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Although metaphorical and conceptual connections between the human brain and the
financial markets have often been drawn, rigorous physical or mathematical underpinnings
of this analogy remain largely unexplored. Here, we apply a statistical and graph theoretic
approach to the study of two datasets – the time series of 90 stocks from the New York
stock exchange over a 3-year period, and the fMRI-derived time series acquired from 90
brain regions over the course of a 10-min-long functional MRI scan of resting brain func-
tion in healthy volunteers. Despite the many obvious substantive differences between
these two datasets, graphical analysis demonstrated striking commonalities in terms of
global network topological properties. Both the human brain and the market networks
were non-random, small-world, modular, hierarchical systems with fat-tailed degree dis-
tributions indicating the presence of highly connected hubs. These properties could not
be trivially explained by the univariate time series statistics of stock price returns. This
degree of topological isomorphism suggests that brains and markets can be regarded
broadly as members of the same family of networks.The two systems, however, were not
topologically identical. The financial market was more efficient and more modular – more
highly optimized for information processing – than the brain networks; but also less robust
to systemic disintegration as a result of hub deletion. We conclude that the conceptual
connections between brains and markets are not merely metaphorical; rather these two
information processing systems can be rigorously compared in the same mathematical
language and turn out often to share important topological properties in common to some
degree. There will be interesting scientific arbitrage opportunities in further work at the
graph-theoretically mediated interface between systems neuroscience and the statistical
physics of financial markets.
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INTRODUCTION
Over the last two decades, graphical modeling of networks has
been used successfully to describe a plethora of complex sys-
tems – from metabolic pathways (Jeong et al., 2000) to the world
wide web (Barabási and Albert, 1999). A shared conceptual and
mathematical framework has emerged for describing these diverse
networks, each considered as a set of nodes and edges, in a quanti-
tative lingua franca, often focusing on their topological properties.
This approach has led to the discovery that many complex sys-
tems, including human brain networks, demonstrate a number of
important organizational features in common. For example, the
so-called “small-world” property of high clustering and high effi-
ciency (or short path length) has proved to be almost ubiquitous
in real-life complex systems (Watts and Strogatz, 1998).

Despite these deeply interdisciplinary insights, graph theory
has also often been used as a tool independently by different

disciplines, with relatively few efforts to translate new discoveries
or methodological advances between traditionally disparate fields
that nevertheless share an interest in topological analysis of com-
plex networks. In this paper, we will apply graph theoretic methods
to explore the topological parallels or isomorphisms in network
organization between two somewhat different systems: the human
brain and a financial market. Our focus on these two systems in
particular is motivated by several parallels immediately apparent
between the two systems, that are perhaps made most obvious by
the anthropomorphic language commonly used in the financial
press, describing markets in terms of their “moods,” “beliefs,” and
“decisions.”

A more abstract framing of the analogy is to define both
brain and market systems as large networks of interacting ele-
ments which propagate and share information while undergoing
complex dynamics. Prior studies focusing on the nature of these

Frontiers in Systems Neuroscience www.frontiersin.org September 2011 | Volume 5 | Article 75 | 1

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/editorialboard
http://www.frontiersin.org/Systems_Neuroscience/about
http://www.frontiersin.org/Systems_Neuroscience/10.3389/fnsys.2011.00075/abstract
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=33688&d=1&sname=PetraVertes&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=35390&d=1&sname=RuthNicol&name=Science
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=37873&d=4&sname=DuncanRobertson&name=Society
http://www.frontiersin.org/Community/WhosWhoDetails.aspx?UID=4319&d=1&sname=EdwardBullmore&name=Science
mailto:etb23@cam.ac.uk
http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Vértes et al. Brain and market network topology

dynamics have shown that both financial and neurophysiologi-
cal time series exhibit long-range temporal correlations, which
manifest themselves as 1/f spectral power on long timescales (Bail-
lic, 1996; Maxim et al., 2005). In addition, the multivariate long
memory properties displayed by both types of data were shown
to lead to scale-invariant correlation structure over a broad range
of frequency scales (Achard et al., 2008). In this study, we seek to
push such rigorous expressions of the brain/market analogy fur-
ther by using graph theory to describe and compare the topological
organization of both brain and market networks.

Firstly, we begin by studying the minimum spanning tree
(MST) of the systems, an approach which has already proved valu-
able in the study of financial markets (Mantegna, 1999; Onnela
et al., 2002; Bonanno et al., 2003; Coelho et al., 2007; Jung et al.,
2008) but has not yet been widely applied to brain functional
networks. Secondly, we report the evolution of a set of network
measures – including modularity, clustering, small-worldness, and
cost-efficiency – as the topological cost, or connection density
of edges, is smoothly varied. Here, our starting point remains
the MST of each system and we then gradually add links in
order of decreasing correlation strength to generate networks with
arbitrary connection density. Finally, we identify the connection
density at which the networks have maximum cost-efficiency and,
at that topological cost specifically, we examine a further set of
more detailed topological characteristics, such as the degree dis-
tribution, hierarchy, and robustness, of both brain and market
networks.

MATERIALS AND METHODS
fMRI DATA ACQUISITION AND PREPROCESSING
The functional MRI data were acquired from 18 healthy volunteers
recruited from the GlaxoSmithKline (GSK) Clinical Unit Cam-
bridge, in Addenbrooke’s Hospital, Cambridge, UK. The volun-
teers provided written informed consent, had a satisfactory med-
ical examination prior to study enrollment and were screened for
normal radiological appearance of structural MRI scans. The study
was reviewed and approved by the Cambridge Local Research
Ethics Committee (REC06/Q0108/130; PI: TW Robbins).

The images were acquired using a Siemens Magnetom Tim
Trio whole body scanner operating at 3T, at the Wolfson Brain
Imaging Centre, University of Cambridge, UK. Gradient-echo, EPI
data depicting BOLD contrast were acquired for the whole brain
while the subject was lying quietly in the scanner for about 9 min
50 s with eyes closed. The following parameters were used: rep-
etition time = 2000 ms; echo time = 30 ms; flip angle = 78˚; slice
thickness = 3 mm plus 0.75 mm interslice gap; 32 slices parallel to
the inter-commissural (AC–PC) line; image matrix size = 64 × 64;
within-plane voxel dimensions = 3.0 mm × 3.0 mm. The first four
EPI images were discarded to account for T1 equilibration effects,
resulting in a series of 296 images, the first 256 of which were used
to estimate wavelet correlations. The data were motion-corrected
and registered to the standard stereotactic space of the Mon-
treal Neurological Institute EPI template image using an affine
transform (Suckling et al., 2006).

Regional time series were estimated by averaging voxel time
series within each of the 90 anatomically defined regions (exclud-
ing the cerebellum) comprising the automated anatomical labeling

(AAL) template image (the regions are defined and listed in
Tzourio-Mazoyer et al., 2002). The maximal overlap discrete
wavelet transform (Percival and Walden, 2000) was used to band-
pass filter the time series to a frequency interval of 0.03–0.06 Hz.
This frequency scale was chosen to allow measurement of net-
work properties at the low frequencies (<0.1 Hz) which have been
the focus of most prior resting-state fMRI studies, while retaining
sufficient wavelet coefficients for reasonably precise estimation of
time series statistics and correlations (Meunier et al., 2009).

FINANCIAL DATA SOURCES, PREPROCESSING, AND MODELING
Daily closing prices for 116 stocks from the New York
stock exchange (NYSE) were obtained from the website
http://jponnela.com/. The time period of this dataset extends from
the beginning of 1982 to the end of 2000 but, as in previous stud-
ies (Onnela et al., 2002; Heimo, 2009), only the last 1000 daily
price quotes per stock were used, ensuring that we excluded time-
periods with unusual market activity such as “Black Monday” in
October 1987. For each stock, we used the logarithmic daily returns
as our time series. For easy comparison to the brain functional
network, we sampled 90 stocks at random so that both networks
would contain N = 90 nodes. We verified that all results presented
here held equally for the full set of 116 stocks as well as for sev-
eral instances of random sampling. In order to construct a simple
statistical model of the financial network, we generated 90 time
series simulating the evolution of 90 stock prices, Yi(t ), according
to the Black–Scholes model. This common stochastic model of
stock price dynamics assumes that the price follows a geometric
Brownian motion with constant drift and volatility:

Yi(t ) = Y0exp

(
μ − σ 2

2
+ σB(t )

)
(1)

where Yi(t ) is the price of the ith stock at time t, Y 0 = 30,
μ = 0.0006 is the drift rate, σ = 0.024 is the volatility of the stock’s
returns, and B(t ) follows Brownian motion. The values of these
parameters were chosen based on their means in the 90 NYSE
stocks in the real financial dataset.

Note that while volatility is known to depend on time in empir-
ical financial data (Engle, 1982; Mantegna and Stanley, 2000), the
Black–Scholes model provides a good first approximation to the
observed behavior of stocks (Mantegna and Stanley, 2000). Indeed,
we confirmed that the distribution of increments in lnYi(t ) in
our NYSE dataset is well-matched by a Gaussian, as expected
from this model. In addition, we verified that the autocorrela-
tional or memory properties of the data were also well-matched
by the Black–Scholes model as we observed a Hurst exponent of
H = 0.48 ± 0.04 in the NYSE data, which corresponds closely with
H = 0.5 as theoretically expected for classical Brownian motion
(the cumulative function of i.i.d Gaussian increments).

CONGRESSIONAL ROLL-CALL DATA
In addition to fMRI and financial data, we constructed a social or
political network (Portera et al., 2007; Mucha et al., 2010) based on
correlations in voting patterns between US senators. Roll-call data
from the United States Senate of the 100th Congress were down-
loaded from the website http://www.voteview.com/dwnl.htm.
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These time series describe for each senator whether they voted
for or against each bill over the duration of the 100th Congress
(1987–1988). The correlation between pairs of senators was calcu-
lated by taking the mean value of their “voting agreement” over all
bills. Voting agreement between two senators was defined as 1 for
the bills where they voted the same, and 0 for the bills where they
did not. We excluded senators who missed more than 30% of votes
as well as bills where voting was unanimous. Correlation between
senators who never voted on the same bill was set to zero. Once
again, we sampled 90 out of a total of 100 senators at random for
easy comparison to the brain functional network.

The choice of this dataset as an example of other real-world
systems was motivated by the fact that the construction of such
political networks is directly analogous to that of financial and
brain functional networks. In particular, all three networks are
based on a “similarity matrix” of the correlations between the
activity of each node (see next section). This is in contrast to
many other real-world networks where connection strength is
measured more directly such as, for example, the volume of traffic
on different roads in a traffic network.

NETWORK CONSTRUCTION
In the brain functional networks, each node corresponds to a dif-
ferent brain region, i, and edges or connections between nodes
represent statistical associations, e.g., correlations, between the
time series, Si(t ), recorded by functional MRI at each of these
regions. Similarly, the nodes of the political network are senators,
and links represent pairwise correlations in their voting patterns.
Finally, network representations are commonly used to under-
stand the correlation structure of markets, which plays a crucial
role in portfolio optimization (Onnela, 2006). The time series of
interest is usually the logarithmic daily return on a set of stocks
defined as Si(t ) = ln[Yi(t + �t )] − ln[Yi(t )], where Yi(t ) is the
price of the ith stock on day t.

The degree of similarity between the time evolution of a pair
of stocks or a pair of brain regions can then be measured by the
correlation coefficient:

ρi,j = < SiSj > − < Si >< Sj >√(
< S2

i > − < Si >2
) (

< S2
j > − < Sj >2

) (2)

Once the N × N association matrix of correlation coefficients
has been evaluated (for N stocks, senators, or brain regions), it
is possible to draw a network of the system where the weight
of each link corresponds to the correlation strength ρi,j between
each {i,j} pair of nodes. This fully connected, weighted network,
however, is not easy to analyze and contains many spurious con-
nections resulting from noise rather than genuine correlations.
It is therefore usually replaced by a sparser, unweighted network
where, following the application of some filtering technique, only
the most important connections have been retained as edges in a
binary adjacency matrix A (Bullmore and Sporns, 2009). A simple
filtering technique is to apply a continuously variable threshold,
τ , to the association matrix so that Ai,j = 1 if ρi,j > τ , and Ai,j = 0
otherwise. Related filtering techniques will be discussed in the fol-
lowing sections. As τ is a continuous variable, it is possible to use

this and related filtering techniques to construct binary graphs of
arbitrary connection density or topological cost, 0 < κ < 1, where
κ is the number of edges in the graph (each represented by two
symmetric non-zero elements in the adjacency matrix) divided by
the maximum possible number of edges; N × (N − 1)/2.

GRAPH THEORETICAL ANALYSIS
Binary graphs thus constructed by filtering a continuous associa-
tion matrix can be topologically analyzed using the following set
of well-known graph theoretical network metrics:

The degree ki of a node i represents the number of edges con-
necting it to the rest of the network. Assortativity is a measure
of degree correlation, indicating the propensity of high-degree
nodes to connect preferentially to each other (Newman, 2002). The
degrees of all the nodes of a network form the degree distribution.

The clustering coefficient Ci of a node i is defined as the ratio
of the number of triangular connections between the node’s near-
est neighbors to the maximal possible number of such triangular
motifs. The overall clustering coefficient C(G) of a graph G is
defined as the average clustering coefficient of its N nodes:

C(G) = 1

N

∑
i∈G

Ci (3)

The path length Lij between a pair of nodes i and j is defined
as the minimum number of edges that need to be traversed to
get from i to j. More commonly, one measures the average inverse
path length, or global efficiency, 0 < E(G) < 1, of a graph G which
is defined as:

E(G) = 1

N (N − 1)

∑
i �=j∈G

1

Lij
(4)

The cost-efficiency CE(G) is then defined as the global efficiency
of a network minus its (arbitrary) topological cost or connection
density, i.e., CE(G) = (E(G) − κ).

Small-worldness, σ , is a property of a network with high clus-
tering, C, but low characteristic path length, L, compared to the
clustering, CR, and path length, LR, of a comparable random graph
with the same number of nodes and edges and the same degree
distribution (Watts and Strogatz, 1998). It is calculated as:

σ(G) = C
/

CR

L
/

LR
(5)

Many complex networks have a modular structure, whereby
they contain subsets of highly interconnected nodes called mod-
ules or communities. The modularity, Q(G), of a graph G quanti-
fies the quality of a possible partition of the network into modules
by measuring the fraction of the network’s edges that fall inside
modules compared to the expected value of this fraction if edges
were distributed at random (Newman, 2004). This can be written
as:

Q(G) = 1

2m

∑
i �=j

(Aij = Pij)δ(Mi , Mj) (6)
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where m is the total number of edges; Aij is one if an edge exists
between i and j and 0 otherwise; δ(Mi,Mj) is 1 if i and j are in the
same module and 0 otherwise; and Pij is the probability that there
would be an edge between i and j in a random graph with the same
degree distribution as G. The maximum value of the modularity
found for any partition of a given graph G yields a measure of
the degree of modularity of the network, as compared to random
networks.

Robustness indicates the network’s resilience to attack, such as
the progressive removal or deletion of nodes from the network. In
a targeted attack, nodes are removed in order of decreasing degree
so that hubs are attacked first, while in a random attack, nodes are
removed in random order. Robustness has previously been studied
in brain networks (Achard et al., 2006; Kaiser et al., 2007) and can
be visualized by plotting the size of the largest connected compo-
nent as a function of the number of nodes removed (Achard et al.,
2006). The robustness parameter, R, is defined as the area under
this curve. Highly resilient networks will retain a larger connected
component after random or targeted attack than less robust or
resilient networks.

RESULTS
MINIMUM SPANNING TREES
Asset trees, introduced in 1999 (Mantegna, 1999), are the first
example of financial networks found in the literature. They rely
on a drastic form of filtering which involves finding the MST of the
distances between pairs of stocks. The MST is a simply connected
acyclic graph that connects all N nodes with N − 1 edges such that
the sum of the weights of included edges �dij is minimum. The
weights or “distances” dij = √

2(1 − ρij) are inversely related to
the correlations between nodes so that the MST includes the edges
that maximize the total correlation strength.

Minimum spanning trees have since been routinely used to
analyze the nature of correlations between stocks in various mar-
kets (USA Onnela et al., 2002; Bonanno et al., 2003, UK Coelho
et al., 2007, and Japan Jung et al., 2008). One of the key obser-
vations resulting from these studies is that stocks generally tend
to group on different branches of the market tree according to
industrial sector, e.g., all healthcare or technology companies will
tend to be located on the same branch of the MST. This is rec-
ognized as one representation of the modular structure of the
markets. Here, we show that the MST of a brain network also
concentrates brain regions belonging to the same functional mod-
ules, as previously defined by modularity analyses of fMRI data
(Meunier et al., 2009), on the same branches of the tree; see
Figure 1.

The main advantage of MSTs over more complex network
analyses is that the trees are guaranteed to have a fixed number
of nodes and edges, without any disconnected islands – features
which can be essential when comparing brain networks across dif-
ferent subjects or states (Alexander-Bloch et al., 2010). Despite this
clear advantage and the widespread use of MSTs in the analysis of
financial data, these techniques have not yet been widely adopted
in the study of brain networks. The main reason for this is that the
construction of MSTs involves an extreme form of filtering, leading
to much higher loss of information than traditional thresholding
methods such as the one used in the following section.

FIGURE 1 | A comparison of the modular structure of financial and

brain functional networks. (A) MST for the daily closing prices of N = 90
NYSE-traded stocks from the time period from January 13, 1997 to January
29, 2000. Different colors denote various business sectors as defined in
Forbes. Insets show the stock symbols of each node on the branches
corresponding to the healthcare and technology sectors (Heimo, 2009). (B)

MST for an fMRI-derived brain network with N = 90 regions. Modules
identified in Meunier et al. (2009) are represented in different colors. Inset
shows the name of each brain region on the branch corresponding to the
visual cortex.

GRAPH GROWTH
One simple and widespread filtering technique is to retain a pro-
portion κ of all edges, chosen in order of decreasing correlation
strength. It is interesting to follow the evolution of a graph as it
is constructed by incrementally adjusting the cost κ . The growth
of financial networks under these conditions has previously been
described in terms of the following three observations (Onnela
et al., 2004):

1. Several loops, cyclic connections, or triangular motifs appear
early on, when only a small fraction of all possible edges has
been added.
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2. As the graph is grown, new edges seem to be preferentially
added to the small clusters already present, instead of forming
a backbone that connects as many of the nodes as possible.

3. The network remains disconnected even after the addition of a
very large number of edges.

As shown in Figure 2 these observations concerning the growth
of financial networks also hold true for the fMRI-based brain net-
work, although the tendency for new edges to remain confined
to existing clusters is slightly diminished compared to financial
networks. As we will see later, this greater tendency to form con-
nections between clusters will be reflected in the brain network
being more robust to targeted attacks than the market network at
equivalent cost.

In spite of this point, we observe that brain functional networks
as well as financial markets begin by forming small, localized clus-
ters of connections. Comparing Figures 1 and 2, we note that
the clusters that first appear (in Figure 2) correspond to dif-
ferent branches of the MST (in Figure 1), so that the strongest
connections arise inside rather than in between modules. With
connections between modules being weaker, the networks remain
disconnected over a large range of costs for both systems with this
filtering technique. In contrast, MSTs ensure the connectedness
of the whole network, enabling comparisons between networks
originating from fMRI data for different subjects or market data
at different points in time for example. While MSTs, by construc-
tion, discard a large amount of information available in the full
correlation matrix, our results suggest that they can be used as a
starting point before adding further edges in order of decreasing
correlation strength to grow more complex networks of varying
cost κ .

TRACKING NETWORK TOPOLOGY AS A FUNCTION OF CONNECTION
DENSITY
In order to better characterize the networks, it is useful to plot
some of their key topological properties as a function of connec-
tion density or topological cost κ for each system. As suggested
in the previous section, we start from the MST, which serves as a
sparse backbone ensuring full connectedness of the networks at
low cost, and we gradually add edges in order of decreasing corre-
lation strength. Figure 3 shows the striking similarity between the
curves thus obtained for financial and brain networks. Both brain
and market networks demonstrate high clustering and high global
efficiency (and therefore small-worldness). They both also have
high modularity and positive cost-efficiency over a range of costs,
with maximum cost-efficiency at a connection density of about
20%.

In addition, we show similar curves for two other comparable
systems: the social network of voting patterns in the U.S. Senate
based on roll-call data from the 100th Congress; and the simulated
financial network generated by thresholding correlations between
pairs of 90 log return time series based on price series generated
by the Black–Scholes model.

The social network generated from senatorial voting patterns
(magenta curves in Figure 3) illustrates that not all real-world
complex networks conform to the pattern of network charac-
teristics shared by financial and brain data. Indeed, the political

network is significantly less efficient and less small-world over a
large range of costs for sparse networks. In addition, it reaches its
maximally clustered and modular state at much higher connection
densities than the brain and financial networks.

The Black–Scholes network, on the other hand, highlights the
fact that the correlation structure observed in a market system
dynamically valuing and re-valuing many stock prices cannot be
trivially reproduced by models designed to capture the univari-
ate properties of the individual stock price time series. The 90
simulated time series generated by the Black–Scholes model are a
close match to the real data for 90 NYSE stocks (see Figure A1 in
Appendix). As the model contains a drift term affecting each time
series, accidental, or spurious correlations do occur between dif-
ferent model stock prices. In fact, one can use a set of different drift
values for different groups of model stocks to crudely simulate the
strong intra-sector correlations observed. However, this correla-
tion structure does not match the characteristic pattern displayed
by real financial data. In particular, the Black–Scholes model net-
works lack small-worldness and are significantly less cost-efficient
– all indications that the correlation structure simply reflects an
overall drift or“inflation”term,rather than a complex organization
as found in real data. The effect of uniform inflation is routinely
filtered out from empirical financial data before networks are con-
structed by calculating log-returns of the price data. As expected,
the application of log-returns destroys all correlation structure in
the Black–Scholes model, yielding curves (orange lines in Figure 3)
which overlap exactly with the curves expected for a random net-
work with no structure. For this reason we do not show a separate
set of benchmark curves for random networks in Figure 3. In
contrast, the application of log-returns does not affect the results
for either real market systems or brain functional networks derived
from fMRI time series. Although there is no widely accepted model
for brain functional data, fractional Gaussian noise (fGn) with a
Hurst exponent H > 0.5 has been suggested as a potential, par-
simonious model for the fMRI signal (Maxim et al., 2005). For
this reason, we have confirmed that fGn processes with arbitrary
Hurst exponents also lack the correlation structure characteris-
tic of real-world data. The network measures for these fGn-based
systems are not represented in Figure 3 as they coincide with the
curves of random networks and those of the Black–Scholes model
after log-returns (orange lines in Figure 3). In other words, like
markets, the network structure of the fMRI data is not attributable
to spurious correlations arising between time series with realistic
univariate memory properties such as fGn with H > 0.5.

NETWORK TOPOLOGY AT A PARTICULAR CONNECTION DENSITY
Although it is informative to consider network topology over the
full range of possible connection densities, from the minimum
(N − 1) edges of the MST to the maximum N × (N − 1)/2 edges
of a fully connected network, it is also interesting to look at more
detailed topological features of the networks, and for this purpose
it is desirable to focus on a particular threshold. We can sim-
ply choose a threshold of interest – for example, in Figure 4, we
have chosen to plot the congressional, Black–Scholes, financial and
brain networks all thresholded at the same particular cost (3.7% of
the fully connected network) allowing a quick visual comparison.
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FIGURE 2 | A visualization of the growth of financial and brain graphs as

cost is increased. Financial networks are shown in green (left-hand column)
and brain functional networks in blue (right-hand column). Top, middle, and
bottom rows of plots correspond to cost κ = 0.9, 2, 3.7%).
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FIGURE 3 | A comparison of topological measures as a function

of connection density. These plots show the evolution of various
network measures with increasing cost in the financial network
(green), the brain functional network (blue), the political network
(magenta), and the model network based on Black–Scholes (orange).

Note that the orange curves also overlap exactly with the curves for
random networks which are therefore not shown here. The
measures displayed are: assortativity a, modularity M, clustering
coefficient C, small-world coefficient σ , efficiency E, and
cost-efficiency CE.

While this low cost enables the visualization of the networks, it
was chosen arbitrarily.

A more data-based way of defining a particular cost for detailed
network analysis is to use the cost that maximizes the cost-
efficiency function of each network. As shown in Figure 3, the cost-
efficiency curve of each system peaks at a particular cost, typically
around κ = 20%, allowing the data-driven choice of a character-
istic cost at which to study topological properties of the networks
in more detail. We measured the degree distribution, hierarchy,
and robustness of each network at or close to its maximum
cost-efficiency. To allow a fair comparison between the different
networks, in Figure 5 we used the same cost for all systems. We
chose this cost to be the one at which cost-efficiency is maximized
in the brain functional network (κ = 21.2%), after confirming that
these results were not affected by choosing instead the cost that
maximizes cost-efficiency in financial networks (κ = 16.2%).

Figure 5 shows that both financial and brain functional net-
works have a fat-tailed degree distribution. In both cases, the
form of the degree distribution is not a simple power-law (these
are not “purely” scale-free degree distributions), but is better

approximated by an exponentially truncated power-law [AIC val-
ues (Burnham and Anderson, 2002) for fits to exponential, power-
law, and exponentially truncated power-law forms of the degree
distribution are shown in Table A1 in the Appendix]. We also show
that both types of networks are hierarchical, displaying a negative
correlation between degree and clustering coefficient over all nodes
in each network. Similar hierarchical properties have been defined
for simulated networks generated by a fractal growth process, and
have been measured in human brain structural MRI networks
(Ravasz and Barabási, 2003; Bassett et al., 2008). Finally, we show
that both financial and brain functional networks have similar, but
not identical, profiles of robustness to random and targeted attack.

Figures 3 and 5 together show that financial and brain func-
tional networks are very closely matched in terms of all commonly
used network measures, but it is also interesting to consider
whether any differences observed are statistically significant. To
address this question in a simple, preliminary way, we compared
the observed topological properties of a single market (NYSE)
network to the distribution of identical properties estimated in
a group of 18 human brain functional networks. If the financial
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FIGURE 4 | A visualization of sparse networks at a particular connection

density. These plots show the network topology of each system (at
cost = 0.037). The similarity previously highlighted between the financial

network (green) and the brain functional network (blue) is not shared by the
political network based on roll-call data (magenta) and the model network
based on Black–Scholes (orange).

network measure lies outside its observed distribution in the fMRI
datasets, we regard that as provisional evidence for significant dif-
ference between networks. In Figure 6, we show that many of the
key network measures differ between systems: the financial market
system is more highly clustered, more modular and more efficient
than the human brain networks, but it is also less robust to targeted
attacks than the brain networks. These measures were estimated at
the same cost κ = 21.2% as that chosen in Figure 5 (maximizing
cost-efficiency in the brain functional network). Again, we have
verified that the results hold over a large range of costs including,
for example, the cost that maximizes cost-efficiency in the financial
network.

DISCUSSION
BRAINS AND MARKETS: SAME OR DIFFERENT?
We have reported the first side-by-side comparison of the topolog-
ical properties of human brain functional networks and financial
markets. We find that both systems display striking similarities
in their modular, hierarchical, and small-world organization dis-
tinguishing them from random graphs as well as from other
real-world systems such as political networks. In addition, we find
that these topological properties cannot be trivially reproduced
by statistical models designed to capture the univariate properties
of the individual (nodal) time series of financial networks. So the

dominant impression at first glance is that brain and market sys-
tems are members of the same family of complex or non-random
networks. In future work, it will be interesting to develop a rigorous
taxonomy of networks, identifying topological similarities across a
wide-range of network types. Our motivation for comparing brain
and financial networks originally arose from the realization that
both systems essentially evolved for a similar purpose: to process
information by continually forming, storing, and updating a set
of beliefs about the state of the world (Arthur, 1995; Wolpert and
Ghahramani, 2005). Having found such a wide-range of similar-
ities in the network topology as well as the function of the two
systems, it is natural to wonder whether the organization of both
systems may have been shaped by analogous selection pressures
which could perhaps be universal to all information processing
systems.

However, it is not simply the case that brain and market net-
works are identical. It is interesting to note that, at least for
this dataset, the financial network did show subtle but signifi-
cant differences from the fMRI data. In particular, the market was
significantly more clustered, more modular, and more efficient
than the brain networks; but the market was also significantly less
robust than the brain networks to targeted attack on high-degree
nodes or hubs. Bearing in mind the prior data and theory sug-
gesting that modularity favors adaptivity of processing, clustering
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favors specialized segregation of processing, and efficiency favors
integrated processing and is positively correlated with IQ and exec-
utive functions in human brain networks (Bassett et al., 2009; Li
et al., 2009; van den Heuvel et al., 2009), the intuitive interpreta-
tion is that the market network is overall a more highly optimized
information processing system than the human brain networks. It

FIGURE 5 | A comparison of topological properties of networks at the

particular connection density approximately maximizing

cost-efficiency (20%). These plots show a comparison of (A) the degree
distribution, (B) hierarchy, and (C,D) robustness to random and targeted
attacks respectively, for the financial network (green), brain functional
network (blue), political network (magenta), and the Black–Scholes model
network (orange). Note that for random attacks (C), the curves for financial
networks, Black–Scholes models, and brain networks overlap almost
exactly. The cost of each network is set to 0.21, which corresponds to the
cost which maximizes cost-efficiency in the brain functional network.

also seems intuitive, but will need further testing, that there may
be a trade-off between informational optimization and robust-
ness of these systems. The human brain may be less smart than
the market but it is also less prone to systemic disintegration as
a result of removing key nodes or hubs from the networks. It is
imaginable that this hypothetical interplay between informational
optimization and robustness to hub deletion could be useful in
assessing or controlling a market’s risk of systemic collapse.

Another, more obvious difference between the two systems
we studied is that brain functional networks are in fact a man-
ifestation of dynamics taking place on an underlying anatomical
substrate, which is itself a network. Our choice to study functional
rather than anatomical networks was motivated by the more direct
analogy to financial networks, which are likewise based on simi-
larity measures of time series data. Previous studies have shown
that functional networks based on long windows of observation
(minutes) largely overlap with the underlying anatomical network
(Honey et al., 2007). It will be interesting, in future work, to extend
our study both to static anatomical networks and, at the other
extreme, to the dynamic reconfiguration of both financial and
brain networks based on higher frequency data such as intra-day
financial time series and magnetoencephalography (MEG) brain
functional data (Kitzbichler et al., 2011).

METHODOLOGICAL PARALLELS
At a practical level, the similarities between financial and brain
functional networks highlight the potential for scientific arbitrage
opportunities, solving methodological problems by direct analogy
across disciplines. For instance, the similarity in the two systems’
network structure implies that both fields have to resolve the
question of appropriate filtering of the adjacency matrices when
constructing networks. While the aim is to reduce noise by includ-
ing only those edges corresponding to the strongest correlations,
the disconnected nature of the resulting networks is known to
bias all topological measures and to complicate their use for com-
parison between subjects or across time (Alexander-Bloch et al.,
2010).

FIGURE 6 | Differences in brain and market network organization

at maximum cost-efficiency. Bar chart showing that the clustering,
modularity, efficiency, and robustness of the financial network

(green), fall outside the 95% confidence interval for these network
measures in brain functional networks from 18 healthy volunteers
(blue).
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In the financial literature, this problem has been circumvented
by the introduction, over a decade ago, of MSTs. While these are,
by construction, guaranteed to include all N nodes and a fixed
number (N − 1) of edges, they are also severely limited in the
amount of information they represent. In neuroscientific research,
filtering methods have traditionally been more conservative in
excluding information. Consequently, the associated problems in
comparing two populations (health and disease) have only recently
come to the community’s attention (Alexander-Bloch et al., 2010).
However, our results in Figure 1 indicates that, in spite of their
simplicity, MSTs do capture some important features of the under-
lying system. It would therefore be interesting to develop a set of
useful measures which can characterize an MST, just as clustering
coefficient, path length, and other measures are routinely used to
characterize networks. At the other extreme, modularity analyses
of brain data could potentially benefit from another technique that
recently emerged in the field of financial networks, enabling the
determination of modules without the need for filtering (Heimo
et al., 2008). Finally, we note that the development of new filtering
methods is an active area of research and that recent theoretical
advances (Tumminello et al., 2005; Serrano et al., 2008; Radicchi
et al., 2011) will likely prove useful in the analysis of both financial
and neuroscientific data.

CONCLUSION
Our results suggest that financial and brain networks share a wide-
range of structural properties distinguishing them from random

graphs as well as from other real-world and model systems. Beyond
the intrinsic interest of such an observation, we believe this analogy
between two a priori very different systems will prove significant
and useful in at least two different ways.

Firstly, our findings highlight the fact the many of the method-
ological and technical problems encountered in the study of brain
functional networks are also likely to have emerged in the study of
asset graphs. The two fields could therefore benefit from increased
“crosstalk” when addressing such methodological issues.

Secondly, many of the most exciting open questions are remark-
ably similar in both fields, suggesting insights gained in one area
may potentially be translated in a straight-forward manner to
the other. We expect this approach to be particularly useful in
better understanding temporal dynamics and perhaps anomalous
activity in both markets and brain function.
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APPENDIX

FIGURE A1 |Time series of fMRI data from 90 brain regions (top), time

series for the daily closure price of 90 NYSE stocks (middle), time

series for the stock price evolution, according to the Black-Scholes

model, of 90 model stocks (bottom).

Table A1 | Akaike information criterion (AIC).

AIC Exponential Power-law Exponentially truncated

power-law

Financial 711 842 687

Brain 711 853 677

The AIC values for exponential, power-law, and exponentially truncated power-law

fits to the degree distributions of the financial and brain functional networks. In

both cases, the exponentially truncated power-law provides the best fit.
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