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Neuropsychiatric imaging remains a 
 pioneering frontier in modern medicine. 
Recent decades have witnessed marked 
advances in identifying biological corre-
lates for a broad array of illnesses (Hillary 
et al., 2007; Ritsner, 2009; Linden and 
Thome, 2011; Shenton and Turetsky, 2011). 
However, our understanding of the under-
lying pathophysiology of neuropsychiatric 
illnesses remains insufficient (Ecker et al., 
2010; Linden, 2012). Equally problem-
atic, translational promises have yet to be 
delivered, as clinically useful biomarkers 
are rarely attained (Hyman, 2002; Nestler 
and Hyman, 2010). As such, psychiatry 
remains uniquely reliant upon a diagnos-
tic and classification system derived from 
clusters of symptoms rather than etiology 
or neurobiology (Hyman, 2007; van Praag, 
2008; Nesse and Stein, 2012). Recent works 
demonstrating the feasibility of predict-
ing maturational and disease status from 
functional MRI and morphometric imag-
ing data (Craddock et al., 2009; Dosenbach 
et al., 2010; Ecker et al., 2010) have rekin-
dled hopes for the eventual development 
of imaging-based tools to inform clini-
cians in their efforts (Bullmore et al., 2009; 
Fox and Greicius, 2010; Bullmore, 2012; 
Klöppel et al., 2012; Michel and Murray, 
2012). While these approaches are promis-
ing, substantial obstacles remain that can 
drastically hinder the pace of progress if left 
unaddressed (Kelly et al., 2012).

In particular, the availability of large-
scale imaging data is of paramount impor-
tance to the advancement of human brain 
imaging in neuropsychiatry (Van Horn and 
Gazzaniga, 2002; Buckner, 2010; Yeo et al., 
2011; Milham, 2012). Myriad hypotheses 
exist regarding the etiology and manifesta-
tions of pathologic processes in the brain. It 
is only through the acquisition of  large-scale 

imaging data with appropriate phenotyping 
(Bilder et al., 2009a,b; Cohen et al., 2011) 
that these hypotheses can be properly eval-
uated. Simultaneously, such datasets are a 
prerequisite to the deployment of discovery 
science approaches, which have the poten-
tial to yield more precise and empirically 
grounded hypotheses. Unfortunately, 
datasets of the prescribed scale are unprec-
edented in the imaging community, and 
particularly challenging for psychiatric 
imaging given its burdens (e.g., extensive 
time and substantial costs of recruitment, 
psychiatric assessment, and phenotyping). 
Individuals affected by psychiatric illness, as 
well as children, are also prone to a higher 
frequency of data loss due to motion (Power 
et al., 2012; Satterthwaite et al., 2012; Van 
Dijk et al., 2012; Wilke, 2012) and inability 
to tolerate the scanner environment, which 
only exacerbate the difficulties.

Fortunately, the 1000 Functional 
Connectomes Project (FCP) provided a 
model through which large-scale data-
sets can be obtained (Biswal et al., 2010; 
Milham, 2012). Specifically, the FCP pooled 
previously collected data from independent 
sites around the world, and demonstrated 
that discovery science could be performed 
on the aggregate sample. The FCP model of 
open sharing for the purposes of hypoth-
esis testing and generation was not new, as 
a number of like minded efforts attempted 
sharing in the past (Van Horn et al., 2001; 
Marcus et al., 2007b; Weiner et al., 2012). 
Arguably, the FCP capitalized on the greater 
ease of sharing structural and resting state 
functional MRI datasets, whose methods 
are more amenable to sharing than task-
based datasets. In addition, it highlighted 
the increasing willingness of many labo-
ratories to participate in open science. 
Still, the FCP’s success only represents an 

initial step in the implementation of open 
 sharing in the imaging community as it only 
included non-clinical samples with pheno-
types limited to age and sex.

Building on this model, functional 
neuroimaging investigators working on 
Attention-Deficit Hyperactivity Disorder 
(ADHD) in three continents came together 
to form the ADHD-200 Consortium 
(see Acknowledgments for ADHD-200 
Consortium details). The effort was to estab-
lish a large-scale, aggregate resting state fMRI 
dataset, along with accompanying anatomi-
cal and phenotypic data for children and 
adolescents with ADHD. The consortium 
publicly released 776 resting state fMRI 
and anatomical datasets collected at eight 
independent imaging sites on March 1, 
20111 (Table 1). Included were 491 datasets 
obtained from typically developing individu-
als and 285 from children and adolescents 
diagnosed with ADHD, all between the ages 
of 7–21 years. The release was coordinated 
through the International Neuroimaging 
Data sharing Initiative (INDI2), which 
makes use of the web infrastructure pro-
vided by Neuroimaging Informatics Tools 
and Resources Clearinghouse (NITRC) 
NITRC.org. Accompanying phenotypic 
information includes: diagnostic status, 
dimensional ADHD symptom measures, 
age, sex, intelligence quotient (IQ), and 
lifetime medication status. Additionally, 
preliminary quality control assessments 
(usable vs. questionable) based upon visual 
time-series inspection were included for all 
resting state fMRI scans. The ADHD-200 
release data are stored and distributed in two 
ways: via NITRC Resources (NITRC-R) as 
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tarballs, and via NITRC Image Repository 
(NITRC-IR3) which supports searches by 
phenotypic information powered by XNAT 
(Marcus et al., 2007a).

In sharing these data, the consortium 
realized the importance of reaching beyond 
the imaging community, which typically 
consists of psychiatrists, neurologists, and 
neuroscientists, to broader multidisciplinary 
scientific disciplines. To recruit the global 
scientific community to address child-
hood psychiatric illness, a competition was 
announced, with the goals of developing: (1) 
novel strategies for predicting diagnostic sta-
tus based on an individual’s intrinsic func-
tional architecture and brain structure, and 
(2) novel techniques for identifying brain 
features that may yield ADHD biomarkers.

For the purposes of the competition, an 
additional 197 datasets from six imaging 
sites were released on July 1, 2011 without 
diagnostic labels (two of the six sites were not 
represented in the training set, augmenting 
the challenge). Fifty teams from around the 
world, representing a diverse array of back-
grounds (e.g., mathematics, statistics, com-
puter science, neuroscience) communicated 
their intent to compete, eventually yielding 
21 submissions. This effort demonstrated 
the latent interest of the larger scientific 
community to develop effective prediction 
methodologies for psychiatric neuroimaging. 
Additionally, it encouraged additional open 
neuroscience efforts, such as the ADHD-
200 Pre-Processed Initiative by the Neuro 
Bureau4, which provided pre-processed data 
to the broader community so as to bypass 
technical obstacles to wider participation.

In the current issue, several of the teams 
that participated in the ADHD-200 compe-
tition describe their techniques and results. 
These descriptions will provide the reader 
with insight into each team’s decision-mak-
ing process as they developed optimal diag-
nosis predictions in novel datasets. It is our 
hope that access to each team’s methodol-
ogy will spark new ideas and collaborations.

Competition results
The winning team for predicting diagnosis 
was from Johns Hopkins University, and 
included Brian Caffo, Ciprian Crainiceanu, 
AniEloyan, Fang Han, Han Liu, John 
Muschelli, Mary Beth Nebel, and Tuo Zhao. 
The Hopkins team scored 119 out of 195 
points, with one point awarded per correct 
diagnosis (typically developing, ADHD 
primarily inattentive type, or ADHD com-
bined type). A half point was awarded for 
a correct diagnosis of ADHD if the subtype 
was incorrect.

Table 1 | Contributing sites.

Contributing sites Investigators Age-range TDC ADHD

Brown University Daniel P. Dickstein 8.5–17.8  27  24

Kennedy Krieger Institute Stewart K. Mostofsky 8.3–11.8  61  22

New York University Langone 

Medical Center

F. Xavier Castellanos, Michael P. Milham, Adriana Di Martino, 

Clare Kelly, Maarten Mennes

7.1–17.9  99 123

NeuroImage J. K. Buitelaar, J. A. Sergeant, R. B. Minderaa, A. Arias Vasquéz, 

S. V. Faraone, B. Franke, C. Hartman, D. Heslenfeld, P. Hoekstra, 

M. Luman, J. Oosterlaan, N. N. J. Rommelse, M. Zwiers

11–21.7  23  25

Peking University Yu-feng Wang, Yu-fengZang, Li Sun, Qing-jiu Cao, Li An 8.4–17.3 146 113

Pittsburgh University Beatriz Luna, Katerina Velanova, Miya Asato 10.1–20.4  95   6

Oregon Health and Sciences 

University

Damien Fair, Joel Nigg, Bonnie Nagel, Deepti Bathula, Swathi 

Iyer, Kathryn Mills, Taciana G. Costa Dias

7.1–11.9  42  37

Washington University-St. Louis Bradley L. Schlaggar, Steve Petersen, Rebecca S. Coalson, 

Alecia C. Vogel, Jessica A. Church

7–21.8  61   0

Bradley Hospital and Brown University were supported by NIMH K22/NIH recovery act supplement (3K22MH074945-02S1) and Bradley Hospital. The Kennedy 
Krieger Institute was supported by the Autism Speaks Foundation and NIH (R01 NS048527, R01MH078160 and R01MH085328), Johns Hopkins General Clinical 
Research Center (M01 RR00052), the National Center for Resource (P41 RR15241), and the Intellectual and Developmental Disabilities Research Center (HD-24061). 
NeuroImage was funded by NWO-groot (http://www.nwo.nl/projecten.nsf/pages/2300149796). The New York University Child Study Center was supported by the 
NIMH (R01MH083246), Autism Speaks Foundation, Stavros Niarchos Foundation, Leon Levy Foundation, and by an endowment from Phyllis Green and Randolph 
Cōwen. Oregon Health and Science University was supported by K99/R00 MH091238 (Fair), R01 MH086654 (Nigg), Oregon Clinical and Translational Research 
Institute (Fair), Medical Research Foundation (Fair), UNCF/Merck (Fair), and the Ford Foundation (Fair). Peking University was supported by the Commonwealth 
Sciences Foundation, Ministry of Health, China (200802073), National Foundation, Ministry of Science and Technology of China (2007BAI17B03), National Natural 
Sciences Foundation of China (30970802), Funds for International Cooperation of the National Natural Science Foundation of China (81020108022), National Natural 
Science Foundation of China (8100059), and Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning. The University of Pittsburgh 
was supported by Cognitive and Brain Systems Maturation (5R01 MH067924, Luna), Reward Processing in Adolescence (1R01 MH080243, Luna), Functional 
Anatomy of Adolescent ADHD: Defining markers of recovery (K01MH82123, Velanova). The Washington University-St. Louis was supported by the Brooks Family 
Fund, R01 HD057076 (Schlaggar), R01 NS046424, NIH NINDS NRSA (Church), NIH NIMH R21 (Schlaggar), TSA (Schlaggar), and TSA (Church). NITRC-R and NITRC-IR 
was supported by the National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, and Department of Health and Human Services 
(GSA Contract No. GS-00F-0034P, Order Number HHSN268200100090U, SBIR No. 1 R43 NS074540-01).
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The question regarding whether demo-
graphic features are better predictors of 
ADHD than imaging-based features natu-
rally became a point of discussion in the 
imaging community5.

In short, the Alberta team’s results drew 
attention to a major challenge faced by 
the field in the effort to generate predic-
tive tools using existing data – group dif-
ferences in base phenotypic variables that 
reflect population characteristics. ADHD 
in clinically referred samples is much more 
frequently recognized in boys than girls. As 
such, all studies have discrepant M:F ratios 
for ADHD and TDC groups. In the ADHD-
200 sample, this discrepancy was the case 
(% males in the training set: TDC, 53%; 
ADHD, 79%; in the test set: TDC, 48%; 
ADHD, 71%). Similarly, performance IQ in 
ADHD is lower on average by 7–10 points 
than that of comparisons. In the ADHD-
200 sample, IQ estimates differed between 
the TDC and ADHD groups (Training Set: 
114 for TDC vs. 106 for ADHD, p < 0.001; 
Test Set: 113 for TDC vs. 103 for ADHD, 
p < 0.001). These baseline demographic/
clinical differences clearly provided suffi-
cient statistical power in the naturalistic/
artificial context of a contest to yield sub-
stantial predictive power. In the real world, 
there are more than two options (ADHD, 

Participants developed predictive 
methods that performed significantly 
above chance for analyzing datasets that 
were aggregated from multiple centers 
without prior coordination. These results 
suggest that progress toward developing 
effective predictive methods is possible 
even in less-than-ideal poorly controlled 
environments. We expect that these results 
will guide the psychiatric neuroimaging 
field as it grows. Despite the success of the 
methods developed in this competition, 
further development is necessary before 
the methods can be used in a clinical 
setting.

The winner in the biomarker contest 
was Che-Wei Chang from National Taiwan 
University, who brought emerging ana-
lytic approaches in computer vision to the 
study of ADHD-related differences in brain 
morphometry. By capturing novel aspects 
of brain anatomy, this effort defined a new 
feature upon which brain differences can be 
characterized and classified.

Intriguingly, the team from the 
University of Alberta consisting of Gagan 
Sidhu, Matthew Brown, Russell Greiner, 
Nasimeh Asgarian, and Meysam Bastani, 
did not use imaging data for their predic-
tion model, but rather only phenotypic 
data of age, sex, handedness, and IQ. While 
this strategy was not consistent with the 
intended competition rules, the effort did 
garner the highest score, 124, and the high-
est prediction accuracy (62.5%).

The method developed by the Hopkins 
team excelled in specificity, i.e., the ability 
to identify typically developing children 
(TDC) without falsely classifying them as 
having ADHD (see Figure 1).

They correctly classified 94% of TDC, 
showing that a diagnostic imaging meth-
odology can be developed with a very low 
risk of false positives, a fantastic result. Their 
method was much less effective insensitiv-
ity, or its ability to identify true positive 
ADHD diagnoses. They only identified 21% 
of the clinically identified cases. However, 
among the cases they did capture, they 
discerned the correct ADHD subtype with 
89.5% accuracy.

Other teams obtained substantially 
higher sensitivity scores. The methods 
developed by teams from the Chinese 
Academy of Sciences and the University 
of North Carolina at Chapel Hill both 
scored well on the J-statistic, a joint meas-
ure of specificity and sensitivity, suggesting 
that tests can be developed that can opti-
mize both specificity and specificity (see 
Figure 1).

Prediction of diagnosis at chance levels 
would have yielded values between 33 and 
38.75%. Participants’ predictions improved 
on chance by a healthy margin. The aver-
age prediction accuracy was 49.8% (range: 
37.4–60.5%; 54.1% for datasets from sites 
included in the training set; 40.2% for data-
sets from sites not included in the training 
set).

FIgure 1 | graphs depicting a receiver operating characteristic curve, comparison of sensitivity and specificity, and J-Statistic (calculated as sensitivity + 
specificity - 1 and is thus a combination measure of sensitivity and specificity) for each team’s solution.

5http://www.talyarkoni.org/blog/2011/10/12/brain-
based-prediction-of-adhd-now-with-100-fewer-
brains/
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F. Xavier Castellanos, Dan Dickstein, 
Damien Fair, David Kennedy, Beatriz Luna, 
Michael Milham (Project Coordinator), 
Stewart Mostofsky, and Julie Schweitzer. 
Data aggregation and organization was 
coordinated by the INDI team, which 
included Saroja Bangaru, David Gutman, 
Maarten Mennes, and Michael Milham. 
Web infrastructure and data storage were 
coordinated by Robert Buccigrossi, Albert 
Crowley, Christian Hasselgrove, David 
Kennedy, Kimberly Pohland, and Nina 
Preuss. The ADHD-200 Global Competition 
Coordinators were Damien Fair (Chair of 
Selection Committee, Editor in Chief for 
Global Competition Special issue) and 
Michael Milham.
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consortium acknowledge that this post hoc, 
uncoordinated dataset was not optimal for 
moving forward. For this advance to be 
accomplished, we estimate that a large-
scale (e.g., 1000+) multimodal imaging 
dataset (e.g., resting state fMRI, diffusion 
tensor imaging, high-resolution structural 
scans) would need to be created and dis-
tributed to the scientific community. Unlike 
the ADHD-200 dataset that incorporated 
previously collected data, future reference 
datasets will require coordination of recruit-
ment and phenotyping strategies. While we 
recognize the costs, large-scale, coordinated 
multicenter designs, such as the Alzheimer’s 
Disease Neuroimaging Initiative and the 
Human Connectome Project, are ideal for 
such endeavors.

At a smaller, more feasible scale (and 
not mutually exclusive), would be efforts 
to harmonize data collection across inde-
pendent imaging sites through the use of a 
core phenotypic protocol and open sharing 
of ADHD datasets along with core protocol-
driven measures. Such a core phenotypic 
protocol could be as limited as that used 
by the ADHD-200, or more comprehensive 
with a brief cognitive battery (which would 
be preferable). Researchers would have the 
option not to disclose data beyond the 
core protocol. To accomplish this harmo-
nized approach, community support for the 
establishment and coordination of a com-
mon phenotypic protocol for ADHD would 
be required, although even this approach 
would incur some costs.

While it is still unknown where open data 
sharing in psychiatric imaging will lead, it 
is clear that the field must transition from 
the current model into one that promotes 
coordinated, transparent, and open data 
sharing across laboratories and institutions. 
The costs of such an effort will not be small, 
but are dwarfed by the marked impairment 
and suffering in the lives of millions associ-
ated with disorders such as ADHD; failure 
to invest in such efforts will continue to 
cost much more in the long run and limit 
our ability to improve outcomes for those 
afflicted with neuropsychiatric disorders.
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not ADHD) so that factors such as sex and 
IQ are inadequate for predicting diagno-
sis. In situations with limited options, such 
clues can be usefully exploited – as the 
Alberta group clearly demonstrated. Russ 
Poldrack has highlighted an even more sig-
nificant concern in Tal Yarkoni’s blog – what 
if imaging-based approaches are detecting 
the neural correlates of these phenotypic 
variables rather than neural correlates of the 
disorder itself? When we characterize dif-
ferences in these populations, demographic 
factors should be considered, as they are 
for other diagnostic tests. Additionally, we 
recommend more careful consideration of 
such variables in the design of future train-
ing and test datasets.

ConCluding remarks
We begin our concluding remarks by 
emphasizing that the consortium recog-
nizes that diagnostic assessment cannot cur-
rently be based on structural or functional 
brain imaging, nor do we believe that brain 
imaging will ultimately result in a first-line 
tool in clinical psychiatry. The costs of con-
ducting brain imaging for all patients who 
present with a potential neuropsychiatric 
disorder would be prohibitive. However, 
future brain imaging methods will likely 
have a role in diagnostic clarification, guid-
ing treatment selection, and/or obtaining 
objective measures of treatment response. 
In other words, despite substantial costs, 
MRI could 1 day attain a reasonable level 
of utility for complex cases. In addition, it 
is probable that insights gained from explo-
ration of MRI for diagnostic utility will be 
translatable into more readily available and 
cost effective tools, such as EEG or near-
infrared spectroscopy. Importantly, predic-
tive approaches also have the potential to 
inform our understanding of the neurobio-
logical basis for ADHD by highlighting the 
findings that fared best as predictors.

We note that the primary goal of the 
ADHD-200 competition was to promote 
an open science model to foster competi-
tive collaboration among members of the 
imaging community. The effort also aimed 
at encouraging the broader scientific com-
munity to join us in confronting the chal-
lenges of translational psychiatric imaging 
research. In this regard, this initial effort can 
already be characterized as a success and the 
efforts have engendered some momentum 
for the field. However, the members of the 
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