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Taste aversion learning exhibits advantages for research on memory brain systems and its
reorganization throughout life. A review of the effects of aging on taste memory abilities
offers a complex picture showing preserved, impaired, and enhanced functions. Some of
the age-related changes in taste memory seem to be associated with an altered temporal
processing. Longer taste-illness delays can be introduced for acquisition of conditioned
taste aversions and the modulation of taste learning by the temporal context is absent in
naive old rats. It is suggested that an altered hippocampal function is involved in the peculiar
performance of these rats. Evidence is also presented which suggests that hippocampal-
dependent taste memory can be reactivated by previous learning experiences in old rats.
Results obtained after reversible inactivation of the dorsal Hippocampus by tetrodotoxin
(TTX) in old rats support such a view. Therefore, the interaction between the previous expe-
rience and acute brain interventions should be taken into account when studying the effect
of aging on taste memory.
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Aging offers a privileged opportunity to study the reorganization
of brain memory systems throughout life. At advanced ages the
learning and memory abilities have been shaped by several decades
of previous learning experiences and face new adaptive challenges
due to the modifications of biological conditions. In rodent studies
the usual age groups range from young (3—6 months), middle-
aged (14-18 months), and aged (24-27 months). Even though the
effect of age in learning and memory is progressive and age-
related changes in performance have been described as early as
at 8-months of age (Gallo et al., 1997) the most pronounced
changes occur in middle-aged and aged rats. Thus, 18- to 22-
month-old animals are often defined as aged even though it has
been claimed that they should be considered late middle-aged
(Coleman et al., 2004). Contrary to the idea of a global mem-
ory decay, normal aging seems to selectively deteriorate some
memory functions whilst others remain relatively unimpaired or
even enhanced. This is the case in taste aversion learning. Aged
rats readily acquire strong, long-lasting aversions to the taste of
ingested food leading to visceral distress. The behavioral procedure
to induce conditioned taste aversions (CTA) in the laboratory typ-
ically involves applying an illness-inducing i.p. injection of lithium
chloride (LiCl) after ingestion of a flavored solution. The aversive
memory formed after association of taste cues conditioned stimu-
lus (CS) with the aversive visceral signals unconditioned stimulus
(US) prevents later ingestion of poisons thus playing a critical role
for survival.

Conditioned taste aversions in the rat relies on a brain circuit
including areas located from the lower brain stem (nucleus of the
solitary tract, parabrachial area) to the higher (amygdala, insular
cortex) brain levels. The brain circuit of CTA is described else-
where (Bermudez-Rattoni, 2004; Lundy and Norgren, 2004; see
in this issue Scott, 2011; Yamamoto and Ueji, 2011). CTA also

exhibits hippocampal-dependent complex learning phenomena
that are selectively impaired by aging. It can be envisaged that the
relationship between the hippocampal system and the CTA basic
circuit might have been modified throughout life. Thus, the pecu-
liar memory performance of healthy subjects at advanced ages
reflects the altered organization of the neural systems involved. A
widely accepted view to explain such reorganization is based on
compensatory changes to the selective decay of the hippocampal
function. Surprisingly, little attention has been paid to the effect of
the accumulation of previous learning and memory experiences
throughout a long life. Given the plasticity of the brain memory
systems, it can be envisaged that changes of the brain systems
connectivity have been the obvious outcome of previous learn-
ing episodes in order to enhance adaptation to the environmental
conditions. Thus, the temporal parameters of learning experiences
might become increasingly important throughout life.

This review focuses on the potential time processing changes
for understanding the peculiar features of CTA at advanced
ages. Special emphasis is given to the effect of previous learning
experiences.

TASTE PROCESSING AND NORMAL AGING

A systematic approach to explore potential explanations of the
superior CTA ability related with normal aging should take into
account potential modifications of taste processing induced by life
events at several steps.

Firstly, aging could alter sensory processing, thus modifying
the salience of the taste stimuli to be used in the learning proce-
dures. However no taste sensitivity changes have been reported in
aged rodents that could significantly affect the outcome of conven-
tional CTA protocols. Accordingly neuro-physiological responses
to various tastes, such as KCl, sucrose, quinine-hydrochloride, HCI,
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monosodium glutamate, and glutamic acid do not change with
age in animals (Osada et al., 2003). Even though a decreased olfac-
tory sensitivity has been associated with aging, old rats have been
reported to discriminate between odors as readily as younger adult
rats (Brushfield et al., 2008) and flavors conventionally used in fla-
vor preference tasks, such as grape and cherry (Renteria et al,
2008).

Secondly, aging could alter the unlearned neophobic response
to non-familiar tastes. Taste neophobia is evidenced in decreased
consumption of novel taste solutions compared with later expo-
sures as long as the taste becomes familiar. It is well known that
stronger aversions are acquired to novel taste solutions rather than
to familiar solutions, a well known phenomenon called latent inhi-
bition (Lubow and Moore, 1959). Thus, age-related increases in
taste neophobia could account for the higher CTA abilities in
old rats.

However, research on this issue has yielded controversial results
regarding the impact of aging on taste neophobia. Whilst some
studies have found enhanced neophobic responses in aged rats
(Collier et al., 2004), no effect of aging has been reported in the
amount drunk of a novel taste when using either a grape juice
solution (Gallagher and Burwell, 1989; Koh et al., 2009), 0.1%
sodium saccharin (Moron and Gallo, 2007), 1% sodium chloride
(Manrique etal.,2009),0.5% sodium chloride, or 3% cider vinegar
solutions (Moron et al., 2002a).

Moreover, the potential impact of aging on taste neophobia
and attenuation of the neophobic response might be confounded.
This is due to the fact that the full demonstration of the neopho-
bic response to a novel taste requires taking into account not only
decreased consumption during the first encounter but also later
increases upon subsequent exposures. In fact, a lower rate of neo-
phobia attenuation has been reported in old rats (Pelleymounter
and Cullen, 1993) although no age-related differences have been
found using a low NaCl concentration (Manrique et al., 2009).

Regarding the effect of previous experience, early studies
showed the relevance of previous aversive taste learning on neo-
phobia to later encountered taste solutions in adult rats (Domjan,
1975; Best and Batson, 1977; Kristal et al., 1980; Franchina and
Dyer, 1985). Moreover, there are data supporting an even higher
impact of previous aversive experiences on taste neophobia during
aging. Thus, previous exposure without consequences leading to
habituation of the neophobic response to a sodium saccharin solu-
tion disrupted subsequent neophobia to a NaCl solution both in
young and old adult rats. However, a previous saccharin-lithium
chloride (LiCl) pairing induced in aged rats a larger increase on
later neophobic responses to the salty solution than in young adult
rats (Moron and Gallo, 2007). Given that the strength of the pre-
vious aversive experience was equated across the age groups, the
results could be attributed to a greater impact of aversive mem-
ories at advanced ages. Different explanations could account for
it being the most suitable a superior learning ability to develop
stronger taste aversions at advanced ages. Whatever the expla-
nation, studying the effect of previous taste experiences on the
aged rat’s willingness to accept novel tastes may contribute to the
understanding of controversial results.

To sum up, whilst no aged-related changes in sensory process-
ing seem to be responsible for the superior ability of aged rats to

acquire CTA, previous aversive learning experiences could induce
increased taste neophobic reactions and/or decreased rates of neo-
phobia attenuation. This might contribute to the formation of
stronger learned aversions. This widely unexplored issue is espe-
cially relevant because even though many aging studies use naive
animals, it is not unusual to apply previous aversive learning tasks
either for dissociating pathological and normal aging or to follow
the recommendations for reusing the subjects.

TASTE AVERSION LEARNING AND MEMORY IN AGED RATS
As mentioned above the acquisition of learned taste aversions
seems to be facilitated at advanced ages. As has been reviewed
elsewhere (Manrique et al., 2007), stronger aversions are evident
in old rats in comparison with young—adult rats during the first
extinction test, provided that floor effects are avoided. Although
the possibility that this enhancement arises because of impaired
extinction cannot be discarded (see below), there are other features
of CTA acquisition that point to a superior ability for associating
taste and visceral distress in aged rats than in young adult rats.
One of the most intriguing features of taste aversion facilitation in
aged rats is the possibility of introducing longer intervals between
the taste and the LiCl injections than in younger adult rats. Using
a relatively low dose of LiCl (1% b.w., 0.15M) and a 24h two-
bottle test, saccharin aversions have been found in aged rats but
not in young—adult rats with taste-LiCl intervals ranging from
180 (Misanin and Hinderliter, 1989) to 360 min (Misanin et al.,
2002b). This ability to associate a taste with an illness over long
intervals develops gradually as rats get older. Thus, rats older than
18 months exhibit taste aversion at the 180-min interval, whilst
only 24- and 30-month-old rats acquire learned taste aversions at
360-min delays (Misanin et al., 2002b).

Different explanations for the age-related facilitation of long-
trace taste illness associations have been proposed. Previous results
suggest that they cannot be attributed to age differences either in
taste sensitivity or increased efficacy of LiCl injection (Misanin and
Hinderliter, 1994). Other explanations based on deficits of learned
irrelevance (Misanin and Hinderliter, 1995), age differences in the
use of interval context cues (Hinderliter and Misanin, 1995b),
context—illness associations (Hinderliter and Misanin, 1995a), rel-
ative taste novelty (Hinderliter and Misanin, 1993), or memory
for specific taste attributes (Misanin et al., 1997) have also been
ruled out.

Misanin et al. (2002b) have proposed a longer availability of
the taste memory trace in aged rats, because increasing the illness
intensity extends the interval over which trace conditioning is evi-
dent in old but not in young—adult rats. In order to explain how a
memory trace can be available to old rats at a time when it is not
longer available to young adult rats, the authors have proposed the
slowing down of a metabolic pacemaker. The hypothesized pace-
maker is compared to a countdown timer that regulates trace decay
after taste processing. The timer would stop at a given duration.
Thus, aging can slow the pace at which the clock counts down, thus
extending the memory trace decay delay. The effect of aging on this
metabolic pacemaker would be independent to that of other circa-
dian clocks or brief interval timers (Misanin et al., 2002b,c). Sup-
port for the metabolic pacemaker has been obtained from studies
with adult rats showing correlations between decreased metabolic
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rate and the ability to establish long-trace taste aversions. Firstly, at
low body temperatures rats displayed learned taste aversions with
delays of up to 225 min, which was attributed to a cold-induced
slowing of the biochemical clock (Misanin et al., 2002a). Secondly,
increasing the metabolic rate by chronic water deprivation reduced
the interval that can be introduced in a taste aversion learning
protocol (Anderson et al., 2006). Explanation based on an altered
sense of time may be related with other reports in animals (Wal-
ton, 2010) and humans (Fitzgibbons and Gordon-Salant, 2004;
Gooch et al,, 2010) pointing to age-related differences in tem-
poral processing using other tasks. No attempts have been made
to explore the potential role of age-related anatomical changes
in different brain areas in the facilitation of CTA acquisition at
advanced ages.

A similar explanation could account for the higher resistance to
extinction of learned taste aversions in old rather than in young—
adult animals even if no significant differences in acquisition are
detected. Thus, Ingram and Peacock (1980) reported that old rats
showed delayed extinction of a LiCl-induced saccharin aversion
monitored over a period of 32 days. Similarly, resistance to the
extinction of a saccharin aversion induced by a low dose of LiCl
has been reported in old rats (Moron and Gallo, 2007). These
results contrast with the impaired retention that has been reported
in old rats using other learning tasks, such as fear conditioning
(Kaczorowski et al., 2011), passive avoidance and learned help-
lessness (Martinez and Rigter, 1983), among others (Bevilaqua
et al., 2008). Given the proposals considering the relevance of a
time-induced context differentiation process during extinction, it
is conceivable that an altered sense of time could also contribute to
slower extinction during aging. An alternative explanation of the
slower extinction rate found in older subjects can be related with
the greater robustness of the aversion. Nevertheless, even though
the age-related superiority in taste aversion learning might rest on
the associative mechanisms acting during the acquisition session,
enhanced taste memory abilities cannot be excluded given the long
intervals supported at advanced ages.

Thus, whatever the explanation, a neural reorganization of the
taste memory systems favoring the acquisition and retention of
taste aversions at advanced ages seems to be evident. In addition a
potential role of changes in temporal processing induced by such
reorganization merits attention.

HIPPOCAMPAL FUNCTION AND TASTE MEMORY DURING
AGING

While the hippocampus does not seem to be necessary for acqui-
sition of basic CTA using conventional protocols, the effect of
hippocampal damage is evident in adult rats with modified pro-
tocols. Firstly, both dorsal and ventral hippocampal neurotoxic
lesions have been reported to selectively impair taste aversion
learning when 3-h intervals were introduced between taste and
illness (Koh et al., 2009). Secondly, temporary inactivation of the
dorsal hippocampus by muscimol infusions during acquisition
has been shown to enhance learned aversions in a procedure that
involved no delay, two different taste solutions, and two condi-
tioning trials (Stone et al., 2005). The authors pointed out to
the potential relevance of avoiding ceiling effects due to the rel-
ative complex two-taste protocol used. Thirdly, permanent and

reversible hippocampal inactivation selectively interferes with a
variety of taste complex learning phenomena depending on pre-
vious experience (Gallo et al., 1999) as well as on temporal context
cues (Molero et al., 2005). Both taste memory enhancement and
impairment after hippocampal damage might reflect the interac-
tion between multiple memory systems working in parallel that
might induce competitive interference between them. Thus, the
hippocampal functions supporting long-delay CTA and complex
learning phenomena could be interfering with the acquisition of
learned taste aversions (Schoenbaum and Stalnaker, 2005).

It is conceivable that the aging process might modify the poten-
tial interaction between the hippocampus and the basic taste
memory system. Whilst the evidence from permanent lesion stud-
ies does not support an explanation based on hippocampal damage
of the age-related changes in taste learning abilities (Manrique
et al., 2007), a contribution of an altered functioning of the aged
hippocampus cannot be excluded. If this were the case, acute
hippocampal inactivation in the behavior of adult animals could
be a better model than permanent lesions to study the potential
hippocampal involvement in the age-induced facilitation of taste
aversion learning (Stone et al., 2005).

PREVIOUS LEARNING EXPERIENCES AND THE TEMPORAL
CONTEXT MODULATION OF CTA IN AGED RATS
Previous results in our lab have shown that a time-of-day shift
between taste pre-exposure and conditioning interferes either with
learned taste aversions retrieval (Moron et al., 2002b) or with the
latent inhibition effect (Manrique et al.,2004). This depends on the
extent of the previous habituation to water deprivation procedure
(Figure 1). Thus, the comparison between the groups receiving the
taste—illness pairings at the same (SAME) and at a different (DIFF)
time-of-day than pre-exposure and testing yields an opposite
pattern of results in a short-habituation (2 days) versus a long-
habituation (5 days) protocol. In the former, DIFF groups exhibit
weaker aversions than SAME groups whilst in the latter DIFF
groups show stronger taste aversions than SAME groups. These
patterns reflect the temporal context dependency of CTA (Moron
etal., 2002b) and latent inhibition (Manrique et al., 2004), respec-
tively. Both of them demonstrate the ability of the time-of-day to
act as a context. The hippocampal integrity plays a crucial role
in the temporal modulation of latent inhibition. Thus, neurotoxic
lesions of the dorsal hippocampus in adult rats selectively disrupt
the effect of the temporal context shift in the long-habituation
procedure (Molero et al., 2005). Similarly intact aged rats have
been reported to exhibit deficits in the long-habituation protocol.
No differences between the aversions shown by SAME and DIFF
groups were found (Manrique et al., 2009). This finding does not
seem to be explained by a disruptive effect of aging on either latent
inhibition (Moron et al., 2002a) or the ability to use the time-of-
day as a context. In fact, modulation by the time-of-day was evident
in hippocampal aged rats. The pattern of results induced in adult
rats by the short-habituation protocol appeared in lesioned aged
rats subjected to the long-habituation procedure (Manrique et al.,
2009).

Additional data have shown that the temporal context modu-
lation seen in the long-habituation protocol absent in old rats can
be reinstated by previous learning experience. Previous training
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FIGURE 1 | Temporal context-dependent taste learning in adult intact
and hippocampal-lesioned rats. Upper panel — the behavioral procedure
consisted of four phases: habituation to drink water twice a day, taste
solution pre-exposure, taste-LiCl pairing, and testing. In DIFF groups
conditioning took place at a different time-of-day to pre-exposure and
testing. Groups SAME received all the experimental phases at the same
time-of-day. Sessions were performed either at 10 or 20 h. Lower

panel — two different protocols were applied depending on the extent of the
habituation phase: a short-habituation (2 days) or a long-habituation (5 days)
protocol. The time-of-day shift induced opposite patterns of results in intact
rats subjected either to the short (A) or the long (B) protocol. Hippocampal
lesions impaired the effect of a temporal context shift in the long (D) but not
the short (C) behavioral protocol. (For further details see Moron et al.,
2002b; Manrigue et al., 2004, 2009; Molero et al., 2005).

in our experiment included several tasks: (a) exposure to a first
novel taste solution and subsequent attenuation of taste neopho-
bia, (b) a latent inhibition protocol using a second novel taste
solution, and (c) a novel object recognition task. Unexpectedly,

trained aged rats exhibited a pattern of differences similar to that
seen in adults. The DIFF group showed stronger aversions than
the SAME group (Figure 2A). The reinstatement of this adult
pattern known to require an intact hippocampus (Molero et al,,
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FIGURE 2 | Mean (+SEM) taste solution intake by the aged groups
SAME and DIFF using a long-habituation protocol for exploring the
hippocampal-dependent time-of-day modulation of taste learning. (A)
Reinstatement of the hippocampal adult pattern of results by previous
training (EXP groups). Naive animals (NAIVE groups) did not exhibit
modulation of learning by time-of-day. (B) Emergence of the opposite
non-hippocampal pattern of results in trained groups receiving tetrodotoxin
(TTX groups) injection in the dorsal hippocampus. Vehicle injected groups
(VEHICLE) did not differ between them. The inset highlights the key
comparisons on the retention test. A cresyl violet-stained coronal section
shows a representative injection needle trace indicating the infusion target
area in the dorsal hippocampus.

2005) suggests a potential reactivation of the aged hippocampus
function. In our experiments only the above mentioned discrete
learning experience was effective. However, a similar 2-month-
long exposure to unspecific environmental enrichment had no
effect. Considering that either longer exposure or increased com-
plexity of the enriched environment conditions may be needed,
further research is required on this issue.

Moreover, previous learning experience seems to have a crit-
ical role in determining the effects of temporary hippocampal

interventions during aging. Whilst permanent neurotoxic lesions
of the dorsal hippocampus in naive aged rats enhanced the non-
hippocampal temporal modulation of taste aversion (Manrique
et al., 2009), temporary inactivation by TTX during condition-
ing induced a similar effect only in trained old rats (Figure 2B).
The results cannot be attributed to changes in the attenuation
of neophobia during conditioning since hippocampal inactiva-
tion during exposure to a 3% cider vinegar solution had no effect
either in the neophobic response or its habituation. It is, therefore,
conceivable that reversible temporary inactivation may release
functions modulated by the aged hippocampus that were pre-
viously reactivated by learning experience. However permanent
damage would be required for the reorganization of neural circuits
in naive animals.

The fact that previous discrete learning experiences determine
the outcome of hippocampal inactivation in taste learning at
advanced ages shows up a complex interaction between parallel
memory systems. It is conceivable that the aging process modi-
fies the interaction between hippocampus and the taste memory
systems. Therefore, the study of the interaction between the hip-
pocampus and other taste memory systems at advanced ages
should take into account the nature of the learning experiences
throughout the life.

CONCLUSION

Temporal processing deficits may be at the root of the peculiar
features of older subjects’ performance in taste learning tasks.
A compromised sense of time in aged animals is supported by
both enhanced long-delay taste aversion learning and absence of
temporal context modulation.

An altered interaction between the hippocampal system and
CTA brain circuits could be responsible for the peculiar tem-
poral attributes relevant for taste memory during aging. Thus,
permanent hippocampal lesions facilitate basic non-hippocampal
forms of CTA modulation by the time-of-day, thus indicating
competition between systems. However transient, hippocampal
inactivation produces similar effects only in trained aged rats.

Therefore, memory abilities which have been shaped by several
decades of learning experiences throughout life should be taken
into account in taste research on aging.
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