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We present a behavioral paradigm for the study of duration perception in the rat, and report
the result of neurotoxic lesions that have the goal of identifying sites that mediate dura-
tion perception. Using a two-alternative forced-choice paradigm, rats were either trained
to discriminate durations of pure tones (range =[200,500] ms; boundary =316 ms; Weber
fraction after training=0.24 + 0.04), or were trained to discriminate frequencies of pure
tones (range =[8,16] kHz; boundary = 11.3kHz; Weber=0.16 £ 0.11); the latter task is a
control for non-timing-specific aspects of the former. Both groups discriminate the same
class of sensory stimuli, use the same motions to indicate decisions, have identical trial
structures, and are trained to psychophysical threshold; the tasks are thus matched in a
number of sensorimotor and cognitive demands. We made neurotoxic lesions of candidate
timing-perception areas in the cerebral cortex of both groups. Following extensive bilateral
lesions of the auditory cortex, the performance of the frequency discrimination group was
significantly more impaired than that of the duration discrimination group. We also found
that extensive bilateral lesions of the medial prefrontal cortex resulted in little to no impair
ment of both groups. The behavioral framework presented here provides an audition-based
approach to study the neural mechanisms of time estimation and memory for durations.
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INTRODUCTION

Specialized timekeeping mechanisms that underlie phenomena
such as circadian rhythms and sound localization are well-
understood at the neuroanatomical, local circuit, and even mole-
cular level (Carr, 1993; Wager-Smith and Kay, 2000). This is in
sharp contrast to the relatively little we understand about the
mechanisms underlying the timing of intervals in the range from
hundreds of milliseconds to a few hours (Mauk and Buonomano,
2004; Buhusi and Meck, 2005). This “interval timing” ability, used
by humans to plan daily activities, has also been identified in
several other species (Gibbon, 1977; Boisvert and Sherry, 2006;
Henderson et al., 2006). In rodents, the operant Peak Interval task
(Catania, 19705 Gibbon, 1977; Roberts, 1981; Buhusi and Meck,
2005; Boisvert and Sherry, 2006; Henderson et al., 2006) is a well-
established paradigm used to assess interval timing capacity. In
this paradigm, the animal learns that a response (e.g., pressing
a lever) following a specific duration after stimulus presentation,
is rewarded. Such an animal develops an anticipatory increase in
response rate leading up to the target duration. In probe trials
where the reward is omitted, the response rate decreases after the
target duration has elapsed. Pharmacological lesions in animals
performing the Peak Interval task have suggested the involvement
of frontostriatal loops, matching patterns observed in human neu-
roimaging studies (Rao et al., 2001). However, the Peak Interval

paradigm involves both interval estimation and production. Here
we developed a paradigm that focused purely on duration estima-
tion, to ensure that we were studying a single cognitive function.
We also attempted to simplify the interpretations of our exper-
iments by controlling for unrelated sensorimotor and cognitive
variables (e.g., motivation). To this end, we developed two forced-
choice tasks involving the bisection of auditory cues: one where
the relevant parameter to be bisected was tone duration and the
other, tone frequency; temporal bisection has been previously used
to characterize interval timing at the behavioral level (Church and
Deluty, 1977).

Based on the literature from interval timing in humans, we
hypothesized that timing in our task occurred via a corticocor-
tical pathway (Rao et al., 2001; Nenadic et al., 2003; also see
Figure 14). We therefore performed extensive bilateral lesions
of the auditory cortex (ACx), the cortical location which neu-
roanatomically receives the earliest impulses from the audi-
tory thalamus. We also performed extensive bilateral lesions
of the medial prefrontal cortex (mPFC), which is required for
some forms of short-term memory in the rat (Ragozzino et al,,
2002; Buhusi and Meck, 2005). All lesions were conducted in
both the timing and frequency groups of animals. Here we
describe our behavioral framework and the results of these
lesions.
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FIGURE 1 | Trial structure for the duration and frequency discrimination
tasks. The behavior box contains three nose cones with which the rat
interacts to advance a trial. The rat initiates the trial with a center poke, upon
which he is presented with a variable-length silent period, a cue (“A or B"),
and a “GO" chord, which is a permissive signal for indicating sound

categorization. Decisions are indicated by a subsequent side poke (red/green
silhouette). Each class of stimuli is associated with rewards on only one side
(e.g., left for “short,” right for “long”). Correct responses are rewarded with
24 1L water, and incorrect ones are punished by omission of reward and
presentation of pulsing white noise (see Materials and Methods).

MATERIALS AND METHODS

These experiments used only adult male Long-Evans rats. Animals
were housed in a reverse dark-light cycle and were given free access
to food; access to water was limited to 30 min a day. Rats were water
deprived under a protocol approved by the Cold Spring Harbor
Laboratory and by Princeton University Institutional Animal Care
and Use Committees.

HARDWARE/SOFTWARE CONFIGURATION

All training was conducted in a training box (custom-made by
Island Motion, Tappan, NY, USA) with a grill floor, enclosed in
a soundproof chamber (Industrial Acoustics Company, Bronx,
NY, USA). One wall of the training box contained an array of
three side-by-side plastic “nose ports” or “nose pokes” (custom-
made by Island Motion, Tappan, NY, USA after a design by Z.
E Mainen and A. M. Zador), each shaped such that rats could
insert their nose into a conical aperture facing the interior of
the box (see schematic in Figure 1). Nose pokes into/out of
the ports were detected by infrared beam breaks. Water was
delivered via metal tubes fitted to the backs of the leftmost
and rightmost ports; these tubes in turn were connected to a
computer-controlled water delivery system. Beam breaks were
digitally recorded via a data acquisition card (National Instru-
ments, Austin, TX, USA) on a computer running the Real-time
Linux operating system and custom, open-source software! that
detected and responded to behavioral events with a clock pre-
cision of 166 ps. The Real-time Linux computer was in turn
controlled by a computer running custom open-source soft-
ware written in Matlab?, in which the stimulus/response char-
acteristics of each trial were configured. The walls flanking
the ports were perforated and had computer-controlled speak-
ers (Harman Kardon, Stamford, CT, USA) placed behind them.
After experience training many animals, a shaping algorithm
was developed that allowed adaptive training of each animal
in an automated fashion (discussed in detail in the following
section).

Uhttp://code.google.com/p/rt-fsm
Zhttp://brodylab.princeton.edu/bcontrol

BEHAVIOR

Rats were trained to discriminate either pure tone durations or
pure tone frequencies. In both cases, the trial structure was the
same (Figure 1). An animal initiated a trial by poking its nose
into the center nose port. Animals were trained to then continu-
ously maintain their noses in the center port until a brief chord
was played (“GO” signal; chord composed of 16 pure tones with
base frequency 1kHz, lasting 100 ms). Nose withdrawals before
the GO signal resulted in aborting of the trial, signaled by a
“penalty sound” consisting of four pulses of white noise (pulse
duration = 150 ms, inter-pulse interval =50 ms) followed by 2—
6 s of white noise. After the white noise sound, aborted trials were
restarted afresh. The white noise duration increased or decreased
based on respective increase/decrease in recent frequency of
penalty occurrence.

The initiating center poke triggered the start of a variable-delay
(150 ms—1 s) silent period, followed by a single pure tone. In trials
that were not restarted due to early withdrawals, the pure tone
was followed by the “GO” signal, which indicated to the rat that it
was now free to take its nose out of the center port and seek a 24-
WL water reward by nose poking into either the left or right port.
The identity of the pure tone played while the animal had its nose
in the center port indicated which of the two side ports held the
reward. Correct responses triggered delivery of the water reward
at the corresponding side port. Incorrect responses triggered a
penalty sound (same parameters as penalty sound for premature
nose withdrawals). For rats trained in duration discrimination,
the pure tone had a frequency of 11.3 kHz in all trials, but had a
different duration in different trials. On each trial, the logarithm
of the pure tone duration was chosen from a uniform distribution
ranging from log(200 ms) to log(500 ms). Durations longer than
316 ms (the geometric mean of 200 and 500) indicated reward
in the right port, while durations shorter than 316 ms indicated
reward in the left port. For rats trained in frequency discrimina-
tion, the pure tone always had a duration of 316 ms, but had a
frequency that varied across trials. The logarithm of the frequency
was chosen from a uniform distribution ranging from log(8 kHz)
to log(16 kHz). Frequencies higher than 11.3kHz (the geomet-
ric mean of 8 and 16) indicated reward in the right port while
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frequencies lower than 11.3 kHz indicated reward in the left port.
We refer to 11.3 kHz and 316 ms as the “midpoint” or “categoriza-
tion boundary” in each task. Training: each rat was first trained to
categorize single pairs of stimuli at the endpoints of the stimulus
range (200 and 500 ms in DURATION; 8 and 16kHz in FRE-
QUENCY). To proceed to the next stage in training, the following
criteria were required to be met: performance accuracy > 87% for
last 30 trials, with the average number of abortions per completed
trial <1.3, for preceding 25 trials. The rate of aborted trials varied
considerably among animals; depending on the animal, 10-60+%
of the trials could be aborted.

When performance criteria were achieved, the single stimulus
pair was changed to a pair closer to the midpoint, with the geomet-
ric mean of the pair being used in any session always remaining
at the task’s midpoint. We termed this the “sharpening” phase
of training. Based on achieving the performance criterion at each
step, stimulus pairs were successively moved closer and closer to the
midpoint until the stimulus pair was 252 and 396 ms in the timing
task,and 10.2 and 12.6 kHz in the frequency task. These limits were
chosen because most rats could reach the corresponding stimulus
pair, but few could go beyond it. When the performance criterion
was achieved at this final stimulus separation, the rat was moved
into what we termed the “psychometric,” or final, data collection
stage of the task. In the psychometric stage, we did not use only
one stimulus pair in each session, but instead on each trial chose
the stimulus parameter randomly from within the task’s full range,
as described above.

Animals with excessive side bias (bias >25% to any one side)
or which took longer than 30 days to achieve criterion at any
point in the sharpening phase of training were removed from the
experiments.

Data analysis
Stimulus discriminability was quantified using the Weber ratio,
using a definition from (Meck, 1986).

575 — 825

Weber = (1)

550
where sy is obtained from the fit as the stimulus that produces a
leftwards response N% of the time. The numerator, s75 — s»5, is
the just-noticeable-difference (JND), the smallest change in stim-
ulus required to produce a substantial change in behavior (here,
a 50% change in side choice). The Weber ratio is therefore the
mean-normalized JND.

To more precisely compute slope from psychometric data and
measure post-lesion impairment, two different functions were fit-
ted to the behavioral data. First, Matlab’s nlinfit method was used
to fit a four-parameter sigmoid (eqn. 2),

a
Y =0t T e (o) (2)

where y represents the fraction of trials in which the animal
responded to the left port (“short” for timing, and “low” for fre-
quency) and x represents the logarithm of the stimulus parameter
(i.e., pure tone frequency or pure tone duration, depending on
the task). In these fits, y¢ controls the lower bound of the curve,

(a+ yo) controls the upper bound, xy controls the point of inflec-
tion of the sigmoid, and b controls the inverse of the slope at the
point of inflection. The same data were also fitted to a line equation
(eqn. 3):

y=mx+b (3)

where m is the slope and b is the intercept at the y-axis. The
Q-value (Press et al., 1992, equations 15.2.12 and 6.2.3.) was com-
puted for each of the two fits as a measure of goodness-of-fit, and
the fit with the higher Q-value was chosen. The linear fit was also
chosen outright in the case where an animal had extremely biased
responses (defined as chance performance or worse on endpoints
of the psychometric range). The slope parameter of the appropri-
ate fit was then taken to indicate the animal’s behavioral sensitivity
to changes in the stimulus parameter. For data combined over ses-
sions, responses from individual sessions were first pooled and the
fit was computed on this pooled response data.

THREE REPLICATIONS

Our experiments were conducted in three sets, with the fol-
lowing number of animals in each set: Duration = [7,6,4], Fre-
quency = [7,7,0]. The first set of experiments was conducted at
Cold Spring Harbor Laboratory, while the second and third were
conducted at Princeton University, 6 months apart. There were
some differences in the task design among the three sets. In the
first set of experiments, every training session began with “sharp-
ening” trials, a phase continuing until either performance criteria
for psychometric trials were met (see above) or 100 trials elapsed,
whichever came first. Thereafter, psychometric trials were pre-
sented till the end of the session. This switching from sharpening
to psychometric trials occurred even after rats reached the psycho-
metric training stage. In contrast, once rats in sets 2 and 3 reached
the psychometric stage, individual training sessions started directly
with psychometric trials (i.e., without sharpening). Another dif-
ference between the sets was that criteria for inclusion of trained
animals in lesion experiments were less strict in set 1 compared
to those for sets 2 and 3. In set 1, any animal that maintained a
psychometric curve for at least 2 weeks with a Weber ratio < 0.38
it was included. In sets 2 and 3, only those rats that had <=10%
error rate at each endpoint of the stimulus range were included
in the lesion experiments. Finally, lesion coordinates and infusion
volumes were larger for sets 2 and 3 than for set 1 (see below).
All sets led to similar outcomes, therefore we report the collective
results here.

EXPERIMENT 1: AUDITORY CORTEX
Animals were trained to discriminate either duration (DURA-
TION or TIMING group) or frequency (FREQUENCY group),
as described above.

Thirteen DURATION animals were injected with the exci-
totoxin ibotenic acid, and four with saline. Ten FREQUENCY
animals were injected with ibotenic acid and four with saline.

Surgery
The timeline of a lesion experiment is graphically depicted in
Figure 2A. A rat to be lesioned was given free access to water
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FIGURE 2 | Ibotenic acid lesion experiment. (A) Shows the timeline of
the lesion experiment for an individual animal. (B) Shows the effect of
ibotenic acid injection on a sample coronal section of auditory cortex,
magnified in (C) [Nissl stain]. The zone of affected tissue is characterized by
a disruption of the laminar cytoarchitecture of cortical tissue, and a change
in the morphology of present cell nuclei from being large to being small and
more disorganized [blue inset in (C)]. The boundary of this histological
change is visually salient and is taken to mark the lesion extent.

the night before the lesion surgery. Just before surgery, the rat
was anesthetized using isoflurane mixed in oxygen; this anesthe-
sia was induced using 4% isoflurane and was maintained using
2% throughout surgery. At this time, ketofen (1.3 mg/kg) was
also subcutaneously administered as an analgesic. Upon induc-
tion, the animal was placed into a stereotax (Kopf Instruments,
Tujunga, CA, USA) atop a heating pad to maintain body temper-
ature. Using a scalpel, an incision was made down the mid-line
of the scalp and the skin flaps were clipped back. To avoid dam-
age to the temporal muscle, the ACx was targeted from the dorsal
aspect of the skull rather than through the temporal bone. This
strategy required a descent angled at 30° mid-line from the vertical
in the coronal plane; damage to intervening tissue was avoided by
use of an extremely thin (OD = 10-30 pm) glass pipette. Target
coordinates were revised part-way through the study to improve
regional coverage. AP and ML coordinates (in mm) are expressed
relative to bregma, while the penetration depth is that (in mm) of
the angled-needle from dural surface. The first set (Toxin: n=5
duration, n = 5 frequency; Saline: n = 2 duration, n = 2 frequency)
involved four injection sites per hemisphere: —3.1 AP, £3.53 ML,
7.06 D; —4.0 AP, £4.66 ML, 5.08 D; —5 AP, +4.72 ML, 4.96 D;
—5.5 AP, £4.72 ML, 4.46 D. ~81 nL of ibotenic acid (10 mg/mL;
Tocris Bioscience, Missouri) was injected at each site. The second
and third set (Toxin: n = 5 duration, n = 5 frequency; Saline: n =2
duration, n =2 frequency) had five injections per hemisphere: S1:
—2.50 AP, £3.50 ML, 6.30 D; S2: —3.50 AP, +4.65 ML, 4.40 D;
S3: —4.50 AP, £5.20 ML, 3.50 D, S4: —5.00 AP, £4.2 ML, 5.50
D, and S5: —6.00 AP, +£4.75 ML, 4.30 D. In the second set, the
amount of ibotenic acid injected per site varied: S1: 138 nL, S2:
110nL, S3: 110nL, S4: 110nL, and S5: 138 nL. All craniotomies
were made prior to any injections, and were covered with gelfoam
when not in use for an injection. Injections were made using an

nanoliter injector (Drummond Scientific Instruments, Broomall,
PA, USA), using a custom glass pipette (shaft length = 1 cm, taper-
ing to OD = 10-30 wm). Injections of ibotenic acid (10 mg/mL)
or 0.9% saline were made in boluses of ~28 nL. An inter-pulse
interval of 5s was used, and 1 min was allowed to elapse between
the last pulse and the raising of the needle. Finally, craniotomies
were covered using a silicone elastomer (Kwik-cast; World Preci-
sion Instruments, Sarasota, FL, USA), and the skin over the scalp
was sutured into place. The animal was allowed to recover in its
home cage with free access to food and water for 5 days; water
deprivation was recommenced on the fifth night of recovery, and
behavioral testing started the following day.

Post-processing and lesion scoring

After post-lesion testing was complete, an animal was deeply anes-
thetized with ketamine, and then was transcardially perfused using
saline, followed by 4% paraformaldehyde. The brain was removed,
postfixed overnight, and coronal sections of 50 um were made
using a fixed-tissue vibratome. These slices were then mounted on
gelatin-subbed slides and Nissl-stained to reveal gliotic damage.
Briefly, slices were selected at 100-150 wm intervals from —2 AP
to —7 AP (mm relative to Bregma), to match the 120 pum intervals
shown in the brain atlas. Light microscope images were captured
at 10, 20, and 40x magnification. Gliotic regions (see Figure 2B
for an example) were visually demarcated and scored onto digital
copies of the rat brain atlas (Paxinos and Watson, 2007) in Adobe
Acrobat Reader. Coordinates for regions of interest (ROL here,
ACx isdefined as areas A1, AuD, AuV, and TeA) were obtained from
digital images of the rat brain atlas, and the overlap between each
ROI and lesions was quantified using custom-developed software
in Matlab (Figure 3).

Calculation of impairment

To compute impairment, data from the last seven training ses-
sions before the lesion surgery (BEFORE) was compared to that
from the first three training sessions after the surgery and recovery
(AFTER). We chose the first three post-lesion sessions as a trade-
off between maximizing the number of behavior trials obtained
for data collection, while minimizing recovery effects on a time-
scale of days or longer. We originally intended to use the Weber
ratio to quantify impairment but observed that, following lesions,
the particular effect of lesions on the psychometric curve varied
among animals. In particular, impairment was a combination of
an effect on the slope as well as on the bias (endpoints) of the
psychometric curve (see Figure 7), but the change in each varied
across animals. Moreover, the Weber ratio relies on sufficient data-
points at various quartiles of response side (e.g., “25% of stimulus
X reported as ‘short™), a criterion we were unable to meet given the
severe post-lesion impairment of several animals in the frequency
group (e.g., post-lesion severe side bias). Conventional measures
(e.g., overall accuracy) were inadequate because they suggested
modest impairment when the psychometric curve suggested oth-
erwise. We therefore decided to measure impairment as the sum of
the change in both these parameters after the lesion. The IMPAIR
measure was used because it was a composite measure of gen-
eral performance (accuracy at end points) as well as of difficult
discriminations (slope of psychometric curve). We have therefore
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FIGURE 3 | Schematic for method of quantifying lesion extent for a
single animal, and for a task group. The example shown is for prelimbic
cortex, a region of medial prefrontal cortex. (A) Lesion extent was manually
marked at 120 wm intervals, based on gliosis evident using the Nissl stain.
(B) Resulting lesion polygons were manually marked on corresponding
slices of the digital rat brain atlas (Adobe Acrobat, Adobe Systems
Incorporated, San Jose, CA, USA). (C) A reference set of polygons for each
ROl was created by manually marking region extents as defined by the rat
brain atlas. (D) Vertex coordinates for both lesion and ROl polygons were
imported into Matlab and pixel counting was used to compute degree of
overlap for each slice with each ROI. (E) Profile of slice-wise coverage of a
ROI for a single animal. (F) Coverage trends of various prefrontal regions for
each rat (trendline) of timing group. Coverage extent for missing slices was
interpolated using a shape-averaging algorithm between nearest two slices.
Abbreviations: Cg, cingulate cortex; IL, infralimbic cortex; MO, medial
orbitofrontal cortex; M2, motor cortex; PrL, prelimbic cortex.

selected simple elements derived from the parameters used to fit
our psychometric data — slope and accuracy change — and have
used a summation of them to create a function that best measures
impairment in this dataset. The IMPAIR measure agrees well with
the degree of impairment visually apparent in psychometric data
before and after lesions (Figures 6,7,10, and 11).

Algorithm. For each epoch (i.e., BEFORE or AFTER), data were
fit to a four-parameter sigmoid (eqn. 2) as well as to a two-
parameter line (eqn. 3), and the lowest-parameter fit consistent
with the data was chosen (see above).

IMPAIR was defined as:
IMPAIR = ASLOPE + AHITRATE (4)
ASLOPE = SLOPEgRgrorg — SLOPEAFTER (5)
SLOPE — max(slopeVx € stimulusrange) if sigmoid fit
m if linear fit
(6)

when the sigmoid fit to the data had its inflection point within the
stimulus range used, the above expression for sigmoids simplifies
to a/2b. For a few data sets, however, the fitted inflection point
fell outside the stimulus range, in which case the maximum slope
within the stimulus range was used.

AHITRATE = ENDPOINTSggrorRg — ENDPOINTSArTER — (7)

Where ENDPOINTS are the fraction of trials correct at stimulus
range endpoints; operationally these were defined thus:

ENDPOINTS

| fraction correct(x < 9.9kHz|x > 14kHz) if DURATION

" | fraction correct(x < 264ms|x > 425ms)  if FREQUENCY
(8)

EXPERIMENT 2: MEDIAL PREFRONTAL CORTEX
Unless otherwise specified, procedures for this experiment are as
described in the previous experiment.

Six DURATION animals were injected with the excitotoxin
ibotenic acid. Five FREQUENCY animals were injected with toxin.
No saline injections were performed.

Surgery
Craniotomies were made at +3.0 AP, £0.50 ML (all units are in
mm and coordinates are relative to bregma). Ibotenic acid was
injected bilaterally into the mPFC (one site per hemisphere): +3.0
AP, £0.50 ML, —4.10 DV. Approximately 304 nL of ibotenic acid
was injected at each site. For scoring, mPFC was defined as areas
PrL and IL in the rat brain atlas (5.64-2.52 mm AP relative to
Bregma; Paxinos and Watson, 2007).

Post-processing and lesion scoring conducted as in auditory
cortex experiments.

RESULTS

PRE-LESION BEHAVIOR

Rats in the DURATION group successfully learned to discriminate
tone durations up to psychophysical threshold (Figure 4). This
ability is quantified using the Weber ratio, a standard psychophys-
ical quantity measuring uncertainty in perceptual discriminability
(see Materials and Methods). Figure 4B quantifies the variability in
session- and individual-specific Weber ratios from a group of ani-
mals prior to lesion; the average Weber ratio was 0.24 (SD =0.04),
translating to a just-noticeable-difference (JND) of ~75 ms. Indi-
viduals vary from 0.18 (JND is ~58 ms) to 0.32 (JND is 102 ms;
Figure 4C). Setting the intensity of the pure tone cue to zero leads
to a drop to chance performance, confirming that this task is audi-
tory in nature (Figure 4D; 20% of the trials were randomly selected
to be probe trials), and that other behavioral timing markers were
not being used.

Similarly, the frequency group learned to discriminate frequen-
cies up to psychophysical threshold (Figure 5); for this group,
stimuli were also spaced uniformly in log-space. The average
Weber ratio of trained animals in this group is around 0.16, trans-
lating to a JND of 1.8 kHz. Across different animals, the Weber
ratio ranged from 0.11 (JND &1.3 kHz) to 0.33 (JND =~3.7 kHz).
Similar to the duration task, setting the intensity of the cue to zero
results in performance at chance levels (data not shown).
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FIGURE 4 | Psychophysical characterization of the group performing
duration discrimination. (A) Shows the psychometric curve generated
from a single training session of a representative individual. Error bars
show SEM. (B) Shows the variability in \Weber ratio across 1 week’s
training of the animal shown in (A). (C) Shows the group average of a
sample of 10 animals. (D) Shows the drop in performance to chance
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levels when the cue intensity is dropped to 0 in probe trials (20% of the
trials, randomly selected); data shown for seven individuals over three
sessions. Three of the animals were performing in psychometric
sessions, and the rest were discriminating individual tone pairs. Values
shown are mean (SEM). JND, just-noticeable-difference (see Materials

and Methods).

FIGURE 5 | Psychophysical characterization of the group performing
frequency discrimination. (A) Shows the psychometric curve generated
from a single training session of a representative individual. (B) Shows the
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variability in Weber ratio across 1 week’s training of the animal shown in (A).
(C) Shows the group average of a sample of 10 animals. JND is
just-noticeable-difference (see Materials and Methods).

EXPERIMENT 1: AUDITORY CORTEX LESIONS

Among those treated with ibotenic acid, there were 9 animals in
the DURATION group and 10 in the FREQUENCY group. Addi-
tionally, four animals from each group were injected with saline.
Figure 6 shows representative post-lesion changes in psychome-
tric curves for the two groups, along with IMPAIR scores. An
individual’s IMPAIR value is the sum of the post-lesion change
in the slope of the psychometric curve and of the change in
overall accuracy at the endpoints of the stimulus range (see
Materials and Methods for details and justification). This met-
ric combines the degree of impairment in finer discriminability
(slope) as well as in accuracy at stimulus endpoints, and was
chosen because individual animals varied in the extent to which
each was affected. Figure 7 shows IMPAIR measures alongside
psychometric data for all ibotenic acid-lesioned animals in this

experiment. We observed tremendous variability in the degree of
impairment, even in animals within a task group, and hypoth-
esized that this variability in impairment may in turn reflect
the individual variability in damage to the ACx. We therefore
quantified the bilateral tissue damage to the ACx as well as to
surrounding brain areas (Figure 8; see Materials and Methods
section for algorithm). Figure 9 shows the degree of impair-
ment plotted against bilateral lesion extent in the ACx. In general,
animals of both groups were similarly covered, although two
animals in the FREQUENCY group were more greatly covered
than all DURATION animals. It is visually apparent that in both
groups, as coverage of ACx increased, so did the degree of impair-
ment; however, per unit coverage, there is greater impairment in
the frequency group than in the timing group. This effect has
been quantified by a linear regression on percent coverage of
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FIGURE 6 | Representative individual psychometric curves of
frequency (top) and duration (bottom) group animals. Each panel
shows the performance of an animal before (blue) and after (red) injections
bilaterally into the auditory cortex, with the degree of impairment (IMPAIR)
shown in the top-left corner. The coverage for each animal (identified by the
red numeric in the bottom-right) is shown in Figure 9). Pairs of [stimulus
duration/frequency, side choice] were fitted using a logistic function, or a
line, to generate psychometric curves. Individual points along a curve are
averages of binned values + SEM in log(stimulus) space. See Section
“Materials and Methods” for details and justification of IMPAIR score.

the ROI (cvg) as well as on an interaction term of coverage and
task type:

IMPAIR = a(cvg) + B(tasktype * cvg) + v 9)

with tasktype coded as frequency = —0.5 and duration =+-0.5.
The effect of coverage was significantly greater than zero (o = 0.58;
95%CI = [0.14, 1.02]) as was the interaction between coverage and
the type of task (f =0.52; 95%CI = [0.18, 0.85]).

Animals injected with saline showed variable impairment
(Figure 9, diamonds) despite lacking any visible histopathology
of brain tissue (data not shown); this impairment may be due to
the lapse in training during recovery from surgery, to non-specific
brain injury caused by ~1.0 iL saline infusion, or to some other
aspect of surgery.

EXPERIMENT 2: MEDIAL PREFRONTAL CORTEX LESIONS

The training timeline and general surgical/histological procedures
for this experiment are identical to those used for the ACx lesions;
the only difference is that for this experiment, toxin and saline
injections were targeted to cover the mPFC (areas PrL and IL).
Figure 10 shows the psychometric curves for representative ani-
mals in each group following the lesion, with the corresponding
impairment score (IMPAIR) for each; see Figure 11 for all indi-
vidual IMPAIR scores and psychometric curves. Lesion extent was
quantified for both groups (Figure 12). Figure 13 shows impair-
ment as a function of tissue coverage. Both groups showed little
to no post-lesion impairment despite extensive bilateral coverage
of mPFC. A linear regression showed neither a significant effect of
coverage itself (cvg = 0.17; 95%CI = [—1.61, 1.95]), nor that of an
interaction of task and coverage (tasktype®cvg coefficient = 0.06;
95%CI = [—0.27, 0.38]).

DISCUSSION

We developed two auditory perceptual decision-making tasks in
rats, one where rats discriminate tone durations and the other,
tone frequency. Using these tasks, we have presented lesion-based
evidence for neuroanatomical dissociation in the neural pathways
mediating the two behaviors. In both tasks, performance is based
on auditory cues — inescapably so for the frequency discrimina-
tion task, and confirmed for the duration task (Figure 4D). The
auditory nature of the two tasks constrains the relevant neural
structures underlying the behaviors to those stemming from audi-
tory pathways. We performed parallel lesions in separate groups
of rats, each group trained in one of the two tasks. The two tasks
were matched in several sensorimotor as well as cognitive aspects
(e.g., maintaining a nose-in-center position, randomized stimuli
during psychometric phase of task). This balanced design helps to
dissociate experimental effects on temporal processing per se from
indirect influences such as changes in arousal, motivation, atten-
tion, or other cognitive variables. Such confounds have challenged
other studies of temporal processing (Drew et al., 2007; Ward et al.,
2009). While we have used the frequency discrimination task as a
control for the timing task here, the former is also a behavioral
framework in its own right, for the neurobiological study of the
basis of tone frequency perception and memory. We found that
following lesions, animals varied in the degree to which impair-
ment affected simple or difficult discriminations (for example,
see Figure 7); the former type of impairment is readily measured
by endpoints while the latter is more sensitively measured by the
slope. Moreover, we found that overall rate of accuracy did not
reflect the individual degree of impairment visible in the pre- and
post-lesion psychometric curves. We therefore developed a com-
posite measure (IMPAIR) which captures inaccuracy in both easy
(endpoint) and difficult (slope) regimes of the stimulus space.

The current experimental design differs from several previ-
ous timing studies in at least two respects. First, studies using
behaviors such as the Peak Interval task (Catania, 1970; Roberts,
1981) involve response timing rather than the perceptual dura-
tion estimation used here. The two may be subserved by different
brain structures. Second, to obtain stable psychometric curves, our
subjects underwent extensive training. Brain structures involved
after such extensive training may differ from those involved early
in training (Ponnusamy et al., 2007). In addition to differences
with previous tasks, lesion studies in general suffer from at least
two drawbacks. First is the possibility of performance recovery
owing to potential post-lesion brain reorganization (Yamasaki and
Wurtz, 1991). To minimize such effects, we tested subjects only in
a short window of time post-lesion. Second is the possibility that
a behavior may be subserved by multiple redundant pathways, in
which case multiple simultaneous lesions may be required in order
to reveal behavioral deficits. Here we lesioned single brain regions
per subject.

In our hands, Weber ratios for pure tone frequency discrim-
ination were an order of magnitude higher than those reported
in “go/no-go” tasks in which rats report changes in ongoing
stimuli (Talwar and Gerstein, 1998; Sloan et al., 2009), perhaps
reflecting lower memory and waiting requirements of the latter.
In contrast, we found Weber ratios for rats performing dura-
tion discrimination to be similar to those reported elsewhere for
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FIGURE 7 | IMPAIR measures reflect the degree of impairment in represents log(tone duration) and y-axis, the percent reported “Long.” For
individual animals following auditory cortex (ACx) lesions. Each panel frequency group animals, x-axis represents log(tone frequency) and y-axis, the
shows the performance in the psychometric phase of the task before (blue) percent reported “High.” Note that increased IMPAIR values accompany a
and after (red) bilateral ACx lesions, with task type indicated by the color of flattening of the slope of the curve and decrease in performance at the ends of
each heading (DURATION in orange, FREQUENCY in blue); panels are sorted the stimulus range, but that these can vary independently to different extents
in increased order of IMPAIR measure. For duration group animals, x-axis (compare “Gandalf” at position [3,3] to “S045" at [4,2]). Error bars show SEM.

bisection tasks (Church and Deluty, 1977; Orduna et al., 2007, Differences in behavioral task design are often offered as

Weber ~0.23). an explanation to resolve discrepant results in the literature.

Here, we obtained different effects across the two tasks even
CONTRIBUTION TO THE KNOWN FUNCTION OF THE RAT AUDITORY though the basic task design and all task-related parameters,
CORTEX other than the stimulus feature to be discriminated, were kept

We found that extensive lesions of ACx produced a much equal across the two tasks. To our knowledge, ACx lesions
greater performance deficit in subjects discriminating pure tone have not previously been performed in duration discrimination
frequencies than in those discriminating pure tone durations. tasks.
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FIGURE 8 | Quantification of bilateral auditory cortex (ACx)
lesion extent in duration (orange; n= 13) and frequency (blue;
n= 10) groups. (A) Shows slice-wise bilateral coverage. Individual
data is shown in thin lines; the group average (+SEM) is shown in
thick lines. (B) Shows the overall tissue coverage in both groups
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(mean & SEM). A permutation test (rep = 1000) shows that coverage
in the two groups is not significantly different (p > 0.1). Due to
variable tissue coverage, we regressed behavioral impairment against
degree of ACx coverage (Figure 9). ACx is defined as areas {A1, AuV,
AuD, TeA}.
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FIGURE 9 | Auditory cortex lesions: impairment relative to the coverage
extent of auditory cortex (areas A1, AuD, AuV, and TeA). Each point
depicts one animal, the ibotenic acid-injected (n=23) shown as circles and
the saline-injected (n=8) as diamonds. A linear regression showed
significant effect of an interaction between coverage extent and task type
(tasktype*cvg = 0.562; 95%Cl =[0.18, 0.85]) in addition to a significant effect
of coverage extent (cvg=0.58; 95%Cl =[0.14, 1.02]). Individuals with
assigned numbers are shown in detail in Figure 6. Task type was coded as
an indicator variable (frequency = +0.5, duration = —0.5).

Our findings with respect to frequency discrimination are
consistent with other findings in the literature (Talwar et al,
2001). At this point, we cannot determine whether the deficits
in the frequency discriminating group are due to impairments in
mnemonic abilities (e.g., memory of task-relevant frequencies) or
in non-mnemonic abilities (e.g., ability to compare two frequen-
cies and decide which is higher). Learning increases the number of
ACx neurons responding to a task-relevant frequency, with cortex
itself likely being the site of plasticity (Buonomano and Merzenich,
1998; Rutkowski and Weinberger, 2005; Froemke et al., 2007).
These findings suggest that ACx may be the site of memory of
the fiducial frequencies in this task. If this were true, electrophysi-
ological assays of tonotopic representation, performed throughout
the training history, could in principle distinguish between neu-
robiological strategies used to solve the task (e.g., an expansion of
representation near the categorization boundary or one near each
of the two endpoint stimuli; Han et al., 2007; Kim and Bao, 2008).

While ACx is established as being required for frequency pro-
cessing, it is presently unclear whether or not it is similarly involved
in temporal processing (e.g., storing the memory of duration of
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FIGURE 10 | Representative individual psychometric curves of duration
(left) and frequency (right) animals following extensive bilateral
lesions of the medial prefrontal cortex (mPFC). Each panel shows the
performance of an animal before (blue) and after (red) injections, with the
degree of impairment (IMPAIR) shown in the top-left corner. mPFC lesion
coverage for each animal (identified by the red numeric in the bottom-right)
is shown in Figure 13. Pairs of [stimulus duration/frequency, side choice]
were fitted using a logistic function or a line to generate psychometric
curves. Individual points along a curve are means of binned values (SEM) in
log(stimulus).

the categorization boundary, as opposed to simply causing the
tone to be heard). Neurons in the primate ACx are responsive
to the temporal rate of the stimulus (Beitel et al., 2003), and
perceptual learning in an auditory task can lead to improved tem-
poral fidelity in the response of ACx neurons to auditory stimuli
(Bao et al., 2004). In our experiments, animals performing the
duration discrimination task show significantly less impairment
than those discriminating frequency, suggesting that ACx is prob-
ably not involved in this capacity. One possibility suggested by
these results is that the timing and plasticity required for dura-
tion discrimination occurs through a subcortical route, either via
the thalamus or midbrain (Figure 14). The former could involve
the striatum, a structure implicated in mediating temporal pro-
cessing (Rao et al., 2001; Meck, 2006). Another possibility is that
higher cortical structures, perhaps ones receiving minor projec-
tions from the auditory brainstem or striatum (e.g., parietal areas,
Leon and Shadlen, 2003; Janssen and Shadlen, 2005), are involved
in duration perception.
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FIGURE 12 | Quantification of bilateral medial prefrontal cortex
(mPFC) lesion extent in duration (orange; n= 6) and frequency
(blue; n=5) groups. (A) Shows slice-wise bilateral coverage.
Individual data is shown in thin lines; the group average (+SEM) is
shown in thick lines. (B) shows the overall tissue coverage in both
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groups (mean + SEM). A permutation test (rep = 1000) shows that
coverage in the two groups is not significantly different (p > 0.1). Due
to variable tissue coverage, we regressed behavioral impairment
against degree of mPFC coverage (Figure 13). mPFC is defined as
areas {PrL, IL}.

A limitation of our experiment is the incomplete coverage of
ACx in the timing group in general, with the highest coverage being
at around 80% strictly based on brain atlas coordinates. This gap,
mainly between —2.5 and —3.5mm AP in the left hemisphere
(which in the atlas is marked as areas “S1” and “AuD”), leaves
open the possibility that that remaining tissue may be mediating
the ability to time sounds. It is also possible that timing may be
mediated by higher auditory cortices not as yet identified in the
current rat atlas (Kalatsky et al., 2005), that were spared by the
toxin. Nevertheless, it is notable that where frequency and tim-
ing rats have similar gross coverage (Figure 9), they show very

different impairment values. We suggest that in the search for
timing-specific brain loci, and in the context of a global picture of
audiomotor connectivity (Figure 14), the “corticocortical branch”
is likely not the one being used, although other possibilities still
exist (see Perspectives).

Several saline-injected animals had impairment values com-
parable to those injected with ibotenic acid. In contrast, ibotenic
acid injections into the mPFC (next section) resulted in even lower
impairment than saline injections in the ACx did. This disparity
in impairment suggests that the targeting technique used for ACx
lesions may have caused sustained tissue damage unobservable
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by Nissl stain, which resulted in variable impairment. Neverthe-
less, the impairment observed in the frequency group exceeds
that observed in the saline-injected animals, indicating that all
impairment seen in these animals is not an artifact of technical
limitations. No gliosis was observed at the injection site in any
of the saline-injected animals (data not shown); the only tissue
damage appeared to be that at the site of the craniotomy.

IMPAIR = 0.14¢vg + 0.06(tasktype*cvg) - 0.13
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FIGURE 13 | Medial prefrontal cortex lesions: there was little to no
impairment in either group following lesions of areas PrL and IL,
despite large coverage of these areas. There was also no correlation
between impairment and lesion coverage. The graph shows impairment
(measured by IMPAIR, y-axis) relative to the coverage extent of medial
prefrontal cortex (x-axis; defined as areas PrL and IL). Each point shows
data for one ibotenic acid-injected animal (n=11; timing =6, frequency =5).
A linear regression showed that neither coverage extent on its own nor in an
interaction with task type significantly explained impairment (tasktype*cvg
coefficient=0.06; 95%Cl=[-0.27 0.38]; cvg=0.17; 95%Cl =[-1.61,
1.95]); task type was coded as an indicator variable (frequency = +0.5,
duration =—0.5). No saline controls were conducted for this experiment.

MEDIAL PREFRONTAL CORTEX LESIONS

In the duration discrimination task, the duration of the pure tone
stimulus could in principle be estimated by having the onset of
the stimulus trigger the temporal integration of a constant input.
This would produce a signal that linearly ramped up over time,
therefore acting as a timer. Such temporally ramping signals are
commonly seen in the prefrontal cortex of primates (Rainer and
Miller, 2002; Brody et al., 2003a,b; Machens et al., 2010). Similarly
to primate prefrontal cortex, the rat mPFC has been proposed
to mediate short-term memory (Kolb et al., 1994; Jackson et al,,
1998; Ragozzino et al., 2002; Kesner and Ragozzino, 2003; Dalley
et al.,, 2004; Di Pietro et al., 2004; Yoon et al., 2008). There-
fore we hypothesized that, following mPFC lesions, we would
observe a deficit specifically in the timing group, and not in the
frequency group. Our results provide no support for this hypoth-
esis: large lesions of the mPFC had surprisingly little enduring
effect in either timing or frequency group. We failed to observe
an impairment even within the first 2 days following a lesion;
in contrast, performance in the first 3 days following lesions of
the ACx still showed a clear impairment in frequency discrim-
ination. Preliminary results from subsequent experiments using
muscimol to reversibly inactivate mPFC also failed to show an
impairment in duration discrimination (data not shown). The
lack of an mPFC requirement for duration discrimination is con-
sistent with our suggestion that the task may be subserved by
a subcortical auditory pathway, but do not preclude the pos-
sible requirement of other prefrontal areas (e.g., more dorsal
aspects).
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FIGURE 14 | Simplified diagram of neural connections from auditory
periphery to the motor system. Each node represents a neural structure of
interest to this study, and arrows represent efferent connections. Broadly,
there are three possible audiomotor “streams” by which timing and frequency
processing could be mediated: the canonical route through sensory cortex
(Stream 1 in teal), a thalamostriatal route (Stream 2 in saffron) and a route
from the inferior to superior colliculus (Stream 3 in green). Our experiments
suggest that the extended auditory cortex is not required for timing in these
tasks, and neither is the medial prefrontal cortex. One possibility suggested

h by
MUSCLE

by these eliminations is that duration perception is mediated by the
subcortical streams. An alternate possibility is that cortical structures not
targeted by our experiments, but which receive direct input from auditory
brainstem, mediate the ability to perceive pure tone durations. Projection key:
blue-dashed: corticofugal; red: to/from the hippocampus; green: subcortical;
thick black: corticocortical.(Neuroanatomy references: Donoghue and Parham,
1983; Roger and Arnault, 1989; Sesack et al., 1989; Arnault and Roger, 1990;
Romanski and LeDoux, 1993; Condé et al., 1995; Burwell and Amaral, 1998;
Winer and Schreiner, 2005; Garcia Del Cafo et al., 2006).
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PERSPECTIVES
This work provides the behavioral foundation for a controlled
inquiry into the neural mechanisms mediating duration estima-
tion. A behavioral setup similar to ours, with a pair of matched
sensory-based tasks, has been previously used as the framework
for a brain imaging study of timing in humans (Rao et al., 2001).
However, to our knowledge, the paired behavioral approach is the
first of its kind to be used for the study of temporal processing
in an animal that allows invasive experiments. Interval timing has
been studied extensively in the rat (Maricq et al., 1981; Meck, 1996,
2006; Buhusi and Meck, 2005; Drew et al., 2007). The behavioral
approach presented here is one where the duration to be estimated
is exclusively perceptual, there is a matched control task to account
for non-timing aspects of the task, and the auditory nature of the
stimulus constrains the search for neural substrates underlying
task performance to structures stemming from auditory pathways.
Our results partially prune the components of the neu-
roanatomical network that specifically mediate the ability to time
sound. We show that animals with extensive bilateral damage to the
ACx still perform the duration task. Taken together with the lack

of impairment following mPFC lesions and the neuroanatomy of
audiomotor pathways, the findings suggest that the neural pathway
for processing stimulus duration is subcortical. The computation
of elapsed duration itself may either occur in subcortical audi-
tory structures, such as the thalamus or inferior colliculus, or in a
non-auditory structure, such as the cerebellum (Lewis and Miall,
2003). Another possibility is that timing could involve cortical
structures receiving less prominent auditory input — connections
omitted from the neuroanatomical diagram (Figure 14) — and
which were not the target of our lesions. These structures could
process purely sensory information, but may also involve more
multimodal cortical structures.
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