AMPH injections (5 mg/kg) 
caused an increased in TrkB mRNA and/or immunoreactivity in 
several brain structures, including the striatum. In the present study, 
AMPH induces TrkB phosphorylation, a marker of TrkB receptor 
activation (Chao, 2003; Reichardt, 2006), in a time- and region-
specific manner. Although trans-activation and non-neurotrophin-
mediated activation of growth factor receptors has been reported 
(Huang et al., 2008; Jeanneteau et al., 2008), TrkB dimerization 
and phosphorylation most commonly occurs subsequent to BDNF 
binding (Chao, 2003). In the striatum, although the nigrostriatal 
track also contains BDNF, the majority of BDNF is synthesized, 

McGinty et al. BDNF/TrkB signaling alters amphetamine effects

Frontiers in Systems Neuroscience www.frontiersin.org July 2011 | Volume 5 | Article 60 | 4

http://www.frontiersin.org/Systems_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


stored, and released from corticostriatal neurons (Altar et al., 
1997). As for other neuropeptides, BDNF is stored and released 
from dense core vesicles in an action potential-dependent manner 
(Kohara et al., 2001; Balkowiec and Katz, 2002) that requires more 
intense stimulation than that of glutamate from small clear vesicles 
(Lessman, 1998; Carvalho et al., 2008). Thus, it is reasonable that 
TrkB phosphorylation was not evident 15 min after AMPH but was 
detected 2 h later if BDNF release occurred in a delayed, stimulus-
dependent manner. This time course is consistent with the peak 
in motor activity and extracellular glutamate levels in the striatum 
that occurs between 30 and 90 min, in contrast to extracellular 
dopamine levels that peak between 15 and 30 min after this dose 
of AMPH (Gray et al., 1999; Rawls and McGinty, 2000).

The elevation of p-TrkB in the NAc and CPu 2 h after acute 
AMPH contrasts with a recent study indicating that pan-Tyr–
TrkB was induced by a single cocaine injection in the NAc of mice 

Figure 3 | AMPH-induced increase in PPD mrNA, but not PPe mrNA, is blocked by K252a. (A–D) PPD mRNA. (e) Integrated density measurements for PPD 
mRNA indicated as mean ± SEM *p < 0.05 vs. V-S; ###p < 0.001 vs. V-A. (F–i) PPE mRNA. (J) Integrated density measurements for PPE mRNA indicated as 
mean ± SEM **p < 0.01 vs. V-S and K-S. V-S, vehicle saline, K-S, K252a-saline; V-A, vehicle-AMPH; K-A, K252a-AMPH (n = 6–8/group).

Figure 4 | image captured with a CCD camera of a thionin-stained 
section illustrating a cannula track in the dorsocentral striatum 
illuminated on a light box. Note the lack of necrosis surrounding the injector 
track.
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(Crooks et al., 2010). However, in their report, the increase of 
p-TrkB immunoreactivity was observed 9–12 h, but not 10 min 
or 3 h, after cocaine. The discrepant timepoint for TrkB activation 
in the two studies may be due to the different species and/or psy-
chostimulants used. In addition to the pan-activation of TrkB on 
tyrosine sites in this study, the induction of p-TrkB 816 was detected 
in the NAc and CPu after acute AMPH administration. p-TrkB 816 
triggers PLCγ-mediated signaling (Chao, 2003; Reichardt, 2006). 
Thus, it is plausible that the TrkB–PLCγ pathway in part mediates 
the BDNF-regulated intracellular transduction in response to acute 
AMPH. However, other TrkB-related signaling (e.g., Akt and ERK) 
should be further investigated.

K252a enhanced AMPH-induced vertical activity without alter-
ing horizontal ambulation (measured as total distance traveled). 
Vertical activity is part of a rat’s exploratory repertoire that is 
thought to be mediated predominantly by the CPu and predomi-
nates after high doses or repeated administration of AMPH that 
produce stereotypical rearing behavior (Kelly et al., 1975; Lyon and 
Robbins, 1975). Thus, augmentation of vertical activity by K252a 
may represent a disinhibition of rearing in response to a moder-
ate dose of AMPH that normally is tempered by activation of Trk 
receptor tyrosine kinase, or possibly another kinases inhibited by 
K252a. Since total distance traveled was not altered, overall explora-
tory locomotion was increased by the combination of K252a and 
AMPH. Of the many different receptor antagonists and agonists 
we have investigated in this paradigm over the years (Wang and 
McGinty, 1999; McGinty et al., 2010), K252a is the first one that has 
yielded this behavioral profile in combination with acute AMPH. As 
for intracellular kinases, PKA and MEK inhibitors upstream of ERK 

MAPK both reduce AMPH-induced horizontal and vertical activ-
ity (Sutton et al., 2000; Shi and McGinty, 2006) whereas the PI-3 
kinase inhibitor, wortmannin, decreases AMPH-induced vertical 
activity and increases horizontal activity (Shi et al., in preparation). 
However, although K252a has a higher affinity for tyrosine kinases, 
particularly Trk family receptors, than ser/thr kinases in vitro (Berg 
et al., 1992; Tapley et al., 1992; Martin et al., 2011), conclusions 
about the effects of K252a in this in vivo study should be drawn 
with caution and considered preliminary until confirmed by other 
Trk inhibitors or BDNF scavengers.

K252a suppressed AMPH-induced PPD, but not PPE, mRNA 
expression in the striatum. Since PPD is expressed only in the 
D1-regulated, direct pathway, and PPE mRNA only in the indirect 
pathway in the CPu (Gerfen, 1992), the data suggest that K252a 
acts predominantly via kinase cascades in direct pathway MSNs. It 
is less likely that inhibition of kinase cascades in indirect pathway 
MSNs leads to suppression of AMPH-induced PPD mRNA in direct 
pathway neurons. The selective effect of K252a on PPD vs. PPE gene 
expression also diminishes the likelihood that the K252a effects are 
mediated by ser/thr kinases stimulated by the major striatal regula-
tors like D1, group I metabotropic glutamate, or muscarinic recep-
tors because antagonists of these pathways block AMPH-induced 
PPD and PPE gene expression (Wang and McGinty, 1996a,b, 1999; 
McGinty et al., 2010). Alternatively, consideration must be given 
to the possibility that tyrosine kinase inhibition mediated by TrkB 
receptors underlies these K252a effects. However, since all MSNs 
in the striatum express TrkB receptors (Freeman et al., 2003; Lobo 
et al., 2010), it is unclear how selectivity of TrkB  receptor  stimulation 
would be accomplished unless it enhanced activity in one pathway 

Figure 5 | Putative crosstalk between D1and TrkB receptors in striatal direct pathway neurons controlling PPD mrNA expression.
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conclusIon
Taken together, these data suggest that AMPH indirectly stim-
ulates BDNF/TrkB receptors and that K252a augments acute 
AMPH-induced vertical activity and inhibits PPD gene expres-
sion via an undefined kinase cascade, possibly TrkB-coupled, in 
the D1-regulated, direct pathway. The possibility that this AMPH-
stimulated kinase cascade involves BDNF/TrkB, dopamine, and 
glutamate interactions in the striatum requires further exploration.
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